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Classical fluctuation theorem for a single particle regime

A time-forward process 

: probability of a trajectory from i to jp(�i,j)

p(�̃j,i) : probability of its time-reversed trajectory from j to i

p(�̃j,i)

p(�i,j)
= e��i,j he��i = 1
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Quantum fluctuation theorem for a single particle regime

Quantum process ⇢i ⇢f

A time-forward process

A time-reversed process

p(m,m0)

p̃(m0,m)

⇢̃f ⇢̃i

|mi |m0i

he��i = 1

Quantum Fluctuation theorems

p̃(m0,m)

p(m,m0)
:= e��m,m0

: time-forward joint probability between m and m’p(m,m0)

p̃(m0,m) : time-reversed joint probability between m’ and m
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p⇤(00) 0

0 p⇤(10)

◆

H. Tasaki, arXiv (2000)
J. Kurchan, arXiv (2000)

M. Campisi, et al, PRL (2010) 
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Generalisations of fluctuation 
theorems

• Early generalisations without correlation
• Generalisations with correlation

• System-environment correlation
• System-system correlation in classical nonequilibrium regime
• System-system correlation in quantum nonequilibrium regime



•  No correlation between S and B
• System S & heat bath B in the weak coupling regime

Early generalisations without correlation

C. Jarzynski, PRL  (1997)
G. E. Crooks, PRE (1999)
H. Tasaki, arXiv (2000)
J. Kurchan, arXiv (2000)

1. Weak coupling case 

S B



•  No correlation between S and B
• System S & heat bath B in the weak coupling regime

2. Strong coupling case

Early generalisations without correlation

• Arbitrary strength of interaction Hamiltonian

1. Weak coupling case 

M. Campisi, et al.PRL (2010) 
C. Jarzynski, J. Stat. Phys. (2000)

S B

• Heat bath + hyper heat bath 
• No explicit consideration of correlation (S+B)

C. Jarzynski, PRL  (1997)
G. E. Crooks, PRE (1999)
H. Tasaki, arXiv (2000)
J. Kurchan, arXiv (2000)



System-environment correlation

Many-body fluctuation theorem

• Entanglement between S and B is a central concept

• System & many-body particle reservoir

Eiki Iyoda, et al. PRL (2017)

• Initial bath is assumed to be a pure state



System-environment correlation

Heat-bath correlation fluctuation theorem 

• System & squeezed boson heat reservoir

Gonzalo Manzano, et al. PRX (2018)

• Correlations between S and E are involved
• Description of correlation is classical between S and E



Classically correlated systems interacting with heat bath

• Stochastic system + heat reservoir & external degree of freedom

T. Sagawa and M. Ueda, PRL. (2012)

Classically correlated stochastic system

and y(y0), where the marginal probabilities are given by p(x) =
R
dyp(x, y)

and p(y) =
R
dxp(x, y).

The initial correlations between the two systems is presented by

Ji(x, y) = ln pi(x, y)� ln pi(x)� ln pi(y) (2)

Also, the final correlations is given by

Jf (x
0
, y

0) = ln pf (x
0
, y

0)� ln pf (x
0)� ln pf (y

0) (3)

If the systems are not correlated at the initial and final time, the mutual

informations vanish. The ensemble averages of (2) and (3) give the classical

mutual information []. The unaveraged mutual information then provides

its change defined by �J := Jf � Ji.

Results

In the absence of the initial or final correlations, entropy production (1)

satisfies the integral fluctuation theorem (or the Jarzynski equality), i.e.,

he��i = 1 [65,67,69], where h...i describes the ensemble average over all

microscopic trajectories. In contrast, in the presence of information pro-

cessing with initial and final correlations, the integral fluctuation theorem

is generalised as
⌦
e

��+�J
↵
= 1. (4)

By using the convexity of the exponential function he��i � e

�h�i, Eq. (4)

leads to

h�i � h�Ji (5)

Equality (3) and inequality (5) imply that we can control entropy production

in the subsystem by changing the correlation. In the absence of initial or

final correlations, Eq. (3) and inequal- ity (5) reduce to the conventional

fluctuation theorem and the second law, respectively. Without assumption

(4), inequality (5) holds, but Eq. (3) does not, as shown later.

In the presence of a single heat bath at inverse temperature , inequality

(5) implies the minimal energy dissipation

�� hQi � � h�si+ h�Ji (6)

where�hQi is the heat transferred from the system to the bath. If h�Ji = 0,

inequality (6) reduces to �� hQi � � h�si, which leads to the Landauer

principle and its generalisations [].

A crucial point of our setup is that the entropy of X can be decreased

ii

• External system Y is invariant with time.

he��i = 1

• Consider classically correlated system at      and ti tf
• The formula of the fluctuation theorem has been changed



Quantum correlated systems interacting with heat bath

Fluctuation theorem for quantum correlated systems

• System + system: quantum correlated bipartite systems

K. Funo, et al, PRE  (2013)

S. S. Jevtic, et al. PRE (2015)

A B

• Quantum phenomena of work and heat fluctuations due to correlation

• Correlation measure is still classical (Classical mutual information)



Quantum generalisations with quantum information approaches

Coherence fluctuation theorem

Johan Åberg, PRX (2018)

• Energy reservoir: measure of work without decoherence

• Time-reversed process of quantum channels
• From Hamiltonian approach to recovery map

Hyukjoon Kwon, M. S. Kim PRX (2019)

• Method: Probability      Quantum channel descriptions
• Results: Initially arbitrary state, coherence effects

• Enable approaches to the resource theory

https://arxiv.org/search/quant-ph?searchtype=author&query=Kwon,+H
https://arxiv.org/search/quant-ph?searchtype=author&query=Kim%2C+M+S


Fluctuation theorem for correlated systems

• Missing of irreversible characteristics of quantum 
correlation related to thermodynamics
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• Absence of quantum correlation measure in nonequilibrium 
approaches

SA

S B

SB



Fluctuation theorem for correlated systems

• Quantum approaches are required
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• Fluctuation of quantum correlation is not measurable due to 
incompatibility
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Fluctuation theorem for 
quantum correlated systems



Fluctuations of correlation in non-equilibrium quantum bipartite systems

• Fluctuation of correlation

Classical fluctuation of correlation in nonequilibrium regime 

hJi =
X

p(a, b) ln
p(a, b)

p(a)p(b)
= H(A : B)

• Averaged classical correlation fluctuation 

A B

p(a) p(b)

p(a, b)

J(a, b) = ln
p(a, b)

p(a)p(b)
:



⇢AB =
X

p(m)|mihm|

noncommutativity

⇢A =
X

p(a)|aiha| ⇢B =
X

p(b)|bihb|

[|mihm|AB , |aiha|A ⌦ |bihb|B ] 6= 0

Quantum fluctuation of correlation

Fluctuations of correlation in non-equilibrium quantum bipartite systems

• Measure of total correlation

:



• Fluctuation of quantum correlation

⇢AB =
X

p(m)|mihm|

noncommutativity

⇢A =
X

p(a)|aiha| ⇢B =
X

p(b)|bihb|

[|mihm|AB , |aiha|A ⌦ |bihb|B ] 6= 0

Quantum fluctuation of correlation

Fluctuations of correlation in non-equilibrium quantum bipartite systems

� = ln p(m)� ln p(a, b)
<latexit sha1_base64="7t6Sr/LkhK+zQYnj3R3b70AEnlk=">AAACB3icbZDLSsNAFIYn9VbrLepSkKFFaFFLogvdCEU3LivYCzShTCaTduhkEmYmQgjduXHvU7hxoYhbX8Fd38bpZaGtPwx8/OcczpzfixmVyrJGRm5peWV1Lb9e2Njc2t4xd/eaMkoEJg0csUi0PSQJo5w0FFWMtGNBUOgx0vIGN+N664EISSN+r9KYuCHqcRpQjJS2uuah4xOmELyCDuMwLocVeDpDdOJVumbJqloTwUWwZ1CqFZ3j51EtrXfNb8ePcBISrjBDUnZsK1ZuhoSimJFhwUkkiREeoB7paOQoJNLNJncM4ZF2fBhEQj+u4MT9PZGhUMo09HRniFRfztfG5n+1TqKCSzejPE4U4Xi6KEgYVBEchwJ9KghWLNWAsKD6rxD3kUBY6egKOgR7/uRFaJ5V7fOqfafTuAZT5cEBKIIysMEFqIFbUAcNgMEjeAFv4N14Ml6ND+Nz2pozZjP74I+Mrx/qTJm/</latexit>

p(a, b) = ha, b|⇢AB |a, bi
<latexit sha1_base64="+fPbVdwrix4ykN9vOkrk+dgbpns=">AAACE3icbVDLTgIxFO3gC/E16tJNAzHBR8iMLnRjgrhxiYk8EoaQTinQ0GknbceEDPyDC/0VNy40xq0bd/yNZWCh4EmanHvOvbm9xw8ZVdpxxlZqaXlldS29ntnY3NresXf3qkpEEpMKFkzIuo8UYZSTiqaakXooCQp8Rmp+/2bi1x6IVFTwez0ISTNAXU47FCNtpJZ9HObRqX8Er6DHEO8yAk059GRPtOLr0mg4KT2ZOC075xScBHCRuDOSK2a9k6dxcVBu2d9eW+AoIFxjhpRquE6omzGSmmJGRhkvUiREuI+6pGEoRwFRzTi5aQQPjdKGHSHN4xom6u+JGAVKDQLfdAZI99S8NxH/8xqR7lw2Y8rDSBOOp4s6EYNawElAsE0lwZoNDEFYUvNXiHtIIqxNjBkTgjt/8iKpnhXc84J7Z9IogSnS4ABkQR644AIUwS0ogwrA4BG8gDfwbj1br9aH9TltTVmzmX3wB9bXD57/n8M=</latexit>



p(m, a, b) = p(m)|hm|a, bi|2
• Joint probability

⇢AB =
X

p(m)|mihm|

noncommutativity

⇢A =
X

p(a)|aiha| ⇢B =
X

p(b)|bihb|

[|mihm|AB , |aiha|A ⌦ |bihb|B ] 6= 0

P. A. M. Dirac, RMP (1945)

A. O. Barut, Phys. Rev. (1957)H. Margenau and R. N. Hill, Progr. Theor. Phys. (1961);

Quantum fluctuation of correlation

• Fluctuation of quantum correlation

� = ln p(m)� ln p(a, b)
<latexit sha1_base64="7t6Sr/LkhK+zQYnj3R3b70AEnlk=">AAACB3icbZDLSsNAFIYn9VbrLepSkKFFaFFLogvdCEU3LivYCzShTCaTduhkEmYmQgjduXHvU7hxoYhbX8Fd38bpZaGtPwx8/OcczpzfixmVyrJGRm5peWV1Lb9e2Njc2t4xd/eaMkoEJg0csUi0PSQJo5w0FFWMtGNBUOgx0vIGN+N664EISSN+r9KYuCHqcRpQjJS2uuah4xOmELyCDuMwLocVeDpDdOJVumbJqloTwUWwZ1CqFZ3j51EtrXfNb8ePcBISrjBDUnZsK1ZuhoSimJFhwUkkiREeoB7paOQoJNLNJncM4ZF2fBhEQj+u4MT9PZGhUMo09HRniFRfztfG5n+1TqKCSzejPE4U4Xi6KEgYVBEchwJ9KghWLNWAsKD6rxD3kUBY6egKOgR7/uRFaJ5V7fOqfafTuAZT5cEBKIIysMEFqIFbUAcNgMEjeAFv4N14Ml6ND+Nz2pozZjP74I+Mrx/qTJm/</latexit>

p(a, b) = ha, b|⇢AB |a, bi
<latexit sha1_base64="+fPbVdwrix4ykN9vOkrk+dgbpns=">AAACE3icbVDLTgIxFO3gC/E16tJNAzHBR8iMLnRjgrhxiYk8EoaQTinQ0GknbceEDPyDC/0VNy40xq0bd/yNZWCh4EmanHvOvbm9xw8ZVdpxxlZqaXlldS29ntnY3NresXf3qkpEEpMKFkzIuo8UYZSTiqaakXooCQp8Rmp+/2bi1x6IVFTwez0ISTNAXU47FCNtpJZ9HObRqX8Er6DHEO8yAk059GRPtOLr0mg4KT2ZOC075xScBHCRuDOSK2a9k6dxcVBu2d9eW+AoIFxjhpRquE6omzGSmmJGRhkvUiREuI+6pGEoRwFRzTi5aQQPjdKGHSHN4xom6u+JGAVKDQLfdAZI99S8NxH/8xqR7lw2Y8rDSBOOp4s6EYNawElAsE0lwZoNDEFYUvNXiHtIIqxNjBkTgjt/8iKpnhXc84J7Z9IogSnS4ABkQR644AIUwS0ogwrA4BG8gDfwbj1br9aH9TltTVmzmX3wB9bXD57/n8M=</latexit>

Fluctuations of correlation in non-equilibrium quantum bipartite systems



Quantum fluctuation of correlation

⇢AB =
X

p(m)|mihm|

noncommutativity

⇢A =
X

p(a)|aiha| ⇢B =
X

p(b)|bihb|

• Average of quantum fluctuation of correlation

[|mihm|AB , |aiha|A ⌦ |bihb|B ] 6= 0

Fluctuations of correlation in non-equilibrium quantum bipartite systems

h�i =
X

m,a,b

p(m, a, b)[ln p(m)� ln p(a, b)] = S(⇢0AB)� S(⇢AB)

<latexit sha1_base64="C551Bf0lbDH6B7uTKHMFrw6hJso="></latexit>



⇢AB =
X

p(m)|mihm|

noncommutativity

⇢A =
X

p(a)|aiha| ⇢B =
X

p(b)|bihb|

[|mihm|AB , |aiha|A ⌦ |bihb|B ] 6= 0

P. A. M. Dirac, RMP (1945)

A. O. Barut, Phys. Rev. (1957)H. Margenau and R. N. Hill, Progr. Theor. Phys. (1961);

Quantum fluctuation of correlation

•     is uniquely defined by a given composite system

Fluctuations of correlation in non-equilibrium quantum bipartite systems

• The non-classicality disappears when [|mihm|AB , |aiha|A ⌦ |bihb|B ] = 0
<latexit sha1_base64="eCmvr9b5JkjUbSyf8bWPSBCsxgc="></latexit>

�
<latexit sha1_base64="ikbdCCJw9PCD9qWa2Tj39Bv8ink=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBE8lUQFPRa9eKxgP6ANZbOZtGs3u2F3I5TQ/+DFgyJe/T/e/Ddu2xy09cHA470ZZuaFKWfaeN63s7K6tr6xWdoqb+/s7u1XDg5bWmaKYpNKLlUnJBo5E9g0zHDspApJEnJsh6Pbqd9+QqWZFA9mnGKQkIFgMaPEWKnVi5Ab0q9UvZo3g7tM/IJUoUCjX/nqRZJmCQpDOdG663upCXKiDKMcJ+VepjEldEQG2LVUkAR1kM+unbinVoncWCpbwrgz9fdEThKtx0loOxNihnrRm4r/ed3MxNdBzkSaGRR0vijOuGukO33djZhCavjYEkIVs7e6dEgUocYGVLYh+IsvL5PWec2/qPn3l9X6TRFHCY7hBM7Ahyuowx00oAkUHuEZXuHNkc6L8+58zFtXnGLmCP7A+fwBkoiPHw==</latexit>



• The time-forward JP

Joint probabilities(JPs) for joint systems

pm,m0,r,r0 = |hm0, r0|U |m, ri|2pmpr

Joint probabilities in quantum non-equilibrium bipartite systems

Quantum System

T

⇢AB
⇢A

⇢B

⇢iR =
e��HR

Z�



• The time-forward JP

Joint probabilities(JPs) for joint systems

pm,m0,r,r0 = |hm0, r0|U |m, ri|2pmpr

pm,m0,r,r0;a,b,a0,b0 = pm,m0,r,r0 |hm|a, bi|2|hm0|a0, b0i|2

Joint probabilities in quantum non-equilibrium bipartite systems

Quantum System

T

⇢AB
⇢A

⇢B

⇢iR =
e��HR

Z�

h��i =?
<latexit sha1_base64="ZG5+acbQaqC/cOLCXifPeqVgTOg=">AAACCnicbVC7SgNBFJ31GeNr1dJmTBAEIexqoY0Y1MIygnlAdgmzk5tkyOzsMjMrLCG1jaW/YWOhiK1fYJe/cZJNoYkHLvdwzr3M3BPEnCntOCNrYXFpeWU1t5Zf39jc2rZ3dmsqSiSFKo14JBsBUcCZgKpmmkMjlkDCgEM96F+P/foDSMUica/TGPyQdAXrMEq0kVr2gceJ6HLA3g1wTbDXzprM1At82bKLTsmZAM8Td0qK5YJ3/Dwqp5WW/e21I5qEIDTlRKmm68TaHxCpGeUwzHuJgpjQPulC01BBQlD+YHLKEB8apY07kTQlNJ6ovzcGJFQqDQMzGRLdU7PeWPzPaya6c+4PmIgTDYJmD3USjnWEx7ngNpNANU8NIVQy81dMe0QSqk16eROCO3vyPKmdlNzTkntn0rhCGXJoHxXQEXLRGSqjW1RBVUTRI3pBb+jderJerQ/rMxtdsKY7e+gPrK8fdzycbw==</latexit>



Joint probabilities in quantum non-equilibrium bipartite systems

⇢AB t
ti tf

|hm|a, bi|2 |hm0|a0, b0i|2

Joint probabilities(JPs) for joint systems

Quantum System

T

⇢AB
⇢A

⇢B

⇢iR =
e��HR

Z�



Joint probabilities(JPs) for joint systems

• The time-reversed JP
p̃m0,m,r0,r = |hm, r|Ũ |m0, r0i|2p̃m0 p̃r0

Joint probabilities in quantum non-equilibrium bipartite systems

p̃m0,m,r0,r;a0,b0,a,b = p̃m0,m,r0,r|hm0|a0, b0i|2|hm|a, bi|2

Quantum System

T

⇢AB
⇢A

⇢B

⇢iR =
e��HR

Z�



The detailed fluctuation theorem for arbitrary bipartite systems

Detailed fluctuation theorem

• Entropy production of individual systems and a heat bath

• Variations of fluctuations of correlations

�I := If � Ii

p̃m0,a0,b0,m,a,b;r0,r

pm,a,b,m0,a0,b0;r,r0
= e��+�I+��

<latexit sha1_base64="ZaefaaE32d8ElLgDjgyUb7IFaeQ="></latexit>

� = �sA +�sB +�sR
<latexit sha1_base64="qUMN/fH1jxB5VFxs1SmhYniNxGE=">AAACFnicbVDLSgMxFM3UV62vUcGNm2ARBLHM6EI3Qq0uXLZiH9AZhkyaaUMzmSHJCGXoV7jxJ/wANy584FbcufFbTFvB2nogcO4593Jzjx8zKpVlfRqZmdm5+YXsYm5peWV1zVzfqMkoEZhUccQi0fCRJIxyUlVUMdKIBUGhz0jd754P/PoNEZJG/Fr1YuKGqM1pQDFSWvLMA0fSdojgKXQuCFMISu8M7v8WpfHiyjPzVsEaAk4T+4fki1uVL3pfeil75ofTinASEq4wQ1I2bStWboqEopiRfs5JJIkR7qI2aWrKUUikmw7P6sNdrbRgEAn9uIJDdXwiRaGUvdDXnSFSHTnpDcT/vGaighM3pTxOFOF4tChIGFQRHGQEW1QQrFhPE4QF1X+FuIMEwkonmdMh2JMnT5PaYcE+KtgVnUYJjJAF22AH7AEbHIMiuARlUAUY3IIH8ASejTvj0Xg13katGeNnZhP8gfH+Db0ioEo=</latexit>

�� := �f � �i
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• Classical version of DFT
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Known result

Detailed fluctuation theorem

• The second law
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Chapter 6. Illustrations and experimental realisations

entangled state. Note that the thermal subsystems in an entangled bipartite system is

experimentally realizable in quantum optics [105]. In other words, the joint system is

given by ⇢iAB = |0ih0|AB, where ⇢iAB =
P

3

m=0

pAB
m |mihm|AB with pAB

0

= 1 and pAB
1,2,3 = 0

in the Bell bases, i.e.,

|0iAB =
1p
2
(|0iA ⌦ |0iB + |1iA ⌦ |1iB) = | +i

|1iAB =
1p
2
(|0iA ⌦ |0iB � |1iA ⌦ |1iB) = | �i

|2iAB =
1p
2
(|0iA ⌦ |1iB + |1iA ⌦ |0iB) = |�+i

|3iAB =
1p
2
(|0iA ⌦ |1iB � |1iA ⌦ |1iB) = |��i.

(6.3)

Since the states of the subsystems A and B become ⇢iA = |00ih00|A and ⇢fB = |00ih00|B after

the isothermal process, respectively, the final state of the joint system can be inferred

from the state of the subsystems, given by ⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B in the

eigenbases,

|00iAB = |00iA ⌦ |00iB
|10iAB = |00iA ⌦ |10iB
|20iAB = |10iA ⌦ |00iB
|30iAB = |10iA ⌦ |10iB.

(6.4)

In the time-reversed process, the parameter of the energy gap of the system should

be reversed in an isothermal manner. The energy gap is isothermally changed from �0 �
��1 to 0. Based on the assumption that the initial state of the joint system in the

time-reversed process is prepared with the final state in the time-forward process, i.e.,

⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =

|00ih00|AB. Consider the time-reversed process of the isothermal process applied to each
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subsystem. This process then leads to the final state given by ⇢̃fAB = 1

2

(|0ih0|+ |1ih1|)A⌦
1

2

(|0ih0|+ |1ih1|)B = 1

4

(|0ih0|AB + |1ih1|AB + |2ih2|AB + |3ih3|AB), since the subsystem

must be returned to the initial state due to the reversibility of the isothermal process. No

interaction between the subsystem exists during the local isothermal process so that it is

obvious to take no correlation into account.

Here we focus on our transitional joint probabilities in the time-forward and time-

reversed process. The multi-indexed joint probabilities are given as follows: the time-

forward probabilities are given by p
0,0,0,00,00,00 = p

0,1,1,00,00,00 = 1

2

and pm,a,b,m0,a0,b0 =

0 otherwise; the time-reversed probabilities are given by p̃
0

0,00,00,0,0,0 = p̃
0

0,00,00,0,1,1 =

p̃
0

0,00,00,1,0,0 = p̃
0

0,00,00,1,1,1 = p̃
0

0,00,00,2,0,1 = p̃
0

0,00,00,2,1,0 = p̃
0

0,00,00,3,0,1 = p̃
0

0,00,00,3,1,0 = 1

4

and p̃m0,a0,b0,m,a,b = 0 otherwise. (See details in Appendix A.) In this case, the time-

forward and the time-reversed joint probabilities of the joint system do not satisfy the

detailed balance relation, pm,m0 6= p̃m0,m, but for the subsystem’s, it is shown to satisfy

the detailed balance relation, pa,a0 = p̃a0,a and pb,b0 = p̃b0,b.

In this example, the given process is however irreversible as it is a maximally irre-

versible case of information that no correlation exists after returned to the starting point.

Mathematically, it can be clearly analysed: The quantifier of the information irreversibil-

ity, i.e., he��Ii
˜R, becomes he��Ii

˜R = 1 in this case, which indicates the information has

no contribution to the second law since the logarithm of the quantifier in Eq. (5.31) is

evaluated by lnhe��Ii
˜R = 0. Moreover, it equivalently leads to he�(�S+�Q)i = 1 in Eq.

(5.30), referring to the conventional fluctuation theorem.

6.1.3 Example (B): Minimum correlation irreversibility

Let us consider the minimum information irreversibility, in which the initial en-

tanglement is fully used to control the subsystems. Suppose a unitary operator U de-

scribes a time-forward process of a maximally entangled initial state of a bipartite system

⇢iAB = |0ih0|AB. The final state after the operation, ⇢fAB = U⇢iABU
† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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Figure 6.3: Information dissipative process and information conserving process: The
schematic picture comparing an information dissipative process and an information con-
serving process in a time-forward and a time reversed manner. Each graphic presents a
process of (A) the maximum irreversibility of correlation, (B) The minimum irreversibility
of correlation, (C) The time-reversed process of the maximum irreversibility, and (D) The
time-reversed process of the minimum irreversibility.

ple, respectively. Note that no heat transfer is allowed in this process since the unitary

operation implies that the interaction with the thermal bath is ignored.

Since the time-reversed process is given by U †, the initial state of the process, by

our definition, is ⇢̃iAB = |00ih00|AB, which will be transformed to the final state ⇢̃fAB =

|0ih0|AB. Indeed, this result is in accordance with the reversibility of the unitary operator.

The reversibility can be also confirmed as follows: We immediately compute the joint

probabilities in the time-forward and the time-reversed processes as,

p
0,0,0,0,0,0 = p̃

0,0,0,0,0,0 =
1

2

p
0,1,1,0,0,0 = p̃

0,0,0,0,1,1 =
1

2
.

(6.5)

Otherwise, pm,a,b,m0,a0,b0 = 0, since either the transition probability is zero |hm0|U |mi|2 = 0

or the non-commutativity fluctuation term is zero, i.e., |hm|a, bi|2 are applied for other
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entangled state. Note that the thermal subsystems in an entangled bipartite system is

experimentally realizable in quantum optics [105]. In other words, the joint system is

given by ⇢iAB = |0ih0|AB, where ⇢iAB =
P

3

m=0

pAB
m |mihm|AB with pAB

0

= 1 and pAB
1,2,3 = 0

in the Bell bases, i.e.,

|0iAB =
1p
2
(|0iA ⌦ |0iB + |1iA ⌦ |1iB) = | +i

|1iAB =
1p
2
(|0iA ⌦ |0iB � |1iA ⌦ |1iB) = | �i

|2iAB =
1p
2
(|0iA ⌦ |1iB + |1iA ⌦ |0iB) = |�+i

|3iAB =
1p
2
(|0iA ⌦ |1iB � |1iA ⌦ |1iB) = |��i.

(6.3)

Since the states of the subsystems A and B become ⇢iA = |00ih00|A and ⇢fB = |00ih00|B after

the isothermal process, respectively, the final state of the joint system can be inferred

from the state of the subsystems, given by ⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B in the

eigenbases,

|00iAB = |00iA ⌦ |00iB
|10iAB = |00iA ⌦ |10iB
|20iAB = |10iA ⌦ |00iB
|30iAB = |10iA ⌦ |10iB.

(6.4)

In the time-reversed process, the parameter of the energy gap of the system should

be reversed in an isothermal manner. The energy gap is isothermally changed from �0 �
��1 to 0. Based on the assumption that the initial state of the joint system in the

time-reversed process is prepared with the final state in the time-forward process, i.e.,

⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =

|00ih00|AB. Consider the time-reversed process of the isothermal process applied to each
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⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =
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subsystem. This process then leads to the final state given by ⇢̃fAB = 1

2

(|0ih0|+ |1ih1|)A⌦
1

2

(|0ih0|+ |1ih1|)B = 1

4

(|0ih0|AB + |1ih1|AB + |2ih2|AB + |3ih3|AB), since the subsystem

must be returned to the initial state due to the reversibility of the isothermal process. No

interaction between the subsystem exists during the local isothermal process so that it is

obvious to take no correlation into account.

Here we focus on our transitional joint probabilities in the time-forward and time-

reversed process. The multi-indexed joint probabilities are given as follows: the time-

forward probabilities are given by p
0,0,0,00,00,00 = p

0,1,1,00,00,00 = 1

2

and pm,a,b,m0,a0,b0 =

0 otherwise; the time-reversed probabilities are given by p̃
0

0,00,00,0,0,0 = p̃
0

0,00,00,0,1,1 =

p̃
0

0,00,00,1,0,0 = p̃
0

0,00,00,1,1,1 = p̃
0

0,00,00,2,0,1 = p̃
0

0,00,00,2,1,0 = p̃
0

0,00,00,3,0,1 = p̃
0

0,00,00,3,1,0 = 1

4

and p̃m0,a0,b0,m,a,b = 0 otherwise. (See details in Appendix A.) In this case, the time-

forward and the time-reversed joint probabilities of the joint system do not satisfy the

detailed balance relation, pm,m0 6= p̃m0,m, but for the subsystem’s, it is shown to satisfy

the detailed balance relation, pa,a0 = p̃a0,a and pb,b0 = p̃b0,b.

In this example, the given process is however irreversible as it is a maximally irre-

versible case of information that no correlation exists after returned to the starting point.

Mathematically, it can be clearly analysed: The quantifier of the information irreversibil-

ity, i.e., he��Ii
˜R, becomes he��Ii

˜R = 1 in this case, which indicates the information has

no contribution to the second law since the logarithm of the quantifier in Eq. (5.31) is

evaluated by lnhe��Ii
˜R = 0. Moreover, it equivalently leads to he�(�S+�Q)i = 1 in Eq.

(5.30), referring to the conventional fluctuation theorem.

6.1.3 Example (B): Minimum correlation irreversibility

Let us consider the minimum information irreversibility, in which the initial en-

tanglement is fully used to control the subsystems. Suppose a unitary operator U de-

scribes a time-forward process of a maximally entangled initial state of a bipartite system

⇢iAB = |0ih0|AB. The final state after the operation, ⇢fAB = U⇢iABU
† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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entangled state. Note that the thermal subsystems in an entangled bipartite system is

experimentally realizable in quantum optics [105]. In other words, the joint system is

given by ⇢iAB = |0ih0|AB, where ⇢iAB =
P

3

m=0

pAB
m |mihm|AB with pAB

0

= 1 and pAB
1,2,3 = 0

in the Bell bases, i.e.,

|0iAB =
1p
2
(|0iA ⌦ |0iB + |1iA ⌦ |1iB) = | +i

|1iAB =
1p
2
(|0iA ⌦ |0iB � |1iA ⌦ |1iB) = | �i

|2iAB =
1p
2
(|0iA ⌦ |1iB + |1iA ⌦ |0iB) = |�+i

|3iAB =
1p
2
(|0iA ⌦ |1iB � |1iA ⌦ |1iB) = |��i.

(6.3)

Since the states of the subsystems A and B become ⇢iA = |00ih00|A and ⇢fB = |00ih00|B after

the isothermal process, respectively, the final state of the joint system can be inferred

from the state of the subsystems, given by ⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B in the

eigenbases,

|00iAB = |00iA ⌦ |00iB
|10iAB = |00iA ⌦ |10iB
|20iAB = |10iA ⌦ |00iB
|30iAB = |10iA ⌦ |10iB.

(6.4)

In the time-reversed process, the parameter of the energy gap of the system should

be reversed in an isothermal manner. The energy gap is isothermally changed from �0 �
��1 to 0. Based on the assumption that the initial state of the joint system in the

time-reversed process is prepared with the final state in the time-forward process, i.e.,

⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =

|00ih00|AB. Consider the time-reversed process of the isothermal process applied to each
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subsystem. This process then leads to the final state given by ⇢̃fAB = 1

2

(|0ih0|+ |1ih1|)A⌦
1

2

(|0ih0|+ |1ih1|)B = 1

4

(|0ih0|AB + |1ih1|AB + |2ih2|AB + |3ih3|AB), since the subsystem

must be returned to the initial state due to the reversibility of the isothermal process. No

interaction between the subsystem exists during the local isothermal process so that it is

obvious to take no correlation into account.

Here we focus on our transitional joint probabilities in the time-forward and time-

reversed process. The multi-indexed joint probabilities are given as follows: the time-

forward probabilities are given by p
0,0,0,00,00,00 = p

0,1,1,00,00,00 = 1

2

and pm,a,b,m0,a0,b0 =

0 otherwise; the time-reversed probabilities are given by p̃
0

0,00,00,0,0,0 = p̃
0

0,00,00,0,1,1 =

p̃
0

0,00,00,1,0,0 = p̃
0

0,00,00,1,1,1 = p̃
0

0,00,00,2,0,1 = p̃
0

0,00,00,2,1,0 = p̃
0

0,00,00,3,0,1 = p̃
0

0,00,00,3,1,0 = 1

4

and p̃m0,a0,b0,m,a,b = 0 otherwise. (See details in Appendix A.) In this case, the time-

forward and the time-reversed joint probabilities of the joint system do not satisfy the

detailed balance relation, pm,m0 6= p̃m0,m, but for the subsystem’s, it is shown to satisfy

the detailed balance relation, pa,a0 = p̃a0,a and pb,b0 = p̃b0,b.

In this example, the given process is however irreversible as it is a maximally irre-

versible case of information that no correlation exists after returned to the starting point.

Mathematically, it can be clearly analysed: The quantifier of the information irreversibil-

ity, i.e., he��Ii
˜R, becomes he��Ii

˜R = 1 in this case, which indicates the information has

no contribution to the second law since the logarithm of the quantifier in Eq. (5.31) is

evaluated by lnhe��Ii
˜R = 0. Moreover, it equivalently leads to he�(�S+�Q)i = 1 in Eq.

(5.30), referring to the conventional fluctuation theorem.

6.1.3 Example (B): Minimum correlation irreversibility

Let us consider the minimum information irreversibility, in which the initial en-

tanglement is fully used to control the subsystems. Suppose a unitary operator U de-

scribes a time-forward process of a maximally entangled initial state of a bipartite system

⇢iAB = |0ih0|AB. The final state after the operation, ⇢fAB = U⇢iABU
† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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entangled state. Note that the thermal subsystems in an entangled bipartite system is

experimentally realizable in quantum optics [105]. In other words, the joint system is

given by ⇢iAB = |0ih0|AB, where ⇢iAB =
P

3

m=0

pAB
m |mihm|AB with pAB

0

= 1 and pAB
1,2,3 = 0

in the Bell bases, i.e.,

|0iAB =
1p
2
(|0iA ⌦ |0iB + |1iA ⌦ |1iB) = | +i

|1iAB =
1p
2
(|0iA ⌦ |0iB � |1iA ⌦ |1iB) = | �i

|2iAB =
1p
2
(|0iA ⌦ |1iB + |1iA ⌦ |0iB) = |�+i

|3iAB =
1p
2
(|0iA ⌦ |1iB � |1iA ⌦ |1iB) = |��i.

(6.3)

Since the states of the subsystems A and B become ⇢iA = |00ih00|A and ⇢fB = |00ih00|B after

the isothermal process, respectively, the final state of the joint system can be inferred

from the state of the subsystems, given by ⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B in the

eigenbases,

|00iAB = |00iA ⌦ |00iB
|10iAB = |00iA ⌦ |10iB
|20iAB = |10iA ⌦ |00iB
|30iAB = |10iA ⌦ |10iB.

(6.4)

In the time-reversed process, the parameter of the energy gap of the system should

be reversed in an isothermal manner. The energy gap is isothermally changed from �0 �
��1 to 0. Based on the assumption that the initial state of the joint system in the

time-reversed process is prepared with the final state in the time-forward process, i.e.,

⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =

|00ih00|AB. Consider the time-reversed process of the isothermal process applied to each
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subsystem. This process then leads to the final state given by ⇢̃fAB = 1

2

(|0ih0|+ |1ih1|)A⌦
1

2

(|0ih0|+ |1ih1|)B = 1

4

(|0ih0|AB + |1ih1|AB + |2ih2|AB + |3ih3|AB), since the subsystem

must be returned to the initial state due to the reversibility of the isothermal process. No

interaction between the subsystem exists during the local isothermal process so that it is

obvious to take no correlation into account.

Here we focus on our transitional joint probabilities in the time-forward and time-

reversed process. The multi-indexed joint probabilities are given as follows: the time-

forward probabilities are given by p
0,0,0,00,00,00 = p

0,1,1,00,00,00 = 1

2

and pm,a,b,m0,a0,b0 =

0 otherwise; the time-reversed probabilities are given by p̃
0

0,00,00,0,0,0 = p̃
0

0,00,00,0,1,1 =

p̃
0

0,00,00,1,0,0 = p̃
0

0,00,00,1,1,1 = p̃
0

0,00,00,2,0,1 = p̃
0

0,00,00,2,1,0 = p̃
0

0,00,00,3,0,1 = p̃
0

0,00,00,3,1,0 = 1

4

and p̃m0,a0,b0,m,a,b = 0 otherwise. (See details in Appendix A.) In this case, the time-

forward and the time-reversed joint probabilities of the joint system do not satisfy the

detailed balance relation, pm,m0 6= p̃m0,m, but for the subsystem’s, it is shown to satisfy

the detailed balance relation, pa,a0 = p̃a0,a and pb,b0 = p̃b0,b.

In this example, the given process is however irreversible as it is a maximally irre-

versible case of information that no correlation exists after returned to the starting point.

Mathematically, it can be clearly analysed: The quantifier of the information irreversibil-

ity, i.e., he��Ii
˜R, becomes he��Ii

˜R = 1 in this case, which indicates the information has

no contribution to the second law since the logarithm of the quantifier in Eq. (5.31) is

evaluated by lnhe��Ii
˜R = 0. Moreover, it equivalently leads to he�(�S+�Q)i = 1 in Eq.

(5.30), referring to the conventional fluctuation theorem.

6.1.3 Example (B): Minimum correlation irreversibility

Let us consider the minimum information irreversibility, in which the initial en-

tanglement is fully used to control the subsystems. Suppose a unitary operator U de-

scribes a time-forward process of a maximally entangled initial state of a bipartite system

⇢iAB = |0ih0|AB. The final state after the operation, ⇢fAB = U⇢iABU
† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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Figure 6.3: Information dissipative process and information conserving process: The
schematic picture comparing an information dissipative process and an information con-
serving process in a time-forward and a time reversed manner. Each graphic presents a
process of (A) the maximum irreversibility of correlation, (B) The minimum irreversibility
of correlation, (C) The time-reversed process of the maximum irreversibility, and (D) The
time-reversed process of the minimum irreversibility.

ple, respectively. Note that no heat transfer is allowed in this process since the unitary

operation implies that the interaction with the thermal bath is ignored.

Since the time-reversed process is given by U †, the initial state of the process, by

our definition, is ⇢̃iAB = |00ih00|AB, which will be transformed to the final state ⇢̃fAB =

|0ih0|AB. Indeed, this result is in accordance with the reversibility of the unitary operator.

The reversibility can be also confirmed as follows: We immediately compute the joint

probabilities in the time-forward and the time-reversed processes as,

p
0,0,0,0,0,0 = p̃

0,0,0,0,0,0 =
1

2

p
0,1,1,0,0,0 = p̃

0,0,0,0,1,1 =
1

2
.

(6.5)

Otherwise, pm,a,b,m0,a0,b0 = 0, since either the transition probability is zero |hm0|U |mi|2 = 0

or the non-commutativity fluctuation term is zero, i.e., |hm|a, bi|2 are applied for other
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Since the time-reversed process is given by U †, the initial state of the process, by

our definition, is ⇢̃iAB = |00ih00|AB, which will be transformed to the final state ⇢̃fAB =
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entangled state. Note that the thermal subsystems in an entangled bipartite system is

experimentally realizable in quantum optics [105]. In other words, the joint system is

given by ⇢iAB = |0ih0|AB, where ⇢iAB =
P

3

m=0

pAB
m |mihm|AB with pAB

0

= 1 and pAB
1,2,3 = 0

in the Bell bases, i.e.,

|0iAB =
1p
2
(|0iA ⌦ |0iB + |1iA ⌦ |1iB) = | +i

|1iAB =
1p
2
(|0iA ⌦ |0iB � |1iA ⌦ |1iB) = | �i

|2iAB =
1p
2
(|0iA ⌦ |1iB + |1iA ⌦ |0iB) = |�+i

|3iAB =
1p
2
(|0iA ⌦ |1iB � |1iA ⌦ |1iB) = |��i.

(6.3)

Since the states of the subsystems A and B become ⇢iA = |00ih00|A and ⇢fB = |00ih00|B after

the isothermal process, respectively, the final state of the joint system can be inferred

from the state of the subsystems, given by ⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B in the

eigenbases,

|00iAB = |00iA ⌦ |00iB
|10iAB = |00iA ⌦ |10iB
|20iAB = |10iA ⌦ |00iB
|30iAB = |10iA ⌦ |10iB.

(6.4)

In the time-reversed process, the parameter of the energy gap of the system should

be reversed in an isothermal manner. The energy gap is isothermally changed from �0 �
��1 to 0. Based on the assumption that the initial state of the joint system in the

time-reversed process is prepared with the final state in the time-forward process, i.e.,

⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =

|00ih00|AB. Consider the time-reversed process of the isothermal process applied to each
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entangled state. Note that the thermal subsystems in an entangled bipartite system is

experimentally realizable in quantum optics [105]. In other words, the joint system is

given by ⇢iAB = |0ih0|AB, where ⇢iAB =
P

3

m=0

pAB
m |mihm|AB with pAB

0

= 1 and pAB
1,2,3 = 0

in the Bell bases, i.e.,

|0iAB =
1p
2
(|0iA ⌦ |0iB + |1iA ⌦ |1iB) = | +i
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1p
2
(|0iA ⌦ |0iB � |1iA ⌦ |1iB) = | �i

|2iAB =
1p
2
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be reversed in an isothermal manner. The energy gap is isothermally changed from �0 �
��1 to 0. Based on the assumption that the initial state of the joint system in the

time-reversed process is prepared with the final state in the time-forward process, i.e.,

⇢fAB = ⇢̃iAB, the prepared initial state of the time-reversed process is presented by ⇢̃iAB =

|00ih00|AB. Consider the time-reversed process of the isothermal process applied to each
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subsystem. This process then leads to the final state given by ⇢̃fAB = 1

2

(|0ih0|+ |1ih1|)A⌦
1

2

(|0ih0|+ |1ih1|)B = 1

4

(|0ih0|AB + |1ih1|AB + |2ih2|AB + |3ih3|AB), since the subsystem

must be returned to the initial state due to the reversibility of the isothermal process. No

interaction between the subsystem exists during the local isothermal process so that it is

obvious to take no correlation into account.

Here we focus on our transitional joint probabilities in the time-forward and time-

reversed process. The multi-indexed joint probabilities are given as follows: the time-

forward probabilities are given by p
0,0,0,00,00,00 = p

0,1,1,00,00,00 = 1

2

and pm,a,b,m0,a0,b0 =

0 otherwise; the time-reversed probabilities are given by p̃
0

0,00,00,0,0,0 = p̃
0

0,00,00,0,1,1 =

p̃
0

0,00,00,1,0,0 = p̃
0

0,00,00,1,1,1 = p̃
0

0,00,00,2,0,1 = p̃
0

0,00,00,2,1,0 = p̃
0

0,00,00,3,0,1 = p̃
0

0,00,00,3,1,0 = 1

4

and p̃m0,a0,b0,m,a,b = 0 otherwise. (See details in Appendix A.) In this case, the time-

forward and the time-reversed joint probabilities of the joint system do not satisfy the

detailed balance relation, pm,m0 6= p̃m0,m, but for the subsystem’s, it is shown to satisfy

the detailed balance relation, pa,a0 = p̃a0,a and pb,b0 = p̃b0,b.

In this example, the given process is however irreversible as it is a maximally irre-

versible case of information that no correlation exists after returned to the starting point.

Mathematically, it can be clearly analysed: The quantifier of the information irreversibil-

ity, i.e., he��Ii
˜R, becomes he��Ii

˜R = 1 in this case, which indicates the information has

no contribution to the second law since the logarithm of the quantifier in Eq. (5.31) is

evaluated by lnhe��Ii
˜R = 0. Moreover, it equivalently leads to he�(�S+�Q)i = 1 in Eq.

(5.30), referring to the conventional fluctuation theorem.

6.1.3 Example (B): Minimum correlation irreversibility

Let us consider the minimum information irreversibility, in which the initial en-

tanglement is fully used to control the subsystems. Suppose a unitary operator U de-

scribes a time-forward process of a maximally entangled initial state of a bipartite system

⇢iAB = |0ih0|AB. The final state after the operation, ⇢fAB = U⇢iABU
† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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and p̃m0,a0,b0,m,a,b = 0 otherwise. (See details in Appendix A.) In this case, the time-

forward and the time-reversed joint probabilities of the joint system do not satisfy the

detailed balance relation, pm,m0 6= p̃m0,m, but for the subsystem’s, it is shown to satisfy

the detailed balance relation, pa,a0 = p̃a0,a and pb,b0 = p̃b0,b.

In this example, the given process is however irreversible as it is a maximally irre-

versible case of information that no correlation exists after returned to the starting point.

Mathematically, it can be clearly analysed: The quantifier of the information irreversibil-
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˜R = 1 in this case, which indicates the information has

no contribution to the second law since the logarithm of the quantifier in Eq. (5.31) is

evaluated by lnhe��Ii
˜R = 0. Moreover, it equivalently leads to he�(�S+�Q)i = 1 in Eq.

(5.30), referring to the conventional fluctuation theorem.

6.1.3 Example (B): Minimum correlation irreversibility

Let us consider the minimum information irreversibility, in which the initial en-

tanglement is fully used to control the subsystems. Suppose a unitary operator U de-

scribes a time-forward process of a maximally entangled initial state of a bipartite system

⇢iAB = |0ih0|AB. The final state after the operation, ⇢fAB = U⇢iABU
† is then given by

⇢fAB = |00ih00|AB = |00ih00|A ⌦ |00ih00|B; both the initial state and the final state are

assumed to be identical with the initial state and the final state in the previous exam-
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Classically correlated stochastic system

and y(y0), where the marginal probabilities are given by p(x) =
R
dyp(x, y)

and p(y) =
R
dxp(x, y).

The initial correlations between the two systems is presented by

Ji(x, y) = ln pi(x, y)� ln pi(x)� ln pi(y) (2)

Also, the final correlations is given by

Jf (x
0
, y

0) = ln pf (x
0
, y

0)� ln pf (x
0)� ln pf (y

0) (3)

If the systems are not correlated at the initial and final time, the mutual

informations vanish. The ensemble averages of (2) and (3) give the classical

mutual information []. The unaveraged mutual information then provides

its change defined by �J := Jf � Ji.

Results

In the absence of the initial or final correlations, entropy production (1)

satisfies the integral fluctuation theorem (or the Jarzynski equality), i.e.,

he��i = 1 [65,67,69], where h...i describes the ensemble average over all

microscopic trajectories. In contrast, in the presence of information pro-

cessing with initial and final correlations, the integral fluctuation theorem

is generalised as
⌦
e

��+�J
↵
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in the subsystem by changing the correlation. In the absence of initial or

final correlations, Eq. (3) and inequal- ity (5) reduce to the conventional

fluctuation theorem and the second law, respectively. Without assumption
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without any heat flow. In conventional thermodynamics, � hQi  h�si,
where the negative heat flow allows the entropy to decrease. In contrast, in

our setup, � h�Ii  h�si if hQi = 0, where the negative mutual- information

change is the resource of the entropy decrease in X. Such an information-

energy balance is based on the dynamics characterized by Fig, where one of

the two systems does not evolve in time. The generalisation of our results

to more involved situations, where the two systems can influence each other

and evolve in time, is an interesting future challenge.

Proof of the fluctuation theorem

We now derive the classical information fluctuation theorem and other

related formulas. For simplicity, we assume that the phase space of the

system does not include momentum terms. The generalisation of the fluctu-

ation theorem to situations with momentum terms is straightforward. Un-

like the fluctuation theorem for a single system described by p(XF ) (and

p̃(XB)), the joint probability of realising trajectory XF and y is replaced by

p(XF , y) = p(XF |x, y)pi(x, y). In considering the time-reversed trajectory,

the initial probability distribution of the backward process is taken to be

the final distribution of the forward process. Let XB be the time-reversed

trajectory of XF . The joint probability distribution of in the backward

processes is given by p̃(XB, y) = p̃(XF |x0, y)pf (x0, y), where pf (x0, y) is the

initial probability distribution of the backward processes and p̃(XF |x0, y) is
the conditional probability of realising XB provided by (x0, y).

The detailed FT in our setup is given by

p(XF |x, y)
p̃(XF |x0, y)

= e

�Q
, (7)

where we used the assumption that y does not evolve in time. We note that

it has been proved under the assumptions that the total system including the

heat baths obeys the Hamiltonian dynamics and that the initial probability

distributions of the baths are the canonical distributions [?]. By noting that

p̃(XB, y)

p(XF , y)
=

p(XF |x, y)
p̃(XF |x0, y)

pf (x0)

pi(x)

pf (x0, y)

pf (x0)pf (y)

pi(x)pi(y)

pi(x, y)
, (8)

we obtain
p̃(XB, y)

p(XF , y)
= e

��+�I
, (9)

which is the detailed FT in the presence of information processing. It is

interesting to note that � � �I can be regarded as the total EP in the

composite system XY and the baths, and Eq. (9) implies the trade-o↵
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• The detailed fluctuation theorems
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p̃(XB , y)

p(XF , y)
= e��+�J

• The second law of thermodynamics



• External system B is invariant with time.
• The systems are correlated during the process.
• Role of the initial correlation

• Quantum system A + heat reservoir & external degree of freedom

Quantum correlated system

Quantum System
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Fluctuation theorems

he��+�IiQ = � 6= 1
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Fluctuation theorems

The second law of thermodynamics

he��+�IiQ = he���iR̃
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Fluctuation theorems

The second law of thermodynamics
Classical thermodynamic bound

Quantum extended bound

h�i � h�Ii
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Fluctuation theorem for quantum correlated systems

Fluctuation theorems

The second law of thermodynamics
If the initial quantum correlation exists, 
• Irreversibility factor is considered due to the non-commutativity
• The quantum correlation gain and the cost are in a trade-off relation
•  The extra information term is a quantum measure of thermodynamic 

gain in nonequilibrium processes

he��+�IiQ = he���iR̃
<latexit sha1_base64="WXzQXaeuKUhZCg3ALiLJ5I1CpuY="></latexit>



Future work: Experiments

Individual control
Joint control
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Ion traps



Dissipative 
process

Initial state Final state Tomography

Verification of the thermodynamic inequality

Future work: Experiments

�hQi  h�sAi+ h�sBi � h�Ii+ lnhe���iR̃
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Future work: Squeezed Reservoir

J. Robnagel, et al, Science (2016)

• A single atom heat engine in an ion trap

Squeezed reservoir can replace equilibrium thermal bath

• Thermal bath(Boltzmann)          idealised
• Squeezed bath (nonequlibrium)          experimentally realisable



• Tripartite correlated system including squeezed reservoir

• Quantum network thermodynamics

Squeezed reservoir can replace equilibrium thermal bath

• Thermal bath(Boltzmann)          idealised
• Squeezed bath (nonequlibrium)          experimentally realisable

• Thermodynamic uncertainty relation

• Quantum cooling algorithm

Future work

Future work: Squeezed Reservoir



• Motivation:  a study of the role of quantum correlation in non-
equilibrium thermodynamics for quantum correlated systems. 

• We introduce the multi-indexed joint probabilities, the new 
definition of the measure of quantum fluctuations for 

nonequilibrium systems, and so on.

• The applications show that the fluctuation theorems and the 
thermodynamic inequalities present non-classical features in 

terms of thermodynamic gain and cost.

• The resulting equations lead to the nonequilibrium tight bound 
and the benefits by obtaining time-reversed entropy production.

Summary



Thank you!


