
LECTURES ON COMPLEX HYPERBOLIC KLEINIAN GROUPS

MICHAEL KAPOVICH

Abstract. These are lectures on discrete subgroups of isometries of complex hy-
perbolic spaces, aimed to discuss interactions between the function theory on com-
plex hyperbolic manifolds and the theory of discrete groups.

1. Introduction

These notes are based on a series of lectures I gave at the workshop “Progress
in Several Complex Variables,” held in KIAS, Seoul, Korea, in October of 2019.
It is useful to read the notes in conjunction with my (longer) survey of discrete
isometry groups of real hyperbolic spaces, [55], since most issues in the real and
complex hyperbolic setting are quite similar. The theory of complex hyperbolic
manifolds and complex hyperbolic Kleinian groups (aka discrete holomorphic isom-
etry groups of complex hyperbolic spaces Hn

C) is a rich mixture of Riemannian and
complex geometry, topology, dynamics, symplectic geometry and complex analysis.
The choice of topics covered in these lectures is governed by my personal taste and
is, by no means, canonical: It is geared towards a discussion of interactions between
the function theory on complex hyperbolic manifolds and the geometry/dynamics
of complex hyperbolic Kleinian groups (sections 9 and 10). I refer the reader to
[18, 36, 37, 35, 70, 74, 75, 76, 85] for further discussion of geometry of complex
hyperbolic spaces and their discrete isometry groups. The bibliography of complex
hyperbolic Kleinian groups appearing at the end of these notes is long but is not
meant to be exhaustive, my apologies to everybody whose papers are omitted.
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2. Complex hyperbolic space

Most of the basic material on geometry of complex hyperbolic spaces can be found
in Goldman’s book [37]; I also refer the reader to [35, 74, 76] for shorter introductions.

Consider the vector space V = Cn+1 equipped with the pseudo-hermitian bilinear
form

〈z, w〉 = −z0w̄0 +
n∑
k=1

zkw̄k.

Set q(z) := 〈z, z〉. This quadratic form has signature (n, 1). Define the negative
light cone V− := {z : q(z) < 0}. Consider the complex projective space Pn := PV ,
the projectivization of V , and the projection p : z 7→ [z] ∈ Pn. The projection
Bn := p(V−) is an open ball in Pn. In order to see this, consider the affine hyperplane
in Cn+1 given by A = {z0 = 1} (and equipped with the standard Euclidean hermitian
metric). Then V− ∩ A is the open unit ball in A centered at the origin. This
intersection projects diffeomorphically to p(V−).

The tangent space T[z]Pn is naturally identified with z⊥, the orthogonal comple-
ment of Cz in V , taken with respect to 〈·, ·〉. If z ∈ V−, then the restriction of q
to z⊥ is positive-definite, hence, 〈·, ·〉 project to a hermitian metric h (also denoted
〈·, ·〉h) on Bn. From now on, I will always equip Bn with the hermitian metric h and
let d denote the corresponding distance function on Bn.

Definition 2.1. The complex hyperbolic n-space Hn
C is (Bn, h).
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I next describe the hermitian metric h on Bn using the coordinates (z1, ..., zn) on
A. First, regarding Bn as a subset of the affine hyperplane A, for a vector y ∈ TxBn

we have

〈y, y〉h =
〈x, x〉〈y, y〉 − 〈x, y〉〈y, x〉

−〈x, x〉2
.

Setting x = (1, z), z ∈ Cn, and denoting u ·v the standard Euclidean hermitian inner
product on Cn, we obtain:

〈y, y〉h =
(−1 + |z|2)|y|2 − (z · y)(y · z)

−(−1 + |z|2)2
, y ∈ TzBn.

In the differential form, the metric h is, thus, given by

ds2
h =

1

1− |z|2
n∑
k=1

dzkdz̄k +
1

(1− |z|2)2

n∑
j,k=1

zj z̄kdzkdz̄j.

This hermitian metric is Kähler, with the Kähler potential (centered at the origin)
equal to

f(z) = log(1− |z|2),

and the Kähler form ω = i
2
∂∂̄f equal

ω =
1

1− |z|2
n∑
k=1

dzk ∧ dz̄k +
1

(1− |z|2)2

n∑
j,k=1

zj z̄kdzk ∧ dz̄j.

The complex hyperbolic metric on Bn (the unit ball in Cn) is the Bergman metric
with the Bergman kernel K(z, ζ) equal

K(z, ζ) =
n!

2πn
(1− (z · ζ))−n−1,

where, as before, z · ζ is the standard hermitian inner product on Cn.
The distance function d on Hn

C satisfies

cosh2(d([x], [y])) =
〈x, y〉〈x, y〉
〈x, x〉〈y, y〉

.

For example, specializing to the case when [x] is the center of Bn and [y] is represented
by a point z ∈ Bn, we obtain:

cosh2(d(0, z)) = (1− |z|2)−1.

See [37, pp. 72–79] and [63, §1.4]; note however that Goldman uses a different
normalization of the metric on the complex hyperbolic space; with his normalization
sectional curvature varies in the interval [−2,−1

2
].

A real linear subspace W ⊂ V is said to be totally real with respect to the form 〈·, ·〉
if for any two vectors z, w ∈ W , 〈z, w〉 ∈ R. Such a subspace is automatically totally
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real in the usual sense: JW ∩W = {0}, where J is the almost complex structure on
V .

Real geodesics in Bn are projections (under p) of totally real indefinite (with respect
to q) 2-planes in V (intersected with V−). For instance, geodesics through the origin
0 ∈ Bn are Euclidean line segments in Bn.

More generally, totally-geodesic real subspaces in Bn are projections of totally
real indefinite subspaces in V (intersected with V−). They are isometric to the
real hyperbolic space Hn

R of constant sectional curvature −1. Boundaries of real
hyperbolic planes are called real circles in S2n−1.

Complex geodesics in Bn are projections of indefinite complex 2-planes; boundaries
of complex geodesics are called complex circles in S2n−1. Complex geodesics are
isometric to the unit disk with the hermitian metric

dzdz̄

(1− |z|2)2
,

which has constant curvature −4. These are the extremal disks for the Kobayashi
metric on Bn, which coincides with the complex hyperbolic distance function d. It
also equals the Caratheodory’s metric on Bn (as is the case for all bounded convex
domains in Cn).

More generally, complex hyperbolic k-dimensional subspaces Hk
C in Bn are projec-

tions of indefinite complex k + 1-dimensional subspaces (intersected with V−).
All complete totally-geodesic submanifolds in Hn

C are either real or complex hy-
perbolic subspaces.

The holomorphic bisectional curvature of Hn
C is constant, equal −1. It turns out

that Hn
C has negative sectional curvature which varies in the interval [−4,−1]. Thus,

Hn
C is a negatively pinched Hadamard manifold:

Definition 2.2. 1. A Hadamard manifold X is a simply-connected complete non-
positively curved Riemannian manifold.

2. A Hadamard manifold X is said to have strictly negative curvature if there
exists a < 0 such that the sectional curvature of X is ≤ a.

3. A Hadamard manifold X is said to be negatively pinched (has pinched negative
curvature) if there exist two negative numbers b ≤ a < 0 such that the sectional
curvature of X lies in the interval [b, a].

The group U(n, 1) = U(q) of (complex) automorphisms of q projects to the group
G = PU(n, 1) = Aut(Bn) of complex (biholomorphic) automorphisms of Bn. This
group acts transitively, with the stabilizer of the center of Bn equal to K = U(n).
Consequently, the metric d on Bn is complete. The group G is a Lie group, its
Lie topology is equivalent to the topology of pointwise convergence, equivalently,
the topology of uniform convergence on compacts in Bn, equivalently, the quotient
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topology of the matrix group topology on U(n, 1). The group G is linear, its matrix
representation is given, for instance, by the adjoint representation, which is faithful
since G has trivial center.

The Lie group G is connected and has real rank 1. Its Cartan decomposition is

G = KA+K,

where A+ is the semigroup of positive translations (transvections) along a chosen
geodesic through 0.

Let Bn denote the closure of Bn in Pn. The boundary sphere S2n−1 = ∂Bn of
Bn is the projection to Pn of the null-cone of the form q. The sphere S2n−1 a CR
manifold: It is equipped with a smooth totally nonintegrable hyperplane distribution
Hz, z ∈ S2n−1,

Hz = TzS
2n−1 ∩ J(TzS

2n−1),

where J is the almost complex structure on Pn. The subspace Hz is a (complex)
hyperplane in TzPn. We let Pz denote the unique projective subspace in Pn passing
through z and tangent to Hz. Thus, Pz ∩Bn = {z}.

One defines a sub-Riemannian metric dC on S2n−1 as follows. Given points ξ, η ∈
S2n−1, define Cp,q as the collection of smooth paths c : [0, 1] → S2n−1 connecting p
to q such that c is a contact path, i.e. c′(t) ∈ Hc(t) for all t ∈ [0, 1]. Then the Carnot
metric dC on S2n−1 is

dC(ξ, η) = inf
c∈Cξ,η

∫ 1

0

||c′(t)||dt,

where || · || is a background Riemannian metric on S2n−1, say, the unique metric of
sectional curvature +1 invariant under O(2n). It turns out that dC is indeed a metric
which topologizes S2n−1. However, unlike a Riemannian metric on S2n−1, which has
Hausdorff dimension equal to the topological dimension, the metric space (S2n−1, dC)
is fractal, its Hausdorff dimension dimH equals

dimH(S2n−1, dC) = 2n.

Most of the following discussion is valid for general negatively pinched Hadamard
spaces; I refer to the paper by Bowditch [13] for a details, especially in the context
of discrete isometry groups.

Since Hn
C is a Hadamard manifold X, it has an intrinsically defined ideal (visual)

boundary ∂∞X, defined as the set of equivalence classes of geodesic rays, where two
rays are equivalent iff they are within finite Hausdorff distance. Every geodesic ray is
equivalent to a geodesic ray emanating from a chosen base-point o ∈ X. The topology
on ∂∞X is the quotient topology, where the space of geodesic rays is equipped with
the topology of uniform convergence on compacts. Equivalently, since the map from
the unit tangent sphere UToX at o to ∂∞X is bijective, ∂∞X is homeomorphic to
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UToX. The union X := X ∪ ∂∞X also has a natural topology with respect to which
it is homeomorphic to the closed ball. Given a subset Y ⊂ X, we define ∂∞Y as the
intersection of the closure of Y in X with ∂∞X.

IfX is strictly negatively curved, it satisfies the visibility property: Any two distinct
points ξ, η ∈ ∂∞X are connected by a unique geodesic, denoted ξη.

In the case X = Hn
C, this abstract compactification is naturally homeomorphic to

the closed ball compactification Bn: Two geodesic rays c1, c2 are equivalent iff they
terminate at the same point of the boundary sphere S2n−1.

Suppose that X is a Hadamard manifold. Given a closed subset Λ ⊂ ∂∞X, one
defines the closed convex hull, denoted hull(Λ), of Λ in X as the intersection of all
closed subsets C ⊂ X such that ∂∞C ⊃ Λ. For η > 0 we will use the notation
hullη(Λ) to denote the closed η-neighborhood of hull(Λ) in X.

Theorem 2.1 (M. Anderson, [3]). If X has pinched negative curvature then for
every closed subset Λ ⊂ ∂∞X which is not a singleton, hull(Λ) is a (closed, convex)
subset of X such that ∂∞ hull(Λ) = Λ.

Exercise 2.1. (a) Assuming that X is negatively curved, verify:
1. hull(Λ) = ∅ if and only if Λ consists of at most one point.
2. For any two distinct points ξ, η ∈ ∂∞X, hull({ξ, η}) = ξη.
(b) Verify that Anderson’s theorem fails for the Euclidean plane X = E2.

Anderson’s theorem requires negative pinching: It fails if X merely has strictly
negative curvature, see [2].

The geometry of convex hulls remains a bit of a mystery, for instance we still do
not entirely understand volumes of convex hulls of finite subsets. The best known
result seems to be:

Theorem 2.2 (A. Borbély, [10]). If X is m-dimensional, has curvature in the in-
terval [−k2,−1] and Λ has cardinality ≤ n, then V ol(hull(Λ)) ≤ Cn2−η, where
C = C(m, k), while

η =
1

1 + 4k(m− 1)
.

For a closed subset Λ ⊂ ∂Bn, define its tangent hull Λ̂ as the union of hyper-
planes Pλ, λ ∈ Λ. I will refer to the hyperplanes Pλ, λ ∈ Λ as the complex support
hyperplanes of Λ. Similarly, for an open subset Ω = ∂Bn − Λ, define

(1) Ω̌ = Pn − Λ̂.

Exercise 2.2. Λ̂ is also closed and Λ̂ ∩Bn = Λ.

See Appendix A for a discussion of horospheres and horoballs in Hadamard man-
ifolds X and the horofunction compactification of X, which leads to an alternative
description of the topology on X.
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Isometries of X extend to homeomorphisms of X; in the setting of Bn, this is just
the fact that all automorphisms of Bn are restrictions of projective transformations:

PU(n, 1) < PGL(n+ 1,C).

The group G = PU(n, 1) acts doubly transitively on the boundary sphere S2n−1:
Given two pairs of distinct points ξi, ηi, i = 1, 2, we connect these points by unique
biinfinite (unit speed) geodesics ci = ξiηi. Set zi := ci(0), vi := c′(0) ∈ TziBn. Then,
since G acts transitively on the unit tangent bundle UTBn, there exists g ∈ G
sending v1 7→ v2. Thus, g(c1) = c2 and, consequently, g(ξ1) = ξ2, g(η1) = η2.

Classification of isometries. Every isometry g ∈ G = Aut(Bn) is continuous
on the closed ball Bn and, hence, has at least one fixed point there. Accordingly,
automorphisms g ∈ G are classified as:

(1) Elliptic: g has a fixed point z in Bn. After conjugating g via h ∈ Aut(Bn)
which sends z to 0,

hgh−1 ∈ K = U(n).

(2) Parabolic: g has a unique fixed point in Bn and this is a boundary point
z ∈ S2n−1. Equivalently,

inf{d(z, gz) : z ∈ Bn} = 0

and the infimum is not realized.
(3) Hyperbolic: g has exactly two fixed points ξ, η in Bn, both are in S2n−1. (In

particular, g preserves the unique geodesic ξη in Bn and acts as a translation
along this geodesic. This geodesic is called the axis of g.) Equivalently,

inf{d(z, gz) : z ∈ Bn} 6= 0.

This infimum is realized by any point on the axis of g.

The fixed point λ of a hyperbolic isometry γ is called attractive (resp. repulsive)
if for some (every) x ∈ X, γi(x)→ λ as i→∞ (resp. i→ −∞).

An elliptic automorphism of Bn is called a complex reflection if its fixed-point set
is a complex hyperbolic hyperplane in Hn

C.

As any strictly negatively curved Hadamard manifold, Hn
C satisfies the convergence

property:

Theorem 2.3. For every sequence gi ∈ G = PU(n, 1), after extraction, the following
dichotomy holds:

(a) Either gi converges to an isometry g ∈ G.
(b) Or there is a pair of points ξ, η ∈ S2n−1 such that gi|Bn−{η} converges uniformly

on compacts to the constant ξ.
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Proof. First, prove this for sequences of hyperbolic isometries with a common axis.
Then use the Cartan decomposition of G. �

In the case (b), we will say that (gi) converges to the quasiconstant map ξη. (The
point η is the indeterminacy point of ξη.)

It turns out that most elementary properties of discrete isometry groups of strictly
negatively curved Hadamard manifolds can be derived just from the Convergence
Property! See [14, 90, 91] for a development of the theory of convergence group
actions on compact metrizable spaces, i.e. topological group actions satisfying the
Convergence Property.

Exercise 2.3. 1. Verify that if gi → ξη then g−1
i → ηξ.

2. If gi → ξη, verify that (gi) converges (again, uniformly on compacts) to the
constant map ξ on Pn − Pη.

3. Find an example where ξ = η.

3. Basics of discrete subgroups of PU(n, 1)

Almost all the properties of discrete subgroups Γ < G = PU(n, 1) stated in this
section hold for discrete isometry groups of negatively pinched Hadamard manifolds.

Definition 3.1. A subgroup Γ < Isom(X) of isometries of a Riemannian manifold
X is called discrete if it is discrete as a subset of Isom(X). Discrete subgroups
Γ < PU(n, 1) are complex hyperbolic Kleinian groups.

Here, all reasonable topologies on Isom(X) agree. For instance, one can use the
topology of uniform convergence on compact subsets, or the topology of pointwise
convergence.

Recall that a group Γ of homeomorphisms of a topological space X is said to act
properly discontinuously on X if for every compact C ⊂ X,

card{γ ∈ Γ : γC ∩ C 6= ∅} <∞.

Exercise 3.1. Suppose that X is a Riemannian manifold and G = Isom(X) is the
isometry group of X.

(a) Prove that the following are equivalent for subgroups Γ < G:
1. Γ is a discrete subgroup of G.
2. Γ acts properly discontinuously on X.
3. For one (equivalently, every) x ∈ X the function Γ → R+, γ 7→ d(x, γx) is

proper (with Γ equipped with discrete topology), i.e. if γi is a sequence consisting of
distinct elements of Γ, then

lim
i→∞

d(x, γix) =∞.

(b) Every discrete subgroup of G is at most countable.
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A group Γ is said to act freely on X is for every x ∈ X, the Γ-stabilizer

Γx = {γ ∈ Γ : γx = x}
is the trivial subgroup of Γ.

If X is a manifold and Γ is a group acting freely and properly discontinuously, then
the quotient space X/Γ is a manifold and the projection map X → X/Γ is a covering
map. If one does not assume freeness of the action then X/Γ is an orbifold and the
projection map X → X/Γ is an orbi-covering map. If X is simply-connected, the
group Γ is the (orbifold) fundamental group of X/Γ. See Appendix D for a discussion
of orbifolds and related concepts.

In the case when X is a Hadamard manifold, a subgroup Γ < Isom(X) acts freely
on X if and only if Γ is torsion-free, i.e. every nontrivial element of Γ has infinite
order. If Γ acts on X isometrically/holomorphically, the Riemannian metric/complex
structure on X descends to the quotient manifold (orbifold) X/Γ.

Definition 3.2. A complex hyperbolic n-dimensional orbifold (manifold) is the quo-
tient of Hn

C by a discrete (torsion-free) subgroup of PU(n, 1), MΓ = Hn
C/Γ.

Exercise 3.2. Assuming that X is a Hadamard manifold and Γ < Isom(X) is dis-
crete, prove that Γ is torsion-free if and only if it contains no elliptic elements, besides
the identity.

For finitely generated subgroups Γ < PU(n, 1), one can eliminate torsion by passing
to a finite index subgroup:

Theorem 3.1 (Selberg’s Lemma, see e.g. [46] or [78]). If k is a field and Γ <
GL(n,k) is a finitely generated subgroup, then Γ is virtually torsion-free, i.e. contains
a torsion-free subgroup of finite index.

In particular, every complex hyperbolic orbifold O with finitely generated (orb-
ifold) fundamental group, admits a finite-sheeted manifold orbi-covering M → O.

Remark 3.3. Selberg’s theorem fails for discrete finitely generated groups of isome-
tries of negatively pinched Hadamard manifolds, see [56].

Definition 3.3. Given a Hadamard manifold X, a discrete subgroup Γ < Isom(X)
and a point x ∈ X, the limit set Λ = ΛΓ is the accumulation set of the orbit Γx in
∂∞X, i.e.

Λ = ∂∞(Γx).

The complement Ω := ∂∞X − Λ is called the discontinuity domain of Γ.

Exercise 3.4. Suppose that Γ is a discrete subgroup of Isom(X) and X is strictly
negatively curved. Verify:

(1) Λ is independent of x ∈ X. (Hint: Use the Convergence Property.)1

1This also holds for general Hadamard manifolds even though the convergence property fails.
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(2) Λ is closed and Γ-invariant. Accordingly, Ω is open in ∂∞X and is Γ-invariant
as well.

(3) Ω is either empty or is dense in ∂∞X. (Hint: Use the Convergence Property.)
(4) Either Λ consists of at most two points or it is perfect, i.e. contains no

isolated points.
(5) If Γ′ is a subgroup of Γ, then ΛΓ′ ⊂ ΛΓ.
(6) If Γ′ / Γ is an infinite normal subgroup then ΛΓ′ = ΛΓ.
(7) If Γ′ < Γ is a subgroup of finite index then ΛΓ′ = ΛΓ.

Example 3.5. Let γ ∈ Isom(X) be a non-elliptic element. Then the limit set of the
group Γ = 〈γ〉 generated by γ equals the fixed-point set of γ in ∂∞X.

Lemma 3.6. If Γ < Isom(X) is a discrete subgroup and X is a strictly negatively
curved Hadamard manifold, then Γ acts properly discontinuously on Y = X ∪ Ω.
Proof. Let C be a compact subset of Y . Suppose there exists a sequence consisting
of distinct elements γi ∈ Γ such that for each i, γiC ∩ C 6= ∅. In view of the Con-
vergence Property, after extraction, the sequence γi either converges to an isometry
γ ∈ Isom(X) (which would contradict the discreteness of Γ) or to a quasiconstant
map ξη, with ξ, η ∈ Λ. Since (γi) converges to ξ uniformly on compacts in X − {η}
and C ⊂ Y ⊂ X − {η} is compact, there exists a neighborhood U of ξ disjoint from
C; thus, for all but finitely many values of i, γi(C) ⊂ U . A contradiction. �

A more difficult result is

Theorem 3.2 (A. Cano, J. Seade, see [19, 18]). Every discrete subgroup Γ <

PU(n, 1) acts properly discontinuously on Ω̌ := Pn − Λ̂ (see (1)).

Remark 3.7. An alternative proof of this result is an application of a proper dis-
continuity theorem in [58]. More precisely, let F1,n be the flag-manifold consisting of
flags (V1, Vn) in V = Cn+1, where V1 is a line and Vn is a hyperplane (containing
V1). We have a G-equivariant holomorphic fibration π : F1,n → Pn sending each pair

(V1, Vn) to V1. The tangent hull Λ̂ of Λ defines a natural continuous map θ : Λ→ F1,n

sending each λ ∈ Λ to the pair (V1, Vn) consisting of the preimages of λ and Pλ in V .
Let Λ̃ be the image of θ and let Th(Λ̃) be the thickening of Λ̃ in F1,n, consisting of
flags (V ′1 , V

′
n) such that either V ′1 belongs to Λ or V ′n is a complex support hyperplane

of Λ. Then Γ acts properly discontinuously on ΩTh = F1,n − Th(Λ̃); see [58]. Since
π−1(Ω̌) ⊂ ΩTh, the action of Γ on Ω̌ is properly discontinuous as well.

In particular, the quotient MΓ := (Bn∪Ω)/Γ embeds as an orbifold with boundary
in the complex orbifold without boundary Ω̌/Γ. The boundary of MΓ (equal to Ω/Γ)
is strictly Levi-convex in Ω̌/Γ.
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Notation 3.8. The boundary ∂MΓ of a complex hyperbolic orbifold MΓ is ΩΓ/Γ; in
other words, this is the boundary of MΓ.

We now return to the discussion of discrete subgroups of general negatively pinched
Hadamard manifolds X.

Theorem 3.3. If α, β are hyperbolic elements of a discrete subgroup of Isom(X),
then their fixed-point sets are either equal or disjoint.

Corollary 3.9. If Γ < Isom(X) is discrete and fixes a point λ ∈ ∂∞X then ΛΓ either
equals to {λ} and Γ contains no hyperbolic elements, or ΛΓ consists of two points,
ΛΓ = {λ, λ′} and Γ contains no parabolic elements.

Definition 3.4. A discrete subgroup Γ < Isom(X) is called elementary if card(ΛΓ) ≤
2. It is said to be nonelementary otherwise.

Elementary subgroups are, in many ways, exceptional, among discrete subgroups.

In view of Exercise 3.4(4), the limit set of every nonelementary subgroup is perfect.
In particular, it has the cardinality of continuum. Hence:

Proposition 3.10. The limit set of a discrete subgroup of Isom(X) consists of 0, 1,
2 or continuum of points.

Proposition 3.11. The limit set of a nonelementary discrete group Γ is the smallest
nonempty closed Γ-invariant subset of ∂∞X. In particular, every orbit in ΛΓ is dense.

Proof. Suppose that L ( ΛΓ is a closed nonempty and Γ-invariant subset. Take a
point ξ ∈ ΛΓ − L and let (γi) be a sequence in Γ converging to a quasiconstant map
ξη. Then for every λ ∈ L−{η}, limi→∞ γi(λ) = ξ. Since L is closed and ξ /∈ L, for all
sufficiently large i, γi(λ) /∈ L, contradicting invariance of L. This leaves us with the
possibility that L is the singleton {ξ} and ξ is fixed by the entire Γ. It then follows
that Γ is elementary. �

Theorem 3.4. Suppose that Γ is an elementary subgroup of Isom(X).
1. If ΛΓ is a singleton then every element of Γ is elliptic or parabolic.
2. If ΛΓ consists of two points then every element of Γ is elliptic or hyperbolic.

Hyperbolic elements fix ΛΓ pointwise. Elliptic elements can swap the two limit points.
3. Γ is a virtually nilpotent2 group.

See [7] for a more detailed discussion of elementary groups and their quotient
spaces MΓ. Here we only note that discrete elementary subgroups of PU(n, 1) are
virtually 2-step nilpotent.

2I.e. contains a nilpotent subgroup of finite index
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Proposition 3.12. Suppose that X is a strictly negatively curved Hadamard man-
ifold. If ξ, η are distinct limit point of a discrete subgroup Γ < Isom(X) then there
exists a sequence γk ∈ Γ of hyperbolic elements whose attractive (resp. repulsive)
fixed points converge to ξ (resp. η).

Proof. Since ξ, η are limit points of Γ, there exist sequences (gi), (hj) in Γ which
converge, respectively, to the quasiconstant maps ξα and βη. By precomposing these
sequences with suitable elements of Γ, we can assume that the points ξ, η, α, β are
pairwise distinct. Let Uα, Uβ, Uξ, Uη be pairwise disjoint open ball neighborhoods in
∂∞X of α, β, ξ, η respectively. In view of the convergence gi → ξα, hj → βη, for all
sufficiently large i we have

hi(∂∞X − Uη) ⊂ Uβ, gi(∂∞X − Uα) ⊂ Uξ,

and, hence,
gi ◦ hi(∂∞X − Uη) ⊂ Uξ.

In particular, the composition fi = gi ◦ hi has an attractive fixed point in Uξ. Simi-
larly, f−1

i has an attractive fixed point in Uη. �

Corollary 3.13. If Γ is nonelementary then the set of hyperbolic fixed points of
elements of Γ is dense in ΛΓ.

Corollary 3.14. If a discrete group Γ contains a parabolic element then parabolic
fixed points are dense in ΛΓ.

The following theorem provides a converse to Theorem 3.4(3):

Theorem 3.5. Each nonelementary discrete subgroup Γ < Isom(X) contains a non-
abelian free subgroup whose limit set is homeomorphic to the Cantor set.

Definition 3.5. The convex core, Core(M), of M = MΓ = X/Γ is the projection
to MΓ of the closed convex hull hull(ΛΓ) of the limit set of Γ.

Given η > 0, define Coreη(M) as the projection to MΓ of hullη(ΛΓ). Intrinsically,
the convex core can be defined as:

Exercise 3.15. Core(M) is the intersection of all closed convex suborbifolds M ′ ⊂
M such that π1(M ′)→ π1(M) is surjective.

Conical limit points. I conclude this section with a discussion of a classification
of limit points of discrete subgroups of Isom(X).

Definition 3.6. A sequence (xi) in X is said to converge to a point ξ ∈ ∂∞X
conically if there exists a geodesic ray xξ in X and a constant R <∞ such that:
d(xi, xξ) ≤ R for all i and limi→∞ xi = ξ.
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Exercise 3.16. Let λ ∈ ΛΓ be a limit point. The following are equivalent:
1. There exists a sequence γi ∈ Γ such that the sequence (γi(x)) converges to ξ

conically.
2. The projection of the ray xλ to MΓ defines a non-proper map R+ →MΓ.

Definition 3.7. A limit point λ ∈ ΛΓ is called conical or radial if it satisfies one of
the two equivalent properties in this exercise. The set of conical limit points of Γ is
denoted Λc = Λc

Γ.

Example 3.17. 1. If Γ is an elementary hyperbolic subgroup of Isom(X) then ΛΓ =
Λc

Γ.
2. If Γ is an elementary parabolic subgroup of Isom(X) then Λc

Γ = ∅.

4. Margulis Lemma and thick-thin decomposition

In this section, X is a negatively pinched Hadamard manifold. For each discrete
subgroup Γ < Isom(X), a point x ∈ X and a number ε > 0, define Γx,ε to be the
subgroup of Γ generated by the (necessarily finite) set

{γ ∈ Γ : d(x, γx) < ε}.

This subgroup is the “almost-stabilizer” of x in Γ.
Let UΓ,ε denote the subset of X consisting of points x for which the almost-

stabilizer Γx,ε is infinite.
The components of UΓ,ε need not be convex (already for X = H2

C), but each
component is contractible:

Proposition 4.1. Each component of UΓ,ε is contractible.

In view of the contractibility of X and of hull ΛΓ, it follows that X − UΓ,ε and
hull ΛΓ − UΓ,ε are both contractible. Furthermore, if X has curvature ≤ −1, each
component U of UΓ,ε is uniformly quasiconvex:

Theorem 4.1. There exist universal constants δ0, η0 such that each component U of
UΓ,ε satisfies:

1. For any two points x, y ∈ U , the geodesic xy is contained in the δ0-neighborhood
of U .

2. The η0-neighborhood of U is convex.

Theorem 4.2 (Kazhdan–Margulis; Margulis; see e.g. [5]). Let X be an n-dimensional
Hadamard manifold of sectional curvature bounded below by b ≤ 0. Then there exists
ε = ε(n, b) such that for every discrete subgroup Γ < Isom(X) and every x ∈ X, the
subgroup Γx,ε is virtually nilpotent. In particular, if X is negatively curved, then Γx,ε
is elementary.
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Corollary 4.2. For each discrete torsion-free subgroup Γ < Isom(X), the set UΓ,ε

breaks into connected components XΓ,ε,i each of which is stabilized by some elemen-
tary subgroup Γi of Γ and for each x ∈ XΓ,ε,i the stabilizer Γi contains the “almost
stabilizer” Γx,ε. (The index can be infinite.)

As a corollary, one obtains the thick-thin decomposition of the orbifold M = MΓ:

M(0,ε) is the projection of UΓ,ε to M . It consists of all points y ∈ M for which there
exists a homotopically nontrivial loop based at y of length < ε. Define also M(0,ε] as
the closure of M(0,ε) in M . Both M(0,ε) and M(0,ε] are called the ε-thin parts of M .
The complement M[ε,∞) = M −M(0,ε) and its interior M(ε,∞) are called the ε-thick
parts of M .

One defines the ε-thick, resp. thin, part of the convex core Core(M) as the inter-
section Core(M) ∩M[ε,∞), resp. Core(M) ∩M(0,ε).

Components of the thin parts M and Core(M) come in two shapes:
(a) Tubes. Suppose that U is a component of UΓ,ε whose stabilizer ΓU in Γ is

virtually hyperbolic, i.e. contains a cyclic hyperbolic subgroup of finite index. In
other words, the limit set of ΓU consists of two points ξ, η. The geodesic ξη is
then invariant under ΓU ; it is also contained in U and projects to a closed geodesic
c ⊂ U/ΓU . The quotient U/ΓU is a tube: If ΓU is torsion-free then this quotient is
homeomorphic to an Rk-bundle over S1, with the base of the fibration corresponding
to the closed geodesic c.

(b) Cusps. Suppose that U is a component of UΓ,ε whose stabilizer ΓU in Γ is
virtually parabolic, i.e. contains a parabolic subgroup of finite index. In other words,
the limit set of ΓU consists of a single point η. The group ΓU preserves horoballs Bη

based at η. The subsets UΓ,ε are typically strictly smaller (not even Hausdorff-close)
than any of the horoballs Bη.

5. Geometrically finite groups

The notion of geometrically finite Kleinian groups was introduced by Lars Ahlfors
in mid 1960s for the real hyperbolic space and later generalized (by William Thurston
and Brian Bowditch) to manifolds of negative curvature: The discrete groups in this
class are the nicest-behaving among discrete isometry groups of negatively pinched
Hadamard manifolds.

Definition 5.1. Let X be a negatively pinched Hadamard manifold. A discrete
subgroup Γ < G = Isom(X) is called geometrically finite if:

(a) The orders of elliptic elements of Γ are uniformly bounded (from above), and
(b) the volume of Coreη(MΓ) is finite for some (equivalently, every, η > 0).

A discrete subgroup Γ < G is called convex-cocompact if card(ΛΓ) 6= 1 and Core(MΓ)
is compact.
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For instance, if ΛΓ = ∂∞X then hull(ΛΓ) = X and, thus, Γ is geometrically finite
iff Γ < G is a lattice, i.e. vol(MΓ) < ∞. Under the same assumption, Γ is convex-
cocompact iff Γ < G is a uniform lattice, i.e. MΓ is compact.

Theorem 5.1. 1. (B. Bowditch, [13]) A discrete subgroup Γ < G is geometrically
finite iff the ε-thick part of Core(MΓ) is compact.

2. (B. Bowditch, [13]) A discrete subgroup Γ < G is convex-cocompact iff MΓ is
compact.

3. (B. Bowditch, [13]) A discrete subgroup Γ < G is convex-cocompact iff every
limit point of Γ is conical.

4. (M. Kapovich, B. Liu, [59]) A discrete subgroup Γ < G is geometrically finite
iff every limit point of Γ is either conical or a parabolic fixed point.

In particular, (1) implies that geometrically finite groups are finitely presentable
(since hull ΛΓ − UΓ,ε is contractible).

In particular, a convex-cocompact subgroup Γ < PU(n, 1) acts properly discon-
tinuously an cocompactly on Hn

C∪Ω. The action of Γ on Ω̌ is properly discontinuous
but not cocompact. If becomes cocompact if we lift to the flag-manifold F1,n (see
[58]):

Theorem 5.2. The Γ-action on the domain ΩTh ⊂ F1,n is properly discontinuous
and cocompact.

6. Ends of negatively curved manifolds

Let X be a negatively pinched Hadamard manifold and let Λ be a closed subset
of ∂∞X consisting of at least two points. Set Ω = ∂∞X − Λ. The nearest-point
projection Π : X → hull(Λ) extends continuously to a map Π : X ∪ Ω → hull(Λ):
While for x ∈ X, Π(x) is defined by minimizing the distance function dx = d(x, ·)
on hull(Λ), for ξ ∈ Ω, the projection Π(ξ) is defined by minimizing the Busemann
function bξ based at ξ. For a component Ω0 ⊂ Ω we define a subset X0 ⊂ X as
the union of open geodesic rays xξ − {x}, where ξ ∈ Ω0, x = Π(ξ). The union of
these geodesic rays is an open subset of X − hull(Λ) whose closure in X ∪ Ω equals
X0 ∪ Ω0 ∪ Π(Ω0).

We now specialize to the setting when Λ = ΛΓ is the limit set of a discrete subgroup
Γ < Isom(X). If Ω0 has cocompact stabilizer Γ0 in Γ, then Γ0 also acts cocompactly
on X0 ∪ Ω0 ∪ Π(Ω0). Thus, MΓ has an the isolated end E0 corresponding to Ω0/Γ0,
with the isolating neighborhood X0/Γ0.

Definition 6.1. Ends E0 of M = MΓ which have this form are called convex ends
of M .
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From the analytical viewpoint, the advantage of working with convex ends E0 is
that they admit convex exhaustion functions: For every convex end E0 there exists
a convex function φ : M → R+ which is proper on the closure of E0 and vanishes on
M − E0.

Suppose that C is an unbounded component of the thin part M(0,ε) of M = MΓ,
and C has compact boundary. Then C also defines an isolated end EC with an
isolating neighborhood given by C ∩M(0,ε).

Definition 6.2. Ends EC of MΓ which have this form are called cuspidal ends of
MΓ.

Exercise 6.1. 1. Γ is convex-cocompact iff MΓ has only convex ends.
2. If MΓ has only convex and cuspidal ends then Γ is geometrically finite.

One can refine (cf. [53]) the above definitions in two ways:
(a) Considering unbounded components of the thin part of Core(MΓ) and, thus,

defining cuspidal ends of the convex core.
(b) Removing from MΓ its cuspidal ends and their preimages under the nearest-

point projection MΓ → Core(MΓ), one then defines relative convex ends of MΓ.

One can also classify ends of MΓ using the potential theory as hyperbolic and
parabolic ends, see [72]. Note that if M = MΓ is a complex hyperbolic manifold,
then every convex end E of M is hyperbolic.

7. Critical exponent

Notation 7.1. Let B(x, r) denote the open ball of radius r and center at x in a
metric space.

I will discuss the critical exponent mostly in the case of complex hyperbolic
Kleinian groups; for a discussion in the broader context of negatively curved Hadamard
manifolds and Gromov-hyperbolic spaces see e.g. [21, 27, 28, 64, 79].

The critical exponent of a discrete isometry group Γ of a Hadamard manifold X
(typically, satisfying some further curvature restrictions) is, probably, the single most
important numerical invariant of Γ: It reflects both geometry of Γ-orbits in X, the
geometry of the limit set of Γ, the ergodic theory of the action of Γ on the limit set
and analytic properties of the quotient space X/Γ. Its origin goes back to the 19th
century and the work of Poincaré (among others), who was interested in constructing
automorphic functions (and forms) on the hyperbolic plane by “averaging” a certain
holomorphic function (or a form) over a discrete isometry group Γ. The resulting
infinite series (the Poincaré series) may or may not converge, depending on the
weight of the form, leading to the notion of the critical exponent or the exponent of
convergence of Γ.
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Let Γ < Isom(X), a discrete isometry group of a Hadamard manifold. Pick points
x, y ∈ X. The entropy of Γ is defined as

δ = δΓ = lim sup
r→∞

1

r
card(B(x, r) ∩ Γy).

Thus, the entropy measures the rate of exponential growth of Γ-orbits in X. It turns
out that δ equals the critical exponent of Γ, defined as

δ = inf{s :
∑
γ∈Γ

exp(−sd(x, γy)) <∞},

i.e. δ is the exponent of convergence of the Poincare series
∑

γ∈Γ exp(−sd(x, γy)).
Furthermore, δ is independent of the choice of x, y ∈ X. If∑

γ∈Γ

exp(−δd(x, γy)) <∞

(which depends only on Γ and not on the choice of x, y), then Γ is said to be a group
of convergence type; otherwise, Γ is said to be of divergence type.

Below are equivalent characterizations of δ in the case X = Hn
C:

Theorem 7.1. Suppose that Γ < PU(n, 1) is a discrete subgroup.Then:
1. (Corlette [23]; Corlette–Iozzi [25], Theorem 6.1) δ = δΓ equals the Hausdorff

dimension dimH Λc
Γ, where the conical limit set Λc

Γ is equipped with the restriction
of the Carnot metric on S2n−1. In particular, if Γ is geometrically finite then δ =
dimH Λ.

2. (Elstrodt–Patterson–Sullivan–Corlette–Leuzinger, see [65, Corollary 1]) Let λ =
λ(MΓ) denote the bottom of the L2-spectrum of the Laplacian on MΓ. Then{

λ = n2 if 0 ≤ δ ≤ n

λ = δ(2n− δ) if n ≤ δ ≤ 2n

8. Examples

I will say that a discrete torsion-free subgroup Γ < G = PU(n, 1) is Stein if the
complex manifold MΓ is Stein.

I will start with two elementary examples.

Example 8.1. Cyclic hyperbolic groups. Let γ ∈ PU(n, 1) be a hyperbolic
isometry fixing points λ± ∈ S2n−1 = ∂∞Hn

C and let Γ = 〈γ〉 be the cyclic subgroup
of PU(n, 1) it generates. Then Γ is an elementary subgroup with the limit set Λ =
{λ−, λ+}. The quotient manifold MΓ = Hn

C/Γ is diffeomorphic to the product R2n−1×
S1 while MΓ is diffeomorphic to the product D̄2n−1 × S1, where D̄2n−1 is the closed
disk of real dimension 2n− 1.
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Example 8.2. Integer Heisenberg groups. Given a natural number n, define the
2n+ 1-dimensional real Lie group H2n+1 as the group of (n+ 2)× (n+ 2)-matrices 1 a c

0 In b
0 0 1

 ,
where In is the identity n × n matrix, a ∈ Rn is a row-vector, b ∈ Rn is a column-
vector and c ∈ R. This group is 2-step nilpotent with the 1-dimensional center
consisting of the matrices with a = b = 0 and c ∈ R. The quotient of H2n+1 by
its center is the 2n-dimensional commutative Lie group isomorphic to R2n. The real
Heisenberg group H2n+1 contains the integer Heisenberg group H2n+1(Z), defined as
the intersection

H2n+1 ∩ SL(n+ 2,Z).

The quotient N = H2n+1/H2n+1(Z) is a compact nil-manifold, which is a nontrivial
circle over the torus T 2n. Algebraically, in terms of its presentation, H2n+1(Z) is
given by

〈x1, y1, ..., xn, yn, t|[xi, t] = [yj, t] = 1, [xi, yi] = t, i = 1, ..., n, j = 1, ..., n〉.

The Heisenberg group H2n+1 embeds in PU(n + 1, 1), fixing a point ξ in ∂∞Hn+1
C

and acting simply-transitively on every horosphere in Hn+1
C centered at ξ. Thus,

H2n+1(Z) embeds as a discrete elementary subgroup Γ < PU(n+ 1, 1) such that MΓ

is diffeomorphic to N × (0,∞). The partial compactification MΓ is diffeomorphic to
N × [0,∞).

The rest of our examples are nonelementary.

Example 8.3. Schottky groups. These are convex-cocompact subgroups Γ < G
isomorphic to free nonabelian groups Fk of finite rank k. The limit set ΛΓ is homeo-
morphic to the Cantor set. Its Hausdorff dimension is positive but can be arbitrarily
close to 0. Schottky groups are always Stein. Every nonelementary discrete subgroup
contains a Schottky subgroup. Schottky subgroups can be found via the following pro-
cedure. Let γ1, ..., γk be hyperbolic isometries with pairwise disjoint fixed-point sets.
Then there exists t0 such that for each integer t ≥ t0, the subgroup generated by
s1 = γt1, ..., sk = γtk is a Schottky group with the free generating set s1, ..., sk.

Example 8.4. Schottky-type groups. These are geometrically finite subgroups
Γ < G isomorphic to free products of elementary subgroups of G, such that the limit
set ΛΓ is homeomorphic to the Cantor set. Schottky-type subgroups can be found via
the following procedure. Let Γ1, ...,Γk be elementary subgroups with pairwise disjoint
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c

Figure 1. Quotient manifold of a Schottky-type group with k = 2.

limit sets. Then there exist torsion-free finite-index subgroups Γ`i < Γi, i = 1, ..., k,
such that the subgroup generated by

Γ`1, ...,Γ
`
k

is Schottky-type and the homomorphism

Γ`1 ? ... ? Γ`k → Γ = 〈Γ`1, ...,Γ`k〉
sending Γ`i → Γ`i , i = 1, ..., k, is an isomorphism. For instance, suppose that Γ1, ...,Γk
are integer Heisenberg subgroups of G. Then MΓ has k cuspidal ends (diffeomorphic
to N × (0,∞)) and one convex end, with ∂MΓ diffeomorphic to the k-fold connected
sum of N with itself, where N = H2n−1/H2n−1(Z). See Figure 1.

Real and complex Fuchsian groups defined below were introduced by Burns and
Shnider in [17].

Example 8.5. Real-Fuchsian subgroups. Let H2
R ⊂ Hn

C be a real hyperbolic
plane in Hn

C. Let Γ < PU(n, 1) be a geometrically finite subgroup whose limit set
is ∂∞H2

R. Then Γ preserves H2
R and acts on it with quotient of finite area. The

quotient surface-orbifold Σ is the convex core of MΓ. The limit set of Γ has Hausdorff
dimension 1. Assume now that n = 2, Γ is torsion-free and Σ is compact. Then MΓ

is diffeomorphic to the tangent bundle of Σ and is Stein.
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Example 8.6. Real quasi-Fuchsian subgroups. Let Γt, t ∈ [0, 1], be a con-
tinuous family of discrete convex-cocompact subgroups of PU(n, 1) such that Γ0 is
real-Fuchsian but the rest of subgroups Γt, t > 0 are not.3 The subgroups Γt are
real-quasi-Fuchsian subgroups. Their limit sets are topological circles of Hausdorff
dimension > 1.

Assume that n = 2, Γ is torsion-free and Σ is compact. Then MΓ is diffeomorphic
to the tangent bundle of Σ and is Stein.

Example 8.7. Complex-Fuchsian subgroups. Let H1
C ⊂ Hn

C be a complex hy-
perbolic line in Hn

C. Let Γ < PU(n, 1) be a geometrically finite subgroup whose limit
set is ∂∞H1

C. Then Γ preserves H1
C and acts on it with quotient of finite area. The

quotient surface-orbifold Σ is the convex core of MΓ. The limit set of Γ has Haus-
dorff dimension 2. Let W ⊂ V = Cn+1 be the 2-dimensional complex linear subspace
such that the projection of W ∩ V− to Bn equals H1

C. The W⊥ ⊂ V (the complex
orthogonal complement with respect to the form q on V ) has the property that q re-
stricted to W⊥ is positive-definite. The projection [W⊥] of W⊥ to Pn is Γ-invariant.
The pair ([W ], [W⊥]) defines a linear holomorphic fibration of Pn − [W⊥] over [W ]:
The fiber through x ∈ Pn − [W⊥] is the unique projective hyperplane passing through
x and intersecting transversally both [W ] and [W⊥]. Restricting to Bn we obtain a
Γ-invariant holomorphic fibration Bn → H1

C. Projecting to MΓ we obtain a holomor-
phic orbi-fibration MΓ → Σ, whose fibers are biholomorphic to quotients of Bn−1 by
finite subgroups of Aut(Bn−1). Assume now that n = 2, Γ is torsion-free and Σ is
compact. Then MΓ is diffeomorphic to the square root of the tangent bundle of Σ
(the spin-bundle) and is not Stein (it contains the compact complex curve Σ).

Convex-cocompact complex Fuchsian groups are locally rigid in the sense that
any small deformation of such a group is again complex Fuchsian, [89]. The complex
Fuchsian examples generalize to the case of geometrically finite subgroups of PU(n, 1)
whose limit sets are ideal boundaries of k-dimensional complex hyperbolic subspaces
Hk

C ⊂ Hn
C. The rigidity theorem holds in this case as well, see [39, 22, 16].

Example 8.8. Hybrid groups. One can combine, say, torsion-free, real and com-
plex Fuchsian groups in a variety of ways. For instance, one can form free products
of such groups. The nature of the quotient manifolds will depend on the precise way
in which the free factors are interacting with each other. For instance, in the case
n = 2 the boundary of MΓ can be either a connected sum, or the toral sum of certain
circle bundles over surfaces. One can also break real and complex Fuchsian groups
into smaller pieces and consider amalgams over Z of these pieces. As the result, one

3Such deformation exist as long as Γt is, say, torsion-free. More generally, such deformations
exist if Γ has trivial center and is not isomorphic to a von Dyck group. See e.g. [94].
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can get for instance, circle bundles over surfaces other than the unit tangent bundle
and its square root, see [38] and [1] for more detail.

Example 8.9. AGG groups: Anan’in–Grossi–Gusevskii, [1]. These interest-
ing examples of convex-cocompact subgroups of PU(2, 1) are isomorphic images of
von Dyck groups D(2, n, n), for n ∈ {10} ∪ [13, 1001]. None of these subgroups is
complex Fuchsian or real quasi-Fuchsian. According to Proposition 13.3, these sub-
groups are locally rigid in PU(2, 1): Every small deformation is conjugate in PU(2, 1)
to the original subgroup. The limit set is a topological circle but is neither a complex
nor a real circle. Fix a (unique up to conjugation) discrete, faithful and isometric
action of D(2, n, n) on H1

C. For each embedding ρ : D(2, n, n) → Γ < PU(2, 1)
constructed in section 3.3 of [1], the complex hyperbolic orbifold MΓ is diffeomor-
phic to the total space of an orbifold bundle over the complex 1-dimensional orbifold
B = H1

C/D(2, n, n) with fibers given by projections to MΓ of some complex geodesics
in H2

C. It follows from the local rigidity of each ρ, combined with [86, Lemma 4.5],
that there exists an equivariant holomorphic map

f̃ : H1
C → H2

C.

(I owe this observation to Ludmil Katzarkov.)4 Since the orbi-bundle M = MΓ → B
has holomorphic fibers, it follows that f̃ descends to a holomorphic map f : B →M
which has only positive, zero-dimensional intersections with the fibers. Composing
with the projection M → B, we obtain a self-map h : B → B which is a branched
covering. Since B is a hyperbolic orbifold, it follows that h = id. In other words,
M → B admits a holomorphic section. In particular, M (and any of its finite
manifold-covering spaces, given by Selberg’s Lemma) is non-Stein.

Example 8.10. Polygon-groups, J. Granier, [41]. The polygon-group Γ6,3 (see
Example 13.4) embeds as a convex-cocompact subgroup in PU(2, 1) via the reflection
representation ρ6,3. Thus, the limit set of Γ6,3 < PU(2, 1) is homeomorphic to the
Menger curve.

Conjecturally, the same holds for all polygon-groups Γn,3, n ≥ 6, cf. [11, 54, 30]
for a discussion of isometric actions on real hyperbolic spaces.

Example 8.11. Complex-hyperbolic manifolds which are singular fibra-
tions with compact fibers.

Definition 8.1. A singular Kodaira fibration is a surjective holomorphic map with
connected fibers f : M → B between connected complex manifolds/orbifolds, where

4I refer the reader to the book [20] for a gentle introduction to Simpson’s results, discussion of
variations of Hodge structures and period domains.
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0 < dimB < dimM . (Usually, it is required that no two generic fibers are bi-
holomorphic to each other, but, in order to simplify the discussion, I will omit this
condition.)

Singular Kodaira fibrations need not be locally trivial in holomorphic or even
topological sense; a Kodaira fibration is a holomorphic map f : M → B which is a
smooth fiber bundle.

In the context of complex hyperbolic manifolds, the first example of a singular
Kodaira fibration appeared in Ron Livne’s PhD thesis, [67]. Many more examples are
now known. Below we discuss one example which (to my knowledge) first appeared
in the work of Hirzebruch, [50].

1”

A

83

‘L

/

5—

Figure 2. Orbi-Kodaira fibration

Consider the standard quadrangle in P2
C, which is a configuration A of six lines

A1, A2, A3, B1, B2, B3 with four triple intersection points a1, a2, a3, a4 and three dou-
ble intersection points b1, b2, b3, see Figure 2. Let Y denote the complex surface
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obtained via blow-up of the four triple intersection points of A; let β : Y → P2
C de-

note the blow-down map. Then Y contains a configuration Ã of eight distinguished
smooth rational curves C1, ..., C10: The four exceptional divisors E1, ..., E4 of the
blow-up and six lifts Ãi, B̃i, i = 1, 2, 3, of the original projective lines in the arrange-
ment A. The configuration Ã is a divisor D with simple normal crossings: Any two
curves intersect in at most one point and at every intersection point only two curves
intersect. Our next goal is to define a complex orbifold O with the underlying space
Y and the singular/orbifold locus ΣO equal to the union of curves in Ã (the preim-
age under β of the union of lines in A). The local complex orbifold-charts of O are
defined as follows.

1. At every point z ∈ O − ΣO the local chart is given by the restriction of β to a
suitable neighborhood of z.

2. At every point z ∈ ΣO which is not a (double) intersection point of the divisor D
but z ∈ Ci, i = 1, ..., 10, the local chart is the holomorphic 5-fold branched covering
over a suitable neighborhood of z, ramified over Ci.

3. Suppose that z is an intersection point of D, z ∈ Ci ∩ Cj, i 6= j. Choose
local holomorphic coordinates at z where Ci, Cj correspond to the coordinate lines
in C2 and z corresponds to the origin; C2 = C × C. Each factor C in this product
decomposition is biholomorphic to the quotient C/Z5, with Z5 acting linearly on C.
Thus, a small neighborhood U of z in Y is biholomorphic to the quotient of the
bi-disk, ∆2/Z2

5. This yields the local orbifold-chart at z, ∆2 → ∆2/Z2
5
∼= U .

The result is a complex orbifold O with the underlying space Y . Hirzebruch then
proves that the orbifold O is biholomorphic to the orbifold-quotient MΓ = B2/Γ of
the complex 2-ball, by appealing to Yau’s Uniformization Theorem, [95]: He verifies
that the orbifold O admits a finite holomorphic orbifold-covering M → O, where M
is a complex surface of general type satisfying the equality of characteristic classes
3c2 = c2

1; equivalently, 3σ(M) = χ(M), where σ is the signature and χ is the Euler
characteristic. Yau’s theorem implies that M admits a Kähler metric of constant
bisectional curvature −1, i.e. is a ball-quotient. Mostow Rigidity Theorem then
implies that O is a complex hyperbolic orbifold as well. A bit more streamlined
version of this argument was later developed by Barthel–Hirzebruch–Hofer, [6], and
Holzapfel, [51], who defined orbifold-characteristic classes directly computable from
lines arrangement A in P2

C (as well as P1
C×P1

C) and the orbifold-ramification numbers
assigned to rational curves in the corresponding post-blow-up divisor.

We next describe a singular orbi-Kodaira fibration on O. Pick one of the triple
intersection points, say, a1, of the arrangement A and let A1 be a line in A not
passing through a1. Consider the pencil of projective lines passing through a1. This
pencil defines a (nonsingular) holomorphic fibration of P2

C − {a1} with the base A1;
the fibration map sends z ∈ P2

C − {a1} to the point of intersection of the line za1



24 MICHAEL KAPOVICH

with the line A1. This fibration becomes a holomorphic map f : Y → Ã1 when we
lift it to Y . Some fibers of f are, however, singular: These are the three singular
fibers corresponding to the lifts of the three lines A2, A3, B1 passing through a1 and
other points of triple intersection of A: a2, a3, a4. The corresponding fibers are re-
ducible rational curves (with the extra components corresponding to the exceptional
divisors E2, E3, E4). The line A1 has an orbifold structure induced from O: The
corresponding orbifold B has three singular points a2, a3, b1, with the local isotropy
groups Z5 for each of them. The map f defined above respects the orbifold structure
of O and B and, hence, we obtain a singular Kodaira orbi-fibration f : O → B. This
fibration is nonsingular away from the preimages of the points a2, b1, a3, with the
generic fiber(s) F diffeomorphic to the orbifold with the underlying space P1

C and
four singular points of the order 5.

The restriction of f toO′ = f−1({a2, b1, a3}) is a nonsingular Kodaira fibration, i.e.
a smooth (orbifold) fiber bundle; accordingly, π1(F) embeds as a normal subgroup in
π1(O′). Since the inclusion O′ → O induces an epimorphism of fundamental groups
π1(O′) → π1(O) = Γ, the image N of π1(F) in π1(O) = Γ is a normal finitely-
generated subgroup N / Γ. By passing to the universal covering of B, we obtain
a holomorphic map h : H2

C/N → H1
C. The fibers of this map are compact and,

generically, diffeomorphic to F . The map h has infinitely many critical values in H1
C

which break into finitely many π1(B)-orbits and accumulate to the entire circle ∂∞H1
C.

Lifting h further to an N -invariant holomorphic function H2
C → H1

C and extending
this function to a measurable N -invariant nonconstant function S3 = ∂∞H2

C → S1,
we conclude that the action of N on S3 is non-ergodic.

The group Γ in the above example is a special case of:

Example 8.12. Arithmetic lattices of simplest type. Let K be a totally real
number field, i.e. a finite extension of Q such that the image of every embedding
K → C lies in R. Take an imaginary quadratic extension L/K, i.e. an extension
which does not embed in R. Since K is totally-real and L is its imaginary extension,
all embedding L→ C come in complex conjugate pairs:

σ1, σ̄1, ..., σk, σ̄k.

Next, take a hermitian quadratic form in n+ 1 variables

ϕ(z, z̄) =
n+1∑
p,q=1

apqzpz̄q

with coefficients in L. We require the forms ϕσ1 , ϕσ2 to have the signature (n, 1) and
the forms ϕσj , ϕσ̄j to be definite for the rest of the embeddings. We will identify L with
σ1(L), so σ1 = id. Let SU(ϕ) denote the group of special unitary automorphisms of
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the form ϕ on Ln+1. The embedding σ1 defines a homomorphism SU(ϕ)→ SU(n, 1)
with relatively compact kernel.

A subgroup Γ of SU(n, 1) is said to be an arithmetic lattice of the simplest type (or
of type I) if it is commensurable5 to SU(ϕ,OL) = SU(ϕ)∩SL(n+ 1,OL), where OL
is the ring of integers of L. For every such Γ the quotient Hn

C/Γ has finite volume.
I refer to [70] for more detail on arithmetic subgroups of SU(n, 1).

It is known that every arithmetic lattice Γ of the simplest type contains a finite
index congruence-subgroup Γ′ with infinite abelianization, [60] (see also [93]). Equiv-
alently, the quotient-space Bn/Γ′ has positive 1st Betti number. In contrast, Ro-
gawski, [80], proved that for type II arithmetic lattices in SU(2, 1), every congruence-
subgroup has finite abelianization. It is unknown if such a lattice contain finite index
subgroups with infinite abelianization. Furthermore, certain classes of non-arithmetic
lattices in SU(2, 1) (the ones violating the integrality condition for arithmetic groups)
are proven to have positive virtual first Betti number by the work of S.-K. Yeung,
[96].

We now discuss the existence of (singular) Kodaira fibrations of compact complex
hyperbolic manifolds M = Hn

C/Γ.
1. Suppose that b1(M) > 0. Since M is Kähler, b1(M) is even, hence, there

exists an epimorphism φ : Γ→ Z2. If the kernel of φ is not finitely-generated, then,
according to a theorem of Delzant, [29], the manifold M admits a singular Kodaira
fibration over a 1-dimensional complex hyperbolic orbifold.

2. If M and B are both complex hyperbolic, then there are no (nonsingular)
Kodaira fibrations M → B: It was first proven in the case when M is a surface by
Liu, [66], and then generalized to arbitrary dimensions by Koziarz and Mok, [62].
They also prove nonexistence of Kodaira fibrations M → B when dim(B) ≥ 2 and
M merely has finite volume. Furthermore, if M is 2-dimensional, for every singular
Kodaira fibration M → B, the kernel of the homomorphism π1(M) = Γ→ π1(B) is
finitely generated but is not finitely-presentable, [52, 49].

Question 8.13. Is there a discrete subgroup Γ < PU(2, 1) isomorphic to the fun-
damental group of a compact real hyperbolic surface, such that M = MΓ admits
a Kodaira fibration (with compact fibers) M → H1

C? Is there a singular Kodaira
fibration (with compact fibers) H2

C/Γ → H1
C which has only finitely many singular

fibers?

5I.e. the intersection of the two groups has finite index in both
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9. Complex Kleinian groups and function theory on complex
hyperbolic manifolds

In this section we discuss some interesting interactions between the general theory
of holomorphic functions on complex manifolds (which I review in Section 16) and
geometry/topology of complex Kleinian groups.

Proposition 9.1. If Γ < PU(n, 1) is a discrete, torsion-free subgroup such that
M = MΓ admits a surjective holomorphic map with compact fibers f : M → B,
where B is a complex manifold satisfying dim(B) < n. Then ΩΓ = ∅. In particular,
M cannot have convex ends.

Proof. Suppose, to the contrary, that ΩΓ 6= ∅. Then Coreη(M) is a proper submani-
fold (with boundary) in M . Since Hn

C is strictly negatively curved, the nearest-point
projection Π : Hn

C → hullη(ΛΓ) is strictly contracting away from hullη ΛΓ. By the
Γ-equivariance, Π descends to a strictly contracting projection π : M → Coreη(M).
Therefore, if Y is a compact complex k-dimensional subvariety in M of positive di-
mension not contained Coreη(M) then π(Y ) has k-volume strictly smaller than that
of Y . This is a contradiction since π : Y → π(Y ) is homotopic to the identity inclu-
sion map idY : Y → M and compact complex subvarieties in Kähler manifolds are
volume-minimizers in their homology classes. Taking a generic fiber Y of f : M → B
through a point x ∈M − hullη(ΛΓ) concludes the proof. �

We next discuss geometry and topology of quotient-orbifolds MΓ, primarily for
convex-cocompact subgroups Γ < PU(n, 1).

A classical example of a complex submanifold with strictly Levi-convex boundary
is a closed unit ball Bn in Cn. Suppose that Γ < Aut(Bn) is a discrete torsion-
free subgroup of the group of holomorphic automorphisms of Bn with (nonempty)
domain of discontinuity Ω ⊂ ∂Bn. The quotient

MΓ = (Bn ∪ Ω)/Γ

is a smooth submanifold with strictly Levi-convex boundary boundary in the complex
manifold Ω̌Γ/Γ (see (1)). Thus, we conclude:

Lemma 9.2. If MΓ = (Bn ∪ Ω)/Γ has compact boundary, then M is strongly pseu-
doconvex.

Consequently:

Theorem 9.1. Let Γ < PU(n, 1), n ≥ 2, be a convex-cocompact discrete subgroup.
Then ∂MΓ is connected.

Proof. Since Γ is convex-cocompact, it is also finitely generated. Hence, by Selberg’s
Lemma, the orbifold MΓ is very good. Therefore, it suffices to consider the case when
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Γ is torsion-free, i.e. MΓ is a complex n-manifold. SinceMΓ is strongly pseudoconvex,
connectedness of its boundary is an immediate consequence of Theorem 16.2. �

Theorem 9.2. Let Γ < PU(n, 1), n ≥ 2, be a convex-cocompact discrete subgroup
which is not a lattice, i.e. ΩΓ 6= ∅. Then dim(ΛΓ) ≤ 2n− 3, equivalently, cdQ(Γ) ≤
2n− 2.

Proof. As before, it suffices to consider the case of torsion-free groups Γ. According to
Corollary 16.3, MΓ is homotopy-equivalent to a CW complex of dimension ≤ 2n− 2.
It follows that cdQ(Γ) ≤ 2n − 2 and, by the Bestvina-Mess theorem, dim(∂∞Γ) ≤
2n− 3. Since ∂∞Γ is homeomorphic to ΛΓ, dim(ΛΓ) ≤ 2n− 3 as well. �

In particular, ΛΓ does not separate S2n−1 (even locally) and, hence, ΩΓ is con-
nected, which gives another proof of the fact that ∂MΓ is connected.

Specializing to the case n = 2, we obtain: If Γ < PU(2, 1) (for simplicity, torsion-
free) is convex-cocompact and is not a lattice, then ΛΓ is at most 1-dimensional. In
particular, according to [57], Γ admits an iterated amalgam decomposition over triv-
ial and cyclic subgroups, so that the terminal groups are either cyclic, or isomorphic
to Fuchsian groups (and the limit set is a topological circle) or groups whose limit
sets are Sierpinski carpets or Menger curves.

Theorem 9.3. Suppose that Γ is torsion-free convex cocompact, n > 1 and MΓ

contains no compact complex subvarieties of positive dimension. Then MΓ is Stein.

Proof. This is an immediate consequence of Theorem 16.3. �

One way to prove that MΓ contains no compact complex subvarieties of positive
dimension is to argue that Γ = π1(M) is free: This implies that Hi(MΓ) = 0, i ≥ 2,
but, since MΓ is Kähler, every compact complex k-dimensional subvariety of MΓ

would define a nonzero 2k-dimensional homology class. For instance, if Γ is convex-
cocompact, δΓ < 1 then dim ΛΓ ≤ dimH(ΛΓ) < 1, which implies that dim ΛΓ = 0
and, hence, Γ is a virtually free group. However, even when H2(M) 6= 0, one can still,
sometimes, prove that MΓ contains no compact complex curves. For instance, let
L→MΓ be the canonical line bundle. If C ⊂MΓ is an (even singular) complex curve,
the pull-back of L to C has nonzero 1st Chern class. Assuming that H2(MΓ) ∼= Z
(e.g. if Γ is isomorphic to the fundamental group of a compact Riemann surface),
if the 1st Chern class of L evaluated on the generator of H2(MΓ) is zero, then MΓ

contains no complex curves. This argument applies in the case of real-Fuchsian
groups and their quasi-Fuchsian deformations.

Observe that if Γ < PU(2, 1) is a complex Fuchsian group, then dimH(ΛΓ) = 2.

Theorem 9.4 (S. Dey, M. Kapovich, [33]). If Γ < PU(n, 1) is discrete, torsion-free
and MΓ contains a compact complex subvariety of positive dimension, then δΓ ≥ 2.
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Corollary 9.3. Suppose that Γ < PU(n, 1) is torsion-free, convex-cocompact and
δΓ < 2, then MΓ is Stein.

Burns’ Theorem. We now drop the convex-cocompactness assumption and con-
sider general discrete, torsion-free subgroups Γ < PU(n, 1). Theorem 9.1 has the fol-
lowing striking generalization. It was first stated by Dan Burns, who, as it appears,
never published a proof; a published proof is due to Napier and Ramachandran, [73,
Theorem 4.2]:

Theorem 9.5. Suppose that n ≥ 3, Γ < PU(n, 1) is discrete, torsion-free and ∂MΓ

has at least one compact component S. Then:
1. ∂MΓ = S.
2. Γ is geometrically finite.

A good example illustrating this theorem is that of a Schottky-type group (Ex-
ample 8.4), where the limit set is totally disconnected, the quotient manifold ΩΓ/Γ
is compact and MΓ has k cusps. In particular, MΓ is noncompact in this example.

It is unknown if Burns’ theorem holds for n = 2, but Mohan Ramachandran proved
the following:

Theorem 9.6. Suppose that Γ < PU(2, 1) is discrete, torsion-free, the injectivity ra-
dius of MΓ is bounded away from zero, and ∂MΓ has at least one compact component.
Then Γ is convex-cocompact.

The proof of this theorem is given in Appendix G.

10. Conjectures and questions

In this section I collect some conjectures and questions in addition to those scat-
tered throughout these notes.

The first conjecture is a generalization of Burns’ theorem, Theorem 9.5:

Conjecture 10.1. Suppose that Γ < PU(n, 1), n ≥ 2, is such that for M = MΓ

the thick part M[ε,∞) has a convex end. Then Γ is geometrically finite and ΩΓ is
connected.

The next two conjectures are motivated by Theorem 9.4:

Conjecture 10.2. If Γ < PU(n, 1) is discrete, torsion-free, δΓ = 2 and MΓ contains
a compact complex subvariety of positive dimension, then Γ is a complex Fuchsian
group.

Conjecture 10.3. If Γ < PU(n, 1) is discrete, torsion-free and δΓ < 2k, then MΓ

cannot contain a compact complex subvariety of dimension k.
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Conjecture 10.4 (Chengbo Yue’s Gap Conjecture, [97]). Suppose that Γ < G =
Aut(Bn) is a convex-cocompact torsion-free subgroup. Then either Γ is a uniform
lattice in G (and, thus, δΓ = 2n) or δΓ ≤ 2n− 1.

Note that the two other conjectures about nonelementary convex-cocompact sub-
groups Γ < PU(n, 1) made in the introduction to [97] fail already in dimension
n = 2:

(a) The inequality dimH ΛΓ > n − 1 does not imply that MΓ is non-Stein. For
instance, a real-hyperbolic quasifuchsian subgroup of PU(2, 1) serves as an example.

(b) Even if MΓ is non-Stein, a compact complex curve in MΓ need not be a finite
union of totally geodesic complex curves, as it is shown by the AGG-examples.

Problem 10.5. 1. Investigate which polygon-groups embed discretely in PU(2, 1).
2. Is there a convex-cocompact subgroup of PU(2, 1) with the limit set homeomor-

phic to the Sierpinski carpet?

While “most” compact 3-dimensional manifolds are hyperbolic, very few examples
of hyperbolic 3-manifolds which are of the form ΩΓ/Γ, Γ < PU(2, 1) are known, see
the book by Richard Schwartz [85] for further discussion.

Conjecture 10.6. The Menger curve limit set in Example 8.10 is “unknotted” in
S3, i.e. is ambient-isotopic to the standard Menger curve M ⊂ R3 ⊂ S3 = R3 ∪
{∞}. Furthermore, in this example, the quotient 3-dimensional manifold ΩΓ/Γ is
hyperbolic.6

Problem 10.7. Prove the existence of discrete geometrically infinite subgroups of
PU(2, 1) which are isomorphic to fundamental groups of compact surfaces.7

Note that such subgroups do not exist in PU(1, 1) but abound in PO(3, 1).
Furthermore, the only known examples of finitely generated geometrically infinite
subgroups of PU(2, 1) come from singular Kodaira fibrations and are not finitely-
presentable, see Example 8.11.

The conjectures and questions appearing above, deal with discrete subgroups Γ of
PU(n, 1) which are not lattices, i.e. the Hn

C/Γ has infinite volume. Below, I discuss
two problems regarding lattices.

Arithmeticity. The most famous open problem regarding lattices in PU(n, 1)
deals with the existence problem of nonarithmetic subgroups and was first raised in
Margulis’ ICM address [68]. It is known (due to the work of Margulis [69], Corlette
[24], Gromov–Schoen [45], and Gromov–Piatetski-Shapiro [44]) that:

6It suffices to show that ΩΓ/Γ contains no incompressible tori, which is closely related to the
unknottedness problem of the Menger-curve limit set.

7Cf. section 11.4 in [55].



30 MICHAEL KAPOVICH

(a) For each n, the Lie group SO(n, 1) contains non-arithmetic lattices.
(b) For every simple noncompact connected linear Lie group G which is not locally

isomorphic to SO(n, 1) and SU(n, 1), every lattice Γ < G is arithmetic.
This leaves out the series of Lie groups PU(n, 1), n ≥ 2. Currently, primarily

due to the work of Deligne and Mostow, see [31], there are known examples of
nonarithmetic lattices in PU(2, 1) and PU(3, 1). Loosely speaking there are three
approaches to constructing nonarithmetic lattices:

(a) As monodromy groups of some linear holomorphic ODEs, see [31, 26], as well
as [88] for a geometric interpretation.

(b) By constructing the corresponding complex hyperbolic orbifolds MΓ whose
underlying space is a blown-up Pn, see [6, 84, 26, 32]

(c) By constructing a Dirichlet fundamental domain of Γ in H2
C, see [71, 34].

But using these techniques becomes increasingly difficult (or even impossible) as
the dimension n increases, which means that different approaches are needed.

Conjecture 10.8. For each n, PU(n, 1) contains a nonarithmetic lattice.

By analogy with the construction of non-arithmetic lattices in [44], one can hope
for a similar “hybrid” construction of nonarithmtic lattices in PU(n, 1), leading to a
conjecture due to Bruce Hunt:

Conjecture 10.9. For every n ≥ 2, there exists a quadruple of arithmetic lattices
Γ1,Γ2 < SU(n− 1, 1) and Γ3 < SU(n− 2, 1) such that:

(1) Γ3 is isomorphic to subgroups in Γ1,Γ2; hence, we obtain an amalgam Γ0 =
Γ1 ?Γ3 Γ2.

(2) There exists an epimorphism ρ : Γ0 → Γ < SU(n, 1) injective on Γ1,Γ2, whose
image is a nonarithmetic lattice Γ < SU(n, 1).

Unlike [44], where nonarithmetic lattices in SO(n, 1) were constructed via a similar
process, with an isomorphism Γ0 → Γ < SO(n, 1), in the complex hyperbolic setting
there is no hope for an injective homomorphism ρ (a lattice in SU(n, 1) cannot be
isomorphic to an amalgam Γ0 as above).

Nonexistence of reflection lattices. The known examples of nonarithmetic lat-
tices Γ in PU(n, 1), n = 2, 3, are all commensurable to complex reflection subgroups,
i.e. discrete subgroups of PU(n, 1) generated by complex reflections. Furthermore,
up to commensuration, the underlying spaces of their quotient orbifolds MΓ = Hn

C/Γ
are rational projective varieties.

Conjecture 10.10. There exists N such that for all n ≥ N the following holds:
1. If Γ < PU(n, 1) is a lattice then Γ cannot be a reflection subgroup.
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2. If Γ < PU(n, 1) is a lattice then the underlying space of the orbifold MΓ cannot
be a rational algebraic variety. More ambitiously, it has to be a variety of general
type.

The motivation for this conjecture comes from theorems due to Vinberg, [92], and
Prokhorov, [77], establishing nonexistence of reflection lattices in PO(n, 1), when n
is sufficiently large.

11. Appendix A. Horofunction compactification

A metric space (Y, d) is called geodesic if any two points x, y in X are connected
by a geodesic segment, denotes xy. (This notation is a bit ambiguous since in many
cases such a segment is non-unique.) A geodesic triangle, denoted xyz, in a metric
space (X, d) is a set of three geodesic segments xy, yz, zx connecting cyclically the
points x, y, z, the vertices of the triangle; the segments xy, yz, zx are the edges of the
triangle. Thus, geodesic triangles are 1-dimensional objects.

Let (Y, d) be a locally compact geodesic metric space. For each y ∈ Y define
the 1-Lipschitz function dy = d(y, ·) on Y . This leads to the Kuratowski embedding
κ : Y → C(Y ) = C(Y,R), y 7→ dy. We let R ⊂ C(Y ) denote the linear subspace
of constant functions. Composing the embedding κ with the projection C(Y ) →
C(Y )/R (where R acts additively on C(Y )) we obtain the Kuratowski embedding of
Y ,

Y ↪→ C(Y )/R.

Then Y , the closure of Y in C(Y )/R, is the horofunction compactification of Y .
Functions representing points in ∂∞Y = Y −Y are the horofunctions on Y . In other
words, horofunctions on Y are limits (uniform on compacts in Y ) of sequences of
normalized distance functions dyi − dyi(o), where yi ∈ Y are divergent sequences in
Y . Each geodesic ray r(t) in Y determines a horofunction in Y called a Busemann
function br, which is the subsequential limit

lim
i→∞

dr(i) − dr(i)(o).

If Y is a Hadamard manifold, then each limit as above exists (without passing to a
subsequence). Furthermore, each horofunction is a Busemann function. This yields
a topological identification of the visual compactification of Y and its horofunction
compactification. Level sets of Busemann functions are called horospheres in X. The
point r(∞) ∈ ∂∞Y is the center of the horosphere {br = c}. Sublevel sets {br < c}
are called horoballs. The point r(∞) represented by the ray r is the center of the
corresponding horospheres/horoballs.
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12. Appendix B: Two classical Peano continua

A Peano continuum is a compact connected and locally path-connected metrizable
topological space. We will need two examples of 1-dimensional Peano continua. Both
are obtained via a procedure similar to the construction of the “ternary” Cantor set.

Sierpinski carpet. Let I = [0, 1] denote the unit interval. Start with the unit
square Q0 = I2 ⊂ R2. Divide I in three congruent subintervals and, accordingly,
divide I2 in 9 congruent subsquares. Remove the interior of the “middle subsquare”,
the one disjoint from the boundary of Q. Call the result Q1. Now, repeat this
procedure for each of the remaining 8 subsquares in Q1, to obtain a planar region
Q2, etc. The standard Sierpinski carpet in R2 is the intersection

S :=
∞⋂
i=0

Qi.

Menger curve. Consider the unit cube C = I3 ⊂ R3. Let πi, i = 1, 2, 3 denote
the orthogonal projections of R3 to the coordinate hyperplanes Pi, i = 1, 2, 3, in R3.
In all three planes we take the Sierpinski carpets Si ⊂ Pi, constructed from the unit
squares Qi = C ∩Pi, i = 1, 2, 3. Then the standard Menger curve in R3 is defined as

M :=
3⋂
i=1

π−1
i (Si).

13. Appendix C: Gromov-hyperbolic spaces and groups

A geodesic metric space (X, d) is called δ-hyperbolic if every geodesic triangle xyz
in X is δ-slim, i.e. every edge of xyz is contained in the closed δ-neighborhood of the
union of the other two edges. A geodesic metric space is called Gromov-hyperbolic if
it is δ-hyperbolic for some δ <∞.

Examples of Gromov-hyperbolic spaces are strictly negatively curved Hadamard
manifolds: If X is a Hadamard manifold of sectional curvature ≤ −1 then X is
δ0-hyperbolic with δ0 = arccosh(

√
2).

Let Γ be a group with finite generating set S. Given S, one defines the Cayley
graph CΓ,S. This graph is connected and Γ acts on it with finite quotient (the quotient
graph has a single vertex and card(S) edges). The graph CΓ,S has a graph-metric,
where every edge has unit length.

Definition 13.1. A finitely generated group Γ is called Gromov-hyperbolic or simply
hyperbolic if one (equivalently, every) Cayley graph of Γ is a Gromov-hyperbolic
metric space.
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The Gromov boundary ∂∞Γ of Γ is the horoboundary of one (any) Cayley graph
of Γ: Gromov boundaries corresponding to different Cayley graphs are equivariantly
homeomorphic.

Examples of hyperbolic groups are given by:

Example 13.1. Let X be a strictly negatively curved Hadamard manifold, Y ⊂ X
is a closed convex subset and Γ < Isom(X) acts properly discontinuously and cocom-
pactly on Y . Then Γ is hyperbolic and the ideal boundary ∂∞Y of Y is equivariantly
homeomorphic to the Gromov boundary of Γ.

In particular, every convex-cocompact discrete subgroup Γ < Isom(X) is Gromov-
hyperbolic and ∂∞Γ is equivariantly homeomorphic to the limit set of Γ.

Cohomological dimension (with respect to the Chech cohomology) of the Gro-
mov boundary of a hyperbolic group is closely related to the rational cohomological
dimension of Γ itself:

Theorem 13.1 (Bestvina–Mess, [8]). dim(∂∞Γ) = cdQ(Γ)− 1.

In particular, by Stallings–Swan–Dunwoody Theorem, Γ is virtually free (i.e. con-
tains a free subgroup of finite index) if and only if ∂∞Γ is zero-dimensional, if and
only if ∂∞Γ is totally disconnected, equivalently, it is either empty, or consists of two
points or is homeomorphic to the Cantor set.

One classifies 1-dimensional boundaries of hyperbolic groups as follows:

Theorem 13.2 (Kapovich–Kleiner, [57]). Suppose that Γ is a hyperbolic group with
connected 1-dimensional Gromov boundary. Then either ∂∞Γ is homeomorphic to
S1, or Γ splits as a finite graph of groups with virtually cyclic edge groups8, or ∂∞Γ
is homeomorphic to the Sierpinski carpet or the Menger curve.

Example 13.2. Hyperbolic von Dyck groups D(p, q, r),

D(p, q, r) = 〈a, b, c|ap = bq = cr = 1, abc = 1〉, p−1 + q−1 + r−1 < 1.

These are hyperbolic groups with Gromov boundary homeomorphic to S1. Moreover,
each D(p, q, r) admits a unique (up to conjugation in Isom(H2)) isometric conformal
action on the hyperbolic plane.

Representations of von Dyck groups to PU(2, 1). Given an element g ∈ G =
PU(2, 1) we let ζ(g) denote the codimension in G of the centralizer of g in G. In
other words, ζ(g) is the local dimension near g of the subvariety of elements of G
conjugate to g. Thus, ζ(g) ≥ 2 for every g ∈ G. Furthermore, if g is an involution

8and, hence, its Gromov boundary can be inductively described using boundaries of vertex groups
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then ζ(g) = 4. The paper [94] by Andre Weil describes the local geometry of the
character variety

Hom(D(p, q, r), G)//G

as follows:
Suppose that ρ : D(p, q, r)→ G is a generic representation, i.e. one whose image

has trivial centralizer in G. For instance, any representation whose image is discrete,
nonelementary, not stabilizing a complex geodesic, will satisfy this condition. Then,
near [ρ], the real-algebraic variety Hom(D(p, q, r), G)//G is smooth of dimension

ζ(ρ(a)) + ζ(ρ(b)) + ζ(ρ(c))− 2 dim(G) = ζ(ρ(a)) + ζ(ρ(b)) + ζ(ρ(c))− 16.

Assuming that p = 2, ζ(ρ(a)) = 4, which implies that

ζ(ρ(a)) + ζ(ρ(b)) + ζ(ρ(c))− 16 ≤ 4 + 12− 16 = 0.

Combined with an easy analysis of non-generic representations, one obtains:

Proposition 13.3. If p = 2 then Hom(D(p, q, r), G)//G is zero-dimensional.

Example 13.4 (Polygon-groups). Fix two natural numbers p ≥ 5 and q ≥ 3. Define
the polygon-group Γp,q via presentation

〈a1, ..., ap|aqi = 1, [ai, ai+1] = 1, i = 1, ..., p〉,

where i is taken mod p. Each Γp,q is hyperbolic with ∂∞Γp,q homeomorphic to the
Menger curve.

Every Γp,q admits a canonical reflection representation ρp,q to PU(2, 1) constructed
as follows:

Pick a real hyperbolic plane H2
R ⊂ H2

C and a regular right-angled p-gon P = z1...zp
in H2

R. Let Ci denote the complex geodesic through the edge zizi+1 of P (i is taken
mod p). For each i let gi be the order q complex reflection with the fixing Ci, with the
rotation in the hyperplanes normal to Ci through the angle 2π/q. Then [gi, gi+1] = 1
and, hence, we obtain a representation

ρp,q : Γp,q → PU(2, 1).

14. Appendix D: Orbifolds

The notion of orbifold is a generalization of the notion of a manifold which appears
naturally in the context of properly discontinuous non-free actions of groups on
manifolds. Orbifolds were first invented by Satake [83] in 1950-s under the name of
V-manifolds, they were reinvented under the name of orbifolds by Thurston in 1970’s
(see [87]) as a technical tool for proving his Hyperbolization Theorem. We refer the
reader to [9] for a detailed treatment of orbifolds.
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Before giving a formal definition we start with basic examples of orbifolds. Suppose
that M is a smooth connected manifold and G is a discrete group acting smoothly,
faithfully9 and properly discontinuously on M . Then the quotient O = M/G is
an orbifold, such orbifolds are called good. The quotient M/G, considered as a
topological space XO, is the underlying space of this orbifold. If S is a set of points
in M where the action of G is not free, then its projection Σ = S/G is the singular
locus of the orbifold O.

To be more concrete, consider 2-dimensional orbifolds. Suppose that M = H2
R and

G is a discrete subgroup of PSL(2,R). Then the quotient O = H2/G is a Riemann
surface XO with a discrete collection of cone points zj which form the singular locus
Σ of the orbifold O. The projection p : H2 → O is the universal cover of the orbifold
O. The Riemann surface XO has a natural hyperbolic metric which is singular in
the discrete set Σ. Metrically, the points zj are characterized by the property that
the total angles around these points are 2π/nj. The numbers nj are the orders of
cyclic subgroups Gzj of G which stabilize the points in p−1(zj), they are called the
local isotropy groups. The projection p is a ramified covering from the point of view
of Riemann surfaces. From the point of view of orbifolds this is an (orbi) covering.
Thus, the singular locus of the orbifold O consists of the points zj in Σ equipped
with the extra data: The PSL(2,R)-conjugacy classes of the local isotropy groups
Gzj (of course, each local isotropy group Gzj is determined by the number nj).

We now discuss the general definition. A (smooth) n-dimensional orbifold O is a
pair: A Hausdorff paracompact topological space X (which is called the underlying
space of O and is denoted XO) and an orbifold-atlas A on X. The atlas A consists
of:

• A collection of open sets Ui ⊂ X,which is closed under taking finite intersec-
tions, such that X =

⋃
i Ui.

• A collection of open sets Ũi ⊂ Rn.
• A collection of finite groups of diffeomorphisms Γj acting on Ũi so that each

nontrivial element of Γj acts nontrivially on each component of Ũj.
• A collection of homeomorphisms

φi : Ui → Ũi/Γi.

We require the atlas A to behave well under inclusions. Namely, if Ui ⊂ Uj, then
there is a smooth embedding

φ̃ij : Ũi → Ũj

and a monomorphism fij : Γi → Γj such that φ̃ij is fij-equivariant.

9i.e. each nontrivial element of G acts nontrivially
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The open sets Uj are the coordinate neighborhoods of the points x ∈ Uj and Ũj
are their covering coordinate neighborhoods.

Similarly to orbifolds, one defines the class of orbifolds with boundary; just instead
of open sets Ũj ⊂ Rn we use open subsets in

Rn
+ ∪ Rn−1 = {(x1, ..., xn) : xn ≥ 0}.

The boundary of such orbifold consists of points x ∈ XO which correspond to Rn−1

under the identification Ui ∼= Ũi/Γi. As in the case of manifolds, the boundary of
each orbifold is an orbifold without boundary. By abusing notation we will call an
orbifold with boundary simply an orbifold. A compact orbifold without boundary is
called closed.

To each point x ∈ X we associate a germ of action of a finite group of diffeomor-
phisms Γx at a fixed point x̃. If φj(x) is covered by a point x̃j ∈ Ũj, then we have

the isotropy group Γj,x of x̃j in Γj. Note that if Ui ⊂ Uj, then the map φ̃ij : Ũi → Ũj
induces an isomorphism from the germ of the action of Γj,x at x̃j to the germ of the
action of Γi,x at x̃i. Thus we let the germ (Γx, x̃) be the equivariant diffeomorphism
class of the germ (Γj,x, x̃j). The group Γx is called the local isotropy group of O at x.
The set of points x with nontrivial local isotropy group is called the singular locus of
O and is denoted by ΣO. Note that the singular locus is nowhere dense in XO. An
orbifold with empty singular locus is called nonsingular or a manifold.

The main source of examples of orbifolds is:

Example 14.1. Let M a smooth connected n-manifold and Γ is a discrete group act-
ing smoothly and faithfully on M . Then X = M/Γ has a natural orbifold structure.
The atlas A on X is given as follows: Each y ∈M admits a coordinate neighborhood
Ũ (identified with an open subset of Rn) such that for every g ∈ Γ either gŨ ∩ Ũ = ∅
or g ∈ Γy (the stabilizer of y in Γ) and g(Ũ) = Ũ . Then let φ : Ũ → U = φ(Ũ)
be the quotient map. One verifies that A indeed satisfies axioms of an orbifold-atlas.
The groups Gj in the definition of an atlas are just the stabilizers Γy as above.

Since Γx acts smoothly near the fixed point x̃, the germ (Γx, x̃) is linearizable:
We equip a neighborhood of x̃ with a Γx-invariant Riemannian metric; then the
exponential map (with the origin at x̃) conjugates the orthogonal action of Γx on the
tangent space Tx̃Rn to the germ of the action of Γx at x̃.

Definition 14.1. A Riemannian metric ρ on orbifold O is the usual Riemannian
metric on XO − ΣO, such that after we lift ρ to the local covering coordinate neigh-
borhoods Ũi, it extends to a Γi-invariant Riemannian metric on the whole Ũi.

The same definition applies to complex structures.
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Exercise 14.2. Each orbifold O admits a Riemannian metric. Hint: use the parti-
tion of unity argument similar to the manifold case.

A homeomorphism (resp. diffeomorphism) between orbifolds O,O′ is a homeo-
morphism h : XO → XO′ such that for all points x ∈ O, y = h(x) ∈ O′, there are
coordinate neighborhoods Ux ∼= Ũx/Γx, Vy ∼= Ṽy/Γy such that h lifts to an equivariant
homeomorphism (resp. diffeomorphism)

h̃xy : Ũx → Ṽy.

Note that to describe a smooth orbifold O up to homeomorphism it suffices to
describe the topology of the pair (XO,ΣO) and the homeomorphic equivalence classes
of the germs (Γx, x̃) for the points x ∈ ΣO.

Exercise 14.3. Let O be a connected compact 1-dimensional orbifold without bound-
ary which is not a manifold. Then O is homeomorphic to the closed interval [a, b]

where (Γa, ã), (Γb, b̃) are the germs (Z2, 0) of the reflection group Z2 acting isometri-
cally on R near its fixed point 0 ∈ R.

A smooth map between orbifolds O and O′ is a continuous map

g : O → O′

which can be (locally) lifted to smooth equivariant maps between pairs of coordinate
covering neighborhoods

g̃ij : Ũj → Ṽi

Similarly we define immersions and submersions between orbifolds as smooth maps
between orbifolds which locally lift to immersions and submersions respectively.

Suppose that O′,O are orbifolds and p : XO′ → XO is a continuous map. The
map p is called a covering map between the orbifolds O′,O if the following property
is satisfied:

For each point x ∈ XO there exists a chart U = Ũ/Gx such that for every compo-
nent Vi of p−1(U), the restriction map p : Vi → U is a quotient map of an equivariant
diffeomorphism hi : Ṽi → Ũ (if yi = p−1(x) ∩ Vi then hi conjugates the action of Gyi

on Ṽi to the action of a subgroup of Γx on Ũ).
From now on we will assume that the orbifolds under consideration are connected.

The universal covering p : Õ → O of an orbifold O is the initial object in the
category of orbifold coverings, i.e. it is a covering such that for any other covering
p′ : O′ → O there exists a covering p̃ : Õ → O′ satisfying p′ ◦ p̃ = p. If p : Õ → O is
the universal covering then the orbifold Õ is called the universal covering orbifold of
O.
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The group Deck(p) of deck transformations of an orbifold covering p : O′ → O
is the group of self-diffeomorphisms h : O′ → O′ such that p ◦ h = p. A covering
p : O′ → O is called regular if O′/Deck(p) = O.

The fundamental group π1(O) of the orbifoldO is the group of deck transformations
of its universal covering. Then O = Õ/π1(O). An alternative definition of the
fundamental group based on homotopy-classes of loops in O see in [78, Chapter 13].

Theorem 14.1. Each orbifold has a universal covering.

Definition 14.2. An orbifold O is called good if its universal covering is a manifold.
Orbifolds which are not good are called bad. An orbifold is called very good if is
admits a finite-sheeted manifold-covering space.

Example 14.4. Let O = MΓ be an n-dimensional complex hyperbolic orbifold. Then
Γ = π1(O) and O is a good orbifold: Its universal covering space is Hn

C. If Γ is finitely
generated then, according to Selberg’s Lemma, the orbifold O is very good.

Orbifold bundles. Instead of defining orbifold bundles in full generality, I will
define these only in the case of compact fibers andf connected base, since this will
suffice for our purposes:

Definition 14.3. A smooth orbi-bundle with compact fibers and connected base is a
proper submersion f : O → B between orbifolds. Fibers of f are preimages of points
under f .

Note that two different fibers need not be isomorphic to each other, but one can
prove that they are commensurable in the sense that they have a common finite-
sheeted orbi-covering.

15. Appendix E: Ends of spaces

Let Z be a locally path-connected, locally compact, Hausdorff topological space.
The set of ends of Z can be defined as follows (see e.g. [46] for details).

Consider an exhaustion (Ki) of Z by an increasing sequence of compact subsets:

Ki ⊂ Kj, whenever i ≤ j,

and ⋃
i∈N

Ki = Z.

Set Kc
i := Z \Ki. The ends of Z are equivalence classes of decreasing sequences of

connected components (Ci) of Ki
c:

C1 ⊃ C2 ⊃ C3 ⊃ · · ·
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Two sequences (Ci), (C
′
j) of components of (Ki

c), (K ′j
c) are said to be equivalent if

each Ci contains some C ′j and vice-versa. Then the equivalence class of a sequence
(Ci) is an end e of Z. Each Ci and its closure is called a neighborhood of e in Z. The
set of ends of Z is denoted Ends(Z). An end e is called isolated if it admits a closed
1-ended neighborhood C; such a neighborhood is called isolating.

An alternative view-point on the neighborhoods of ends is that there is a natural
topology on the union Ẑ = Z ∪ Ends(Z) which is a compactification of Z and the
neighborhoods C of ends e above are intersections of Z with neighborhoods of e in
Ẑ. Then an end e is isolated if and only if it is an isolated point of Ẑ. A closed
neighborhood C of e in Z is isolating if and only if C ∪ {e} is closed in Ẑ.

From this definition it is not immediate that the notion of ends is independent on
the choice of an exhausting sequence (Ki) of compact subsets. The true, but less
intuitive, definition of Ends(Z) is by considering the poset (ordered by the inclusion)
of all compact subsets K b Z. This poset defines the inverse system of sets

{π0(Kc, x) : K b Z},
where the inclusion K ⊂ K ′ induces the map

π0(Z −K ′, x′)→ π0(Z −K, x′),
with x′ ∈ Z − K ′ ⊂ Z − K. Taking the inverse limit of this system of sets yields
Ends(Z) which is, manifestly, a topological invariant. Furthermore, it is an invariant
of the proper homotopy type of Z.

In this lectures, I adopt the analyst’s viewpoint on ends of manifolds and conflate
isolated ends and their isolating neighborhoods.

16. Appendix F: Generalities on function theory on complex
manifolds

For a complex manifold M let OM denote the ring of holomorphic functions on M .
By a complex manifold with boundary M I mean a smooth manifold with (possibly
empty) boundary ∂M , such that the interior, int(M), of the manifold M , is equipped
with a complex structure, and there exists a smooth embedding h : M → X to an
equidimensional complex manifold X, biholomorphic on int(M). A holomorphic
function on M is a smooth function which admits a holomorphic extension to a
neighborhood of M in X.

Suppose that X is a complex manifold and Y ⊂ X is a codimension 0 smooth
submanifold with boundary in X. The submanifold Y is said to be strictly Levi-
convex if every boundary point of Y admits a neighborhood U in X such that the
submanifold with boundary Y ∩ U can be written as

{φ ≤ 0},
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for some smooth submersion φ : U → R satisfying

Hess(φ) > 0.

Here Hess(φ) is the holomorphic Hessian:(
∂2φ

∂z̄i∂zj

)
.

(Positivity of the Hessian is independent of the local holomorphic coordinates.)

Example 16.1. If X = Cn, Y = {z ∈ Cn : |z| ≤ 1}, then Y is strictly Levi-convex
in X: The complex Hessian of the function φ(z) = |z|2 = z · z̄ is the identity matrix.

Definition 16.1. A strongly pseudoconvex manifold M is a complex manifold with
boundary which admits a strictly Levi-convex holomorphic embedding in an equidi-
mensional complex manifold.

Suppose, in addition, that M is compact and h : M → X is a holomorphic em-
bedding with strictly Levi-convex image Y . Then there exists a strictly Levi-convex
submanifold Y ′ ⊂ X such that Y ⊂ int(Y ′). Accordingly, M can be biholomorphi-
cally embedded in the interior of a compact strongly pseudoconvex manifold M ′.

Definition 16.2. An complex manifold Z is called holomorphically convex if for
every discrete closed subset A ⊂ Z there exists a holomorphic function Z → C which
is proper on A.

Alternatively,10 one can define holomorphically convex manifolds as follows: For a
compact K in a complex manifold M , the holomorphic convex hull K̂M of K in M is

K̂M = {z ∈M : |f(z)| ≤ sup
w∈K
|f(w)|,∀f ∈ OM}.

Then M is holomorphically convex iff for every compact K ⊂M , the hull K̂M is also
compact.

Definition 16.3. A complex manifold is called Stein if it admits a proper holomor-
phic embedding in CN for some N .

Equivalently, M is Stein iff it is holomorphically convex and any two distinct points
z, w ∈M can be separated by a holomorphic function, i.e. there exists f ∈ OM such
that f(z) 6= f(w). Yet another equivalent definition is: A complex manifold M
is Stein if and only if it is strongly pseudoconvex, i.e. it admits an exhaustion by
codimension 0 strongly pseudoconvex complex submanifolds with boundary.

In particular:

10and this is the standard definition
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Theorem 16.1. The interior of every compact strongly pseudoconvex manifold Z is
holomorphically convex.

Therefore, by holomorphically embedding such (connected manifold) Z in the in-
terior of another compact strongly pseudoconvex manifold Z ′ and applying Grauert’s
theorem to Z ′, it follows that Z admits nonconstant holomorphic functions.

Kohn and Rossi in [61] proved a certain extension theorem for CR functions de-
fined on the boundary of a complex manifold to holomorphic functions on the entire
manifold. I will state only a weak form of their result which will suffice for our
purposes.

Theorem 16.2 (Kohn–Rossi). Suppose that M is a compact strongly pseudoconvex
complex manifold of dimension > 1 which admits at least one nonconstant holomor-
phic function. Then every holomorphic function on ∂M extends to a holomorphic
function on the entire M .

As one of the corollaries of this theorem (Corollary 7.3 of [61]), it follows that if
such M is connected then ∂M is also connected. (If ∂M is disconnected, then one
can take a nonconstant locally constant function defined near ∂M : Such a function
cannot have a holomorphic extension to M .)

Remark 16.2. If M is Kähler, then Theorem 16.2 also holds without the assumption
on the existence of nonconstant holomorphic functions, see Proposition 4.4 in [73].

Theorem 16.3 (Rossi, [82], Corollary on page 20). Suppose that M is a compact
strongly pseudoconvex complex manifold. Then int(M) admits a proper surjective
holomorphic map to a Stein space. In particular, if int(M) contains no compact
complex subvarieties of positive dimension, then int(M) is Stein.

I will not define Stein spaces here (strictly speaking, they are not needed for the
purpose of these notes), I refer to [43] for various equivalent definitions.

Topology of Stein manifolds and spaces. Every complex n-dimensional Stein
space is homotopy-equivalent to an n-dimensional CW complex, see [47, 48]. More
precisely (see Theorem 1.1* on page 153 of [40]):

Theorem 16.4. Let M be a n-dimensional complex manifold which admits a proper
holomorphic map M → CN with fibers of positive codimension. Then M is homotopy-
equivalent to an n-dimensional CW complex.

Corollary 16.3. Suppose that M is a connected compact strongly pseudoconvex com-
plex n-manifold with nonempty boundary. Then M is homotopy-equivalent to a CW
complex of dimension 2n− 2.
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17. Appendix G (by Mohan Ramachandran): Proof of Theorem 9.6

Proposition 17.1. Let X be a complex manifold of dimension ≥ 2 and let M ⊂ X
be a domain with compact nonempty smooth strongly pseudoconvex boundary. Then
every pluriharmonic function on M which vanishes at ∂M , vanishes identically.

Proof. The proof mostly follows that of Proposition 4.4 in [73]. Suppose that M =
{x ∈ X : ϕ(x) < 0} for some smooth function ϕ, which is strictly plurisubharmonic
on a neighborhood of ∂M and such that there exists ε < 0 such that ϕ−1([ε, 0])
is compact and ϕ|∂M = 0. Let β : M → R be a pluriharmonic function which
vanishes at ∂M . Fix a ∈ (ε, 0), such that ϕ is strictly plurisubharmonic on V =
{x ∈ M : ϕ(x) > a}. If β does not vanish identically on a neighborhood of ∂M , we
let b ∈ β(V ) denote a regular value of β. Thus, β−1(b) is disjoint from ∂M . Since
ϕ−1([ε, 0]) is compact, the restriction of ϕ to β−1(b) has a maximum at some point
x0 ∈ V ∩ β−1(b). The holomorphic 1-form ∂β determines a (singular) holomorphic
foliation on M . Consider the leaf L through x0 of this holomorphic foliation: This
leaf is contained in β−1(b) and, hence, the restriction ϕ|L has a maximum at x0

contradicting strict plurisubharmonicity of ϕ. Therefore, β is identically zero near
∂M and, hence, is identically zero. �

The next proposition is proven in [72, Theorem 2.6]:

Proposition 17.2. Suppose now that M has a complete Kähler metric of bounded
geometry11, ∂M is connected and M has at least two ends. Then M admits a non-
constant pluriharmonic function β : M → R which converges to zero at ∂M .

By combining the two propositions, we conclude:

Corollary 17.3. Suppose that M is a complex manifold of dimension ≥ 2, which ad-
mits a holomorphic embedding as a domain with compact nonempty smooth strongly
pseudoconvex boundary and which admits a complete Kähler metric of bounded ge-
ometry. Then M is 1-ended.

We can now conclude the proof of Theorem 9.6: Let M = MΓ be a complex hyper-
bolic manifold of dimension ≥ 2 and of injectivity radius bounded below. Suppose
that E0 ⊂ M is a convex end. Let S0 ⊂ ∂M be the component corresponding to
the end E0. Consider the complex manifold Y = Ω̌Γ/Γ. Remove from Y all the
components of Y −M which are disjoint from S0 and call the result X. Then M
embeds in X as a domain with nonempty smooth strongly pseudoconvex boundary,
namely, S0. Then, by the corollary, M is 1-ended. �

11i.e. its sectional curvature lies in a finite interval and its injectivity radius is bounded from
below
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