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▪ Frequency modes of electromagnetic fields

▪ Vibration of trapped ions

▪ Nano-mechanical oscillators

▪ Applications in quantum technologies
➢ Quantum computing

➢ Quantum cryptography

➢ Quantum metrology

Motivation: How to understand thermodynamic aspect of 
resources used in these applications?
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▪ Canonical commutation relation

ො𝑞, Ƹ𝑝 = 𝑖ℏ
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Several modes

▪ 𝑚-mode “vector of quadratures”

ො𝐱 ≡ ො𝑞1, Ƹ𝑝1, ො𝑞2, Ƹ𝑝2⋯ , ො𝑞𝑚, Ƹ𝑝𝑚

▪ Phase-space moments of quantum states

➢ First moments: ො𝐱 𝜌 ∈ ℝ
2𝑚

➢ Second moments: covariance matrix 𝑉𝜌

𝑉𝜌 𝑗𝑘
=
1

2
ො𝑥𝑗 − ො𝑥𝑗 𝜌

, ො𝑥𝑘 − ො𝑥𝑘 𝜌
𝜌
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Gaussian states

▪ Quantum states associated with Gaussian phase-space 
distributions

▪ Gaussian 𝜌 completely determined by first and second 
moments ො𝐱 𝜌 and 𝑉𝜌

▪ 𝑘-mode thermal state 𝛾𝑘
➢ First moments: ො𝐱 𝛾𝑘 = 0

➢ Covariance matrix 𝑉𝛾𝑘 = 𝜂𝕀2𝑘, where 𝜂 = coth
ℏ𝜔

𝑘B𝑇
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Symplectic geometry of phase space

▪ “Uncertainty principle” in terms of covariance matrix:

𝑉𝜌 + 𝑖Ω ≥ 0, where

Ω =ໄ

𝑘=1

𝑚

0 1
−1 0

▪ Symplectic group: ℝ2𝑚×2𝑚 ⊃ Sp 2𝑚,ℝ ∋ 𝑆: 𝑆Ω𝑆𝑇 = Ω

▪ Gaussian unitary operations: phase-space transformations

ො𝐱 ↦ 𝑆ො𝐱𝑆𝑇 + 𝐝

▪ Passive linear operations: 𝐝 = 0 & 𝑆 ∈ O 2𝑚 ∩ Sp 2𝑚,ℝ
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Bosonic linear thermal (BLT) operations
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I. Thermalization of generalized temperatures

Hottest mode
1st principal temperature

𝜌
S 𝑈1

2nd-hottest mode
2nd principal temperature

𝑈2

Define the principal mode temperatures as follows:

Given state Arbitrary passive linear circuit



I. Thermalization of generalized temperatures

Law: Under BLT operations, every principal temperature 
thermalizes towards the bath temperature.

Bath temperature
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⟨𝑥⟩

⟨𝑝⟩

0

Law: 
⟨∆𝑟⟩final

⟨𝑟⟩final
≥

⟨∆𝑟⟩initial

⟨𝑟⟩initial
even when ⟨∆𝑟⟩final ≤ ⟨∆𝑟⟩initial

▪ Always: ⟨𝑟⟩final ≤ ⟨𝑟⟩initial

▪ Sometimes: ⟨∆𝑟⟩final ≤ ⟨∆𝑟⟩initial
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More laws...

▪ Directionwise versions of generalized temperatures also thermalize

▪ Directionwise and modewise signal-to-noise ratios deteriorate

▪ Symplectic eigenvalues below bath level increase

▪ Squeezing of formation1 decreases

▪ Fisher information relative to phase-space displacement and other 
nonclassicality measures found in earlier work2, 3 decrease

1. M Idel, D Lercher, and MM Wolf. Journal of Physics A: Mathematical and Theoretical 49(44):445304, 2016.
2. H Kwon, KC Tan, T Volkoff, and H Jeong. Physical review letters, 122(4):040503, 2019.
3. B Yadin, FC Binder, J Thompson, VN, M Gu, and MS Kim. Physical Review X, 8(4):041038, 2018.
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Conclusion and outlook

▪ Operationally-motivated framework for thermodynamic 
processes on bosonic continuous-variable systems

▪ Families of “generalized temperatures” that equilibrate with 
bath

▪ Uncovering thermodynamic significance of signal-to-noise 
ratios, squeezing measures, Fisher information of 
displacement, etc.

▪ Outlook: connect with other approaches to thermodynamics, 
applications to engines, quantum control, etc.
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