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= Applications in quantum technologies
» Quantum computing
» Quantum cryptography
» Quantum metrology

Motivation: How to understand thermodynamic aspect of
resources used in these applications?
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Formalism: Single bosonic mode

I At A, 1
= Hamiltonian H = (a*a + E) hw
= “Position” and “momentum” quadratures

~ at+a . at-a

1= 7' P=x
= Canonical commutation relation
g, 9] = ih
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Several modes

* m-mode “vector of quadratures”
X = (41,01, 4202 " » Gmy Pm)
* Phase-space moments of quantum states
» First moments: (X), € R2™
» Second moments: covariance matrix 1,

)= 3 ({5~ ®), % - @, )
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Gausslian states

= Quantum states associated with Gaussian phase-space
distributions

= @Gaussian p completely determined by first and second
moments (X), and I/,

" k-mode thermal state yy
» First moments: (X),, =0

kgT

h
» Covariance matrix V), = nly, where 11 = coth (_“))
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Symplectic geometry of phase space

= “Uncertainty principle” in terms of covariance matrix:

Vo, +1Q =0, where

m

b= 69 (—01 (1))

k=1
= Symplectic group: R*™*2™ 5 Sp(2m,R) 3 S: SQST = Q

= @aussian unitary operations: phase-space transformations
R SRST +d
= Passive linear operations:d = 0& S € 0(2m) N Sp(2m, R)
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Bosonic linear thermal (BLT) operations




Thermodynamic “laws” under BLTO
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Define the principal mode temperatures as follows:

Given state Arbitrary passive linear circuit
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Hottest mode : 2Md_hottest mode
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|. Thermalization of generalized temperatures

Law: Under BLT operations, every principal temperature
thermalizes towards the bath temperature.
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More laws...

= Directionwise versions of generalized temperatures also thermalize
= Directionwise and modewise signal-to-noise ratios deteriorate

= Symplectic eigenvalues below bath level increase

= Squeezing of formation! decreases

= Fisher information relative to phase-space displacement and other
nonclassicality measures found in earlier work? 3 decrease

1. Mdel, D Lercher, and MM Wolf. Journal of Physics A: Mathematical and Theoretical 49(44):445304, 2016.
2. HKwon, KC Tan, T Volkoff, and H Jeong. Physical review letters, 122(4):040503, 2019.
3. BYadin, FC Binder, ) Thompson, VN, M Gu, and MS Kim. Physical Review X, 8(4):041038, 2018.
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Conclusion and outlook

= QOperationally-motivated framework for thermodynamic
processes on bosonic continuous-variable systems

= Families of “generalized temperatures” that equilibrate with
bath

= Uncovering thermodynamic significance of signal-to-noise
ratios, squeezing measures, Fisher information of
displacement, etc.

= Qutlook: connect with other approaches to thermodynamics,
applications to engines, quantum control, etc.
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