Fluctuation theorem for quantum correlated systems

Jungjun Park

Collaborators: Vlatko Vedral, Hyunchul Nha, Sang Wook Kim

Contents

Overview

- Introduction(literature review) Formalism and main results

Illustrations
Summary

Overview

Fluctuation theorem

Classical fluctuation theorem for a single particle regime

Example: Stochastic process

$p\left(\Gamma_{i, j}\right)$: probability of a trajectory from i to j
$p\left(\tilde{\Gamma}_{j, i}\right)$: probability of its time-reversed trajectory from j to i
Fluctuation theorems

$$
\frac{p\left(\tilde{\Gamma}_{j, i}\right)}{p\left(\Gamma_{i, j}\right)}=e^{-\sigma_{i, j}}
$$

$$
\left\langle e^{-\sigma}\right\rangle=1
$$

U. Seifert, PRL (2005)

Classical fluctuation theorem for a single particle regime

Example: Stochastic process

$p\left(\Gamma_{i, j}\right)$: probability of a trajectory from i to j
$p\left(\tilde{\Gamma}_{j, i}\right)$: probability of its time-reversed trajectory from j to i
Fluctuation theorems

$$
\langle\Delta S\rangle-\beta\langle Q\rangle \geq 0 \leftarrow\langle\sigma\rangle \geq 0 \quad \leftarrow\left\langle e^{-\sigma}\right\rangle=1
$$

U. Seifert, PRL (2005)
G. E. Crooks, PRE (1999)
C. Jarzynski, PRL (1997)

Quantum fluctuation theorem for a single particle regime

Quantum process

A time-forward process

$$
|m\rangle \rightleftarrows\left|m^{\prime}\right\rangle
$$

A time-reversed process
$p\left(m, m^{\prime}\right)$: time-forward joint probability between m and m^{\prime}
$\tilde{p}\left(m^{\prime}, m\right)$: time-reversed joint probability between m ' and m

Quantum Fluctuation theorems

$$
\frac{\tilde{p}\left(m^{\prime}, m\right)}{p\left(m, m^{\prime}\right)}:=e^{-\sigma_{m, m^{\prime}}} \quad\left\langle e^{-\sigma}\right\rangle=1
$$

Quantum fluctuation theorem for a single particle regime

Quantum process

A time-forward process

$$
|m\rangle \rightleftarrows\left|m^{\prime}\right\rangle
$$

A time-reversed process

$$
\begin{aligned}
& \left.p\left(m, m^{\prime}\right)=p\left(m^{\prime} \mid m\right) p(m)=\left|\left\langle m^{\prime}\right| \Phi\right| m\right\rangle\left.\right|^{2} p(m) \\
& \tilde{p}\left(m^{\prime}, m\right)
\end{aligned}
$$

Quantum Fluctuation theorems

$$
\frac{\tilde{p}\left(m^{\prime}, m\right)}{p\left(m, m^{\prime}\right)}:=e^{-\sigma_{m, m^{\prime}}} \quad\left\langle e^{-\sigma}\right\rangle=1
$$

Quantum fluctuation theorem for a single particle regime

Quantum process

A time-forward process

$$
|m\rangle \rightleftarrows\left|m^{\prime}\right\rangle
$$

A time-reversed process

$$
\begin{aligned}
& \left.p\left(m, m^{\prime}\right)=p\left(m^{\prime} \mid m\right) p(m)=\left|\left\langle m^{\prime}\right| \Phi\right| m\right\rangle\left.\right|^{2} p(m) \\
& \left.\tilde{p}\left(m^{\prime}, m\right)=\tilde{p}\left(m \mid m^{\prime}\right) p\left(m^{\prime}\right)=|\langle m| \tilde{\Phi}| m^{\prime}\right\rangle\left.\right|^{2} p(m)
\end{aligned}
$$

Quantum Fluctuation theorems

$$
\frac{\tilde{p}\left(m^{\prime}, m\right)}{p\left(m, m^{\prime}\right)}:=e^{-\sigma_{m, m^{\prime}}} \quad\left\langle e^{-\sigma}\right\rangle=1
$$

Generalisations of fluctuation theorems

- Early generalisations without correlation
- Generalisations with correlation
- System-environment correlation
- System-system correlation in classical nonequilibrium regime
- System-system correlation in quantum nonequilibrium regime

Early generalisations without correlation

1. Weak coupling case

- System S \& heat bath B in the weak coupling regime
- No correlation between S and B

Early generalisations without correlation

1. Weak coupling case

- System S \& heat bath B in the weak coupling regime
- No correlation between S and B

2. Strong coupling case

- Arbitrary strength of interaction Hamiltonian
- Heat bath + hyper heat bath
C. Jarzynski, PRL (1997)
- No explicit consideration of correlation (S+B)
G. E. Crooks, PRE (1999)
H. Tasaki, arXiv (2000)
J. Kurchan, arXiv (2000)
M. Campisi, et al.PRL (2010)
C. Jarzynski, J. Stat. Phys. (2000)

System-environment correlation

Many-body fluctuation theorem

- System \& many-body particle reservoir
- Initial bath is assumed to be a pure state
- Entanglement between S and B is a central concept

Eiki lyoda, et al. PRL (2017)

System-environment correlation

Heat-bath correlation fluctuation theorem

- System \& squeezed boson heat reservoir
- Correlations between S and E are involved
- Description of correlation is classical between S and E

Classically correlated systems interacting with heat bath

Classically correlated stochastic system

- Stochastic system + heat reservoir \& external degree of freedom
- External system Y is invariant with time.
- Consider classically correlated system at t_{i} and t_{f}
- The formula of the fluctuation theorem has been changed

$$
\left\langle e^{-\sigma}\right\rangle=1 \quad\left\langle e^{-\sigma+\Delta J}\right\rangle=1
$$

Quantum correlated systems interacting with heat bath

Fluctuation theorem for quantum correlated systems

- System + system: quantum correlated bipartite systems
- Quantum phenomena of work and heat fluctuations due to correlation
- Correlation measure is still classical (Classical mutual information)

Quantum generalisations with quantum information approaches

Coherence fluctuation theorem

- Energy reservoir: measure of work without decoherence
- Method: Probability \rightarrow Quantum channel descriptions
- Results: Initially arbitrary state, coherence effects

- Time-reversed process of quantum channels
- From Hamiltonian approach to recovery map

- Enable approaches to the resource theory

Fluctuation theorem for correlated systems

- Absence of quantum correlation measure in nonequilibrium approaches
- Missing of irreversible characteristics of quantum correlation related to thermodynamics

Fluctuation theorem for correlated systems

- Fluctuation of quantum correlation is not measurable due to incompatibility
- Quantum approaches are required

Fluctuation theorem for quantum correlated systems

Fluctuations of correlation in non-equilibrium quantum bipartite systems

Classical fluctuation of correlation in nonequilibrium regime

$$
p(a, b)
$$

- Fluctuation of correlation
- Averaged classical correlation fluctuation
$J(a, b):=\ln \frac{p(a, b)}{p(a) p(b)}$
$\langle J\rangle=\sum p(a, b) \ln \frac{p(a, b)}{p(a) p(b)}=H(A: B)$

Fluctuations of correlation in non-equilibrium quantum bipartite systems

noncommutativity $\quad\left[|m\rangle\left\langle\left. m\right|_{A B}, \mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right] \neq 0\right.$

Quantum fluctuation of correlation

- Measure of total correlation

$$
I(m, a, b)=\ln \frac{p(m)}{p(a) p(b)}
$$

Fluctuations of correlation in non-equilibrium quantum bipartite systems

noncommutativity $\quad\left[|m\rangle\left\langle\left. m\right|_{A B}, \mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right] \neq 0\right.$

Quantum fluctuation of correlation

- Fluctuation of quantum correlation

$$
\begin{aligned}
& \delta=\ln p(m)-\ln p(a, b) \\
& p(a, b)=\langle a, b| \rho_{A B}|a, b\rangle
\end{aligned}
$$

Fluctuations of correlation in non-equilibrium quantum bipartite systems

noncommutativity $\quad\left[|m\rangle\left\langle\left. m\right|_{A B}, \mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right] \neq 0\right.$

Quantum fluctuation of correlation

- Fluctuation of quantum correlation - Joint probability

$$
\begin{array}{ll}
\delta=\ln p(m)-\ln p(a, b) & p(m, a, b)=p(m)|\langle m \mid a, b\rangle|^{2} \\
p(a, b)=\langle a, b| \rho_{A B}|a, b\rangle &
\end{array}
$$

Fluctuations of correlation in non-equilibrium quantum bipartite systems

noncommutativity $\quad\left[|m\rangle\left\langle\left. m\right|_{A B}, \mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right] \neq 0\right.$

Quantum fluctuation of correlation

- Average of quantum fluctuation of correlation

$$
\langle\delta\rangle=\sum_{m, a, b} p(m, a, b)[\ln p(m)-\ln p(a, b)]=S\left(\rho_{A B}^{\prime}\right)-S\left(\rho_{A B}\right)
$$

Fluctuations of correlation in non-equilibrium quantum bipartite systems

noncommutativity $\quad\left[|m\rangle\left\langle\left. m\right|_{A B}, \mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right] \neq 0\right.$

Quantum fluctuation of correlation

- δ is uniquely defined by a given composite system
- The non-classicality disappears when $\left[|m\rangle\left\langle\left. m\right|_{A B}, \mid a\right\rangle\left\langle\left. a\right|_{A} \otimes \mid b\right\rangle\left\langle\left. b\right|_{B}\right]=0\right.$

Joint probabilities in quantum non-equilibrium bipartite systems

Joint probabilities(JPs) for joint systems

- The time-forward JP

$$
\left.p_{m, m^{\prime}, r, r^{\prime}}=\left|\left\langle m^{\prime}, r^{\prime}\right| U\right| m, r\right\rangle\left.\right|^{2} p_{m} p_{r}
$$

Joint probabilities in quantum non-equilibrium bipartite systems

Joint probabilities(JPs) for joint systems

- The time-forward JP

$$
\begin{gathered}
\left.p_{m, m^{\prime}, r, r^{\prime}}=\left|\left\langle m^{\prime}, r^{\prime}\right| U\right| m, r\right\rangle\left.\right|^{2} p_{m} p_{r} \\
\downarrow\langle\Delta \delta\rangle=? \\
p_{m, m^{\prime}, r, r^{\prime} ; a, b, a^{\prime}, b^{\prime}}=p_{m, m^{\prime}, r,\left.r^{\prime}| | m|a, b\rangle\right|^{2}\left|\left\langle m^{\prime} \mid a^{\prime}, b^{\prime}\right\rangle\right|^{2}}
\end{gathered}
$$

Joint probabilities in quantum non-equilibrium bipartite systems

Joint probabilities(JPs) for joint systems

Joint probabilities in quantum non-equilibrium bipartite systems

Joint probabilities(JPs) for joint systems

- The time-reversed JP

$$
\left.\tilde{p}_{m^{\prime}, m, r^{\prime}, r}=|\langle m, r| \tilde{U}| m^{\prime}, r^{\prime}\right\rangle\left.\right|^{2} \tilde{p}_{m^{\prime}} \tilde{p}_{r^{\prime}}
$$

$$
\tilde{p}_{m^{\prime}, m, r^{\prime}, r ; a^{\prime}, b^{\prime}, a, b}=\tilde{p}_{m^{\prime}, m, r^{\prime}, ~}\left|\left\langle m^{\prime} \mid a^{\prime}, b^{\prime}\right\rangle\right|^{2}|\langle m \mid a, b\rangle|^{2}
$$

The detailed fluctuation theorem for arbitrary bipartite systems

Detailed fluctuation theorem

$$
\frac{\tilde{p}_{m^{\prime}, a^{\prime}, b^{\prime}, m, a, b ; r^{\prime}, r}}{p_{m, a, b, m^{\prime}, a^{\prime}, b^{\prime} ; r, r^{\prime}}}=e^{-\sigma+\Delta I+\Delta \delta}
$$

- Entropy production of individual systems and a heat bath

$$
\sigma=\Delta s_{A}+\Delta s_{B}+\Delta s_{R}
$$

- Changes in entropy of subsystems

$$
\Delta s_{A(B)}:=-\ln \tilde{p}_{a^{\prime}\left(b^{\prime}\right)}-\left(-\ln p_{a(b)}\right)
$$

- Variations of fluctuations of correlations

$$
\Delta I:=I_{f}-I_{i} \quad \Delta \delta:=\delta_{f}-\delta_{i}
$$

The detailed fluctuation theorem for arbitrary bipartite systems

Detailed fluctuation theorem

$$
\frac{\tilde{p}_{m^{\prime}, a^{\prime}, b^{\prime}, m, a, b ; r^{\prime}, r}}{p_{m, a, b, m^{\prime}, a^{\prime}, b^{\prime} ; r, r^{\prime}}}=e^{-\sigma+\Delta I+\Delta \delta}
$$

- Classical version of DFT

$$
\frac{\tilde{p}_{a^{\prime}, b^{\prime}, a, b ; r^{\prime}, r}}{p_{a, b, a^{\prime}, b^{\prime} ; r, r^{\prime}}}=e^{-\sigma+\Delta I}
$$

The detailed fluctuation theorem for arbitrary bipartite systems

Detailed fluctuation theorem

$$
\frac{\tilde{p}_{m^{\prime}, a^{\prime}, b^{\prime}, m, a, b ; r^{\prime}, r}}{p_{m, a, b, m^{\prime}, a^{\prime}, b^{\prime} ; r, r^{\prime}}}=e^{-\sigma+\Delta I+\Delta \delta}
$$

- Integral fluctuation theorems

$$
\left\langle e^{-\Delta s_{A}-\Delta s_{B}+\Delta I+\beta Q}\right\rangle=\left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

- The second law

$$
\begin{aligned}
& \beta\langle Q\rangle \leq\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle-\langle\Delta \delta\rangle \quad \text { Known result } \\
& \beta\langle Q\rangle \leq\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle+\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
\end{aligned}
$$

Illustrations

Two extreme cases of processes

A: Information conserving process

B: Information dissipative process

Time-forward

Time-reversed

Process A

$$
\beta\langle Q\rangle \Theta\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle+\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

Two extreme cases of processes

A: Information conserving process

B: Information dissipative process

Time-forward

Time-reversed

Process A

Maximum resource

$$
\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}=-\langle\Delta \delta\rangle
$$

Two extreme cases of processes

A: Information conserving process

B: Information dissipative process

Time-forward

Time-reversed

Process B

$$
\beta\langle Q\rangle=\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle+\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

Two extreme cases of processes

A: Information conserving process

B: Information dissipative process

Time-forward

Time-reversed

Process B

Minimum resource

$$
\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}=0
$$

Information conserving process

- The time-forward process

- The state changes

- Forward $\quad \rho_{A B}^{i}=|0\rangle\left\langle\left. 0\right|_{A B} \rightarrow \rho_{A B}^{f}=\mid 0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{A B}=\mid 0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{A} \otimes \mid 0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{B}\right.$
- Reversed $\tilde{\rho}_{A B}^{i}=\left|0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{A B} \rightarrow \tilde{\rho}_{A B}^{f}=\mid 0\right\rangle\left\langle\left. 0\right|_{A B}\right.$

$$
\begin{array}{lll}
\hline|0\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}+|1\rangle_{A} \otimes|1\rangle_{B}\right)=\left|\Psi^{+}\right\rangle & \rightleftarrows & \left|0^{\prime}\right\rangle_{A B}=\left|0^{\prime}\right\rangle_{A} \otimes\left|0^{\prime}\right\rangle_{B} \\
\hline|1\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|0\rangle_{B}-|1\rangle_{A} \otimes|1\rangle_{B}\right)=\left|\Psi^{-}\right\rangle & \left|1^{\prime}\right\rangle_{A B}=\left|0^{\prime}\right\rangle_{A} \otimes\left|1^{\prime}\right\rangle_{B} \\
|2\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}+|1\rangle_{A} \otimes|0\rangle_{B}\right)=\left|\Phi^{+}\right\rangle & \left|2^{\prime}\right\rangle_{A B}=\left|1^{\prime}\right\rangle_{A} \otimes\left|0^{\prime}\right\rangle_{B} \\
|3\rangle_{A B}=\frac{1}{\sqrt{2}}\left(|0\rangle_{A} \otimes|1\rangle_{B}-|1\rangle_{A} \otimes|1\rangle_{B}\right)=\left|\Phi^{-}\right\rangle & \left|3^{\prime}\right\rangle_{A B}=\left|1^{\prime}\right\rangle_{A} \otimes\left|1^{\prime}\right\rangle_{B} \\
\hline
\end{array}
$$

Information dissipative process

Information dissipative process

- The time-reversed process

Change in the states
$\tilde{\rho}_{A B}^{i}=\left|0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|^{A B}\right.$
$\longrightarrow \tilde{\rho}_{A B}^{f}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{A} \otimes \frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{B}=\frac{1}{4}\left(|0\rangle\left\langle\left. 0\right|_{A B}+\mid 1\right\rangle\left\langle\left. 1\right|_{A B}+\mid 2\right\rangle\left\langle\left. 2\right|_{A B}+\mid 3\right\rangle\left\langle\left. 3\right|_{A B}\right)\right.$

- The basis	
The initial basis	The final basis
$\|0\rangle_{A B}=\frac{1}{\sqrt{2}}\left(\|0\rangle_{A} \otimes\|0\rangle_{B}+\|1\rangle_{A} \otimes\|1\rangle_{B}\right)=\left\|\Psi^{+}\right\rangle$	
$\|1\rangle_{A B}=\frac{1}{\sqrt{2}}\left(\|0\rangle_{A} \otimes\|0\rangle_{B}-\|1\rangle_{A} \otimes\|1\rangle_{B}\right)=\left\|\Psi^{-}\right\rangle$	
$\|2\rangle_{A B}=\frac{1}{\sqrt{2}}\left(\|0\rangle_{A} \otimes\|1\rangle_{B}+\|1\rangle_{A} \otimes\|0\rangle_{B}\right)=\left\|\Phi^{+}\right\rangle$	
$\|3\rangle_{A B}=\frac{1}{\sqrt{2}}\left(\|0\rangle_{A} \otimes\|1\rangle_{B}-\|1\rangle_{A} \otimes\|1\rangle_{B}\right)=\left\|\Phi^{-}\right\rangle$	$\left\|0^{\prime}\right\rangle_{A B}=\left\|0^{\prime}\right\rangle_{A} \otimes\left\|0^{\prime}\right\rangle_{B}$

Information dissipative process

- The time-reversed process

- Change in the states
$\tilde{\rho}_{A B}^{i}=\left.\left|0^{\prime}\right\rangle\left\langle 0^{\prime}\right|\right|^{A B}$
$\longrightarrow \tilde{\rho}_{A B}^{f}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{A} \otimes \frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{B}=\frac{1}{4}\left(|0\rangle\left\langle\left. 0\right|_{A B}+\mid 1\right\rangle\left\langle\left. 1\right|_{A B}+\mid 2\right\rangle\left\langle\left. 2\right|_{A B}+\mid 3\right\rangle\left\langle\left. 3\right|_{A B}\right)\right.$

	$\langle Q\rangle$	$\langle-\Delta I\rangle$	$\left\langle\Delta s_{A}\right\rangle$	$\left\langle\Delta s_{B}\right\rangle$
(A)	0	$\ln 2$	$-\ln 2$	$-\ln 2$
(B)	$-2 \ln 2$	$\ln 2$	$-\ln 2$	$-\ln 2$

$\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}$	$\langle-\Delta \delta\rangle$
$\ln 2$	$\ln 2$
$-\ln 2$	$\ln 2$

Summary: Information conserving process

- The time-forward process

- The state changes
- Forward $\rho_{A B}^{i}=|0\rangle\left\langle\left. 0\right|_{A B} \rightarrow \rho_{A B}^{f}=\mid 0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{A B}=\mid 0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{A} \otimes \mid 0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{B}\right.$
- Reversed $\tilde{\rho}_{A B}^{i}=\left|0^{\prime}\right\rangle\left\langle\left. 0^{\prime}\right|_{A B} \rightarrow \tilde{\rho}_{A B}^{f}=\mid 0\right\rangle\left\langle\left. 0\right|_{A B}\right.$

Maximum resource

$$
\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}=-\langle\Delta \delta\rangle
$$

Summary: Information dissipative process

- The time-reversed process

- Change in the states

$$
\begin{aligned}
& \tilde{\rho}_{A B}^{i}=\left|0^{\prime}\right\rangle\left\langle 0^{\prime}\right| A B \\
& \rightarrow \tilde{\rho}_{A B}^{f}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{A} \otimes \frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|)_{B}=\frac{1}{4}\left(|0\rangle\left\langle\left. 0\right|_{A B}+\mid 1\right\rangle\left\langle\left. 1\right|_{A B}+\mid 2\right\rangle\left\langle\left. 2\right|_{A B}+\mid 3\right\rangle\left\langle\left. 3\right|_{A B}\right)\right.
\end{aligned}
$$

$$
\begin{gathered}
\beta\langle Q\rangle \leq\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle-\langle\Delta \delta\rangle \quad \text { Known result } \\
\beta\langle Q\rangle=\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle+\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}} \\
\downarrow \ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}=0
\end{gathered}
$$

Tight bound

Classically correlated systems interacting with heat bath

Classically correlated stochastic system

- Stochastic system + heat reservoir \& external degree of freedom
- External system Y is invariant with time.
- Consider classically correlated system at t_{i} and t_{f}
- The fluctuation theorem has been changed.

$$
\left\langle e^{-\sigma}\right\rangle=1 \leadsto\left\langle e^{-\sigma+\Delta J}\right\rangle=1
$$

Classically correlated systems interacting with heat bath

Classically correlated stochastic system

- Time-forward

$$
p\left(X_{F}, y\right)
$$

- Time-reversed

$$
\tilde{p}\left(X_{B}, y\right)
$$

- Mutual information

$$
\begin{aligned}
J_{i}(x, y) & =\ln p_{i}(x, y)-\ln p_{i}(x)-\ln p_{i}(y) \\
J_{f}\left(x^{\prime}, y^{\prime}\right) & =\ln p_{f}\left(x^{\prime}, y^{\prime}\right)-\ln p_{f}\left(x^{\prime}\right)-\ln p_{f}\left(y^{\prime}\right)
\end{aligned}
$$

Classically correlated systems interacting with heat bath

Classically correlated stochastic system

- The detailed fluctuation theorems

$$
\frac{\tilde{p}\left(X_{B}, y\right)}{p\left(X_{F}, y\right)}=e^{-\sigma+\Delta J}
$$

- The second law of thermodynamics

$$
\langle\sigma\rangle \geq\langle\Delta J\rangle
$$

Fluctuation theorem for quantum correlated systems

- Quantum system A + heat reservoir \& external degree of freedom
- External system B is invariant with time.
- The systems are correlated during the process.
- Role of the initial correlation

Fluctuation theorem for quantum correlated systems

Fluctuation theorems

$$
\left\langle e^{-\sigma+\Delta I}\right\rangle_{Q}=\gamma \neq 1
$$

Fluctuation theorem for quantum correlated systems

Fluctuation theorems

$$
\left\langle e^{-\sigma+\Delta I}\right\rangle_{Q}=\left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

The second law of thermodynamics

$$
\langle\sigma\rangle \geq\langle\Delta I\rangle-\ln \left\langle e^{-\sigma} \sum e^{-\alpha+\Delta \delta}\right\rangle
$$

Fluctuation theorem for quantum correlated systems

Fluctuation theorems

$$
\left\langle e^{-\sigma+\Delta I}\right\rangle_{Q}=\left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

The second law of thermodynamics
Classical thermodynamic bound

$$
\langle\sigma\rangle \geq\langle\Delta I\rangle
$$

Quantum extended bound

$$
\rightarrow\langle\sigma\rangle \geq\langle\Delta I\rangle-\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

Fluctuation theorem for quantum correlated systems

Fluctuation theorems

$$
\left\langle e^{-\sigma+\Delta I}\right\rangle_{Q}=\left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

The second law of thermodynamics
If the initial quantum correlation exists,

- Irreversibility factor is considered due to the non-commutativity
- The quantum correlation gain and the cost are in a trade-off relation
\Rightarrow The extra information term is a quantum measure of thermodynamic gain in nonequilibrium processes

Future work: Experiments

Entangled internal states and a heat bath

$$
\begin{aligned}
& \text { Two entangled spins }
\end{aligned}
$$

\otimes

Single mode heat bath

Future work: Experiments

Verification of the thermodynamic inequality

$$
\beta\langle Q\rangle \leq\left\langle\Delta s_{A}\right\rangle+\left\langle\Delta s_{B}\right\rangle-\langle\Delta I\rangle+\ln \left\langle e^{-\Delta \delta}\right\rangle_{\tilde{R}}
$$

Future work: Squeezed Reservoir

Squeezed reservoir can replace equilibrium thermal bath

- Thermal bath(Boltzmann) \rightarrow idealised
- Squeezed bath (nonequlibrium) \longrightarrow experimentally realisable

SHARE report
(f) A single-atom heat engine
3) Johannes Roßnagel ${ }^{1 \xi^{*}}$, Samuel T. Dawkins ${ }^{1}$, Karl N. Tolazzi ${ }^{2}$, Obinna Abah ${ }^{3}$, Eric Lutz ${ }^{3}$, Ferdinand Schmidt-Kaler ${ }^{1}$, Kilian Singer ${ }^{1}$...

+ See all authors and affiliations

Future work: Squeezed Reservoir

Squeezed reservoir can replace equilibrium thermal bath

- Thermal bath(Boltzmann) \rightarrow idealised
- Squeezed bath (nonequlibrium) \longrightarrow experimentally realisable

- A single atom heat engine in an ion trap

Future work: Squeezed Reservoir

Squeezed reservoir can replace equilibrium thermal bath

- Thermal bath(Boltzmann) \rightarrow idealised
- Squeezed bath (nonequlibrium) \longrightarrow experimentally realisable

Future work

- Tripartite correlated system including squeezed reservoir
- Quantum network thermodynamics
- Thermodynamic uncertainty relation
- Quantum cooling algorithm

Summary

- Motivation: a study of the role of quantum correlation in nonequilibrium thermodynamics for quantum correlated systems.
- We introduce the multi-indexed joint probabilities, the new definition of the measure of quantum fluctuations for nonequilibrium systems, and so on.
- The applications show that the fluctuation theorems and the thermodynamic inequalities present non-classical features in terms of thermodynamic gain and cost.
- The resulting equations lead to the nonequilibrium tight bound and the benefits by obtaining time-reversed entropy production.

Thank you!

