ON THE Q^{\perp} -PARALLELISM OF RICCI TENSORS IN REAL HYPERSURFACES EMBEDDED IN COMPLEX GRASSMANNIANS OF RANK TWO

CHANGHWA WOO

Department of applied Mathematics, Pukyong National University

ABSTRACT. In this paper, the notions of \mathcal{Q}^{\perp} -parallel Ricci tensor is introduced on a real hypersurface M in complex Grassmannians of rank two. Moreover, by using classification theory, we can give a complete classification for real hypersurfaces M in complex Grassmannians of rank two.

1. INTRODUCTION

 $G_2(\mathbb{C}^{m+2}) = SU_{2+m}/S(U_2 \cdot U_m)$ has a compact transitive group SU_{2+m} , however $SU_{2,m}/S(U_2 \cdot U_m)$ has a noncompact indefinite transitive group $SU_{2,m}$. This distinction gives various remarkable results. Riemannian symmetric space $SU_{2,m}/S(U_2 \cdot U_m)$ has a remarkable geometrical structure. It is the unique noncompact, Kähler, irreducible, quaternionic Kähler manifold with negative curvature.

Suppose that M is a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$). Let N be a local unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$). Since $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$) has the Kähler structure J, we may define the *Reeb* vector field $\xi = -JN$ and a one dimensional distribution $[\xi] = \mathcal{C}^{\perp}$ where \mathcal{C} denotes the orthogonal complement in $T_xM, x \in M$, of the Reeb vector field ξ . The Reeb vector field ξ is said to be Hopf if \mathcal{C} (or \mathcal{C}^{\perp}) is invariant under the shape operator A of M. The one dimensional foliation of M defined by the integral curves of ξ is said to be a Hopf foliation of M. We say that M is a Hopf hypersurface if and only if the Hopf foliation of M is totally geodesic. By the formulas, it can be checked that ξ is Hopf vector field if and only if M is Hopf hypersurface.

From the quaternionic Kähler structure \mathfrak{J} of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$), there naturally exist almost contact 3-structure vector fields $\xi_{\nu} = -J_{\nu}N$, $\nu = 1, 2, 3$. Put $\mathcal{Q}^{\perp} = \text{Span}\{\xi_1, \xi_2, \xi_3\}$. It is a 3-dimensional distribution in the tangent bundle TM of M. In addition, we denoted by \mathcal{Q} the orthogonal complement of \mathcal{Q}^{\perp} in TM. It is the quaternionic maximal subbundle of TM. Thus the tangent bundle of M is expressed as a direct sum of \mathcal{Q} and \mathcal{Q}^{\perp} .

²⁰¹⁰ Mathematics Subject Classification. Primary 53C40; Secondary 53C15.

Key words and phrases. Real hypersurfaces; complex Grassmannians of rank two; Hopf hypersurface; Q^{\perp} -parallel; Ricci tensor.

2. Preliminaries

In this section we derive some basic formulas and the Codazzi equation for a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$) (see [2], [4], [6], [7], [8], [9], and [10]).

Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$). The induced Riemannian metric on M will also be denoted by g, and ∇ denotes the Riemannian connection of (M, g). Let N be a local unit normal vector field of M and A the shape operator of M with respect to N.

Now let us put

$$JX = \phi X + \eta(X)N, \quad J_{\nu}X = \phi_{\nu}X + \eta_{\nu}(X)N \tag{2.1}$$

for any tangent vector field X of a real hypersurface M in $G_2(\mathbb{C}^{m+2})$, where N denotes a unit normal vector field of M in $G_2(\mathbb{C}^{m+2})$. From the Kähler structure J of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$) there exists an almost contact metric structure (ϕ, ξ, η, g) induced on M in such a way that

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta(X) = g(X,\xi)$$
 (2.2)

for any vector field X on M. Furthermore, let $\{J_1, J_2, J_3\}$ be a canonical local basis of \mathfrak{J} . Then the quaternionic Kähler structure J_{ν} of $G_2(\mathbb{C}^{m+2})$ (or $SU_{2,m}/S(U_2 \cdot U_m)$), together

with the condition $J_{\nu}J_{\nu+1} = J_{\nu+2} = -J_{\nu+1}J_{\nu}$ in Section 1, induces an almost contact matrix 2 structure (ϕ, ξ, μ, q) on M as follows:

metric 3-structure $(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g)$ on M as follows:

$$\phi_{\nu}^{2}X = -X + \eta_{\nu}(X)\xi_{\nu}, \quad \eta_{\nu}(\xi_{\nu}) = 1, \quad \phi_{\nu}\xi_{\nu} = 0,
\phi_{\nu+1}\xi_{\nu} = -\xi_{\nu+2}, \quad \phi_{\nu}\xi_{\nu+1} = \xi_{\nu+2},
\phi_{\nu}\phi_{\nu+1}X = \phi_{\nu+2}X + \eta_{\nu+1}(X)\xi_{\nu},
\phi_{\nu+1}\phi_{\nu}X = -\phi_{\nu+2}X + \eta_{\nu}(X)\xi_{\nu+1}$$
(2.3)

for any vector field X tangent to M. Moreover, from the commuting property of $J_{\nu}J = JJ_{\nu}, \nu = 1, 2, 3$ and (2.1), the relation between these two contact metric structures (ϕ, ξ, η, g) and $(\phi_{\nu}, \xi_{\nu}, \eta_{\nu}, g), \nu = 1, 2, 3$, can be given by

$$\phi \phi_{\nu} X = \phi_{\nu} \phi X + \eta_{\nu} (X) \xi - \eta (X) \xi_{\nu},
\eta_{\nu} (\phi X) = \eta (\phi_{\nu} X), \quad \phi \xi_{\nu} = \phi_{\nu} \xi.$$
(2.4)

3. MAIN THEOREM

3.1. Lemma. Let M be a Hopf hypersurface in complex Grassmannians of rank 2, $m \geq 3$. If M has Q^{\perp} -parallel Ricci tensor, then ξ belongs to either Q or Q^{\perp} .

Hence, from now on we will prove whether a real hypersurface in $SU_{2,m}/S(U_2 \cdot U_m)$ with our hypotheses given in main theorems satisfy the Ricci \mathcal{Q}^{\perp} -parallel condition.

3.2. Lemma. Let M be a real hypersurface in $SU_{2,m}/S(U_2 \cdot U_m)$, $m \ge 3$, with \mathcal{Q}^{\perp} -parallel Ricci tensor. If the Reeb vector field ξ belongs to the distribution \mathcal{Q}^{\perp} , then $(S\phi - \phi S)X = 0$ on M.

3.3. **Theorem.** Let M be a connected orientable real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then the Ricci tensor of M is \mathcal{Q}^{\perp} -parallel if and only if M is an open part of a tube of some radius r around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$.

3.4. Theorem. Let M be a connected orientable real hypersurface in $SU_{2,m}/S(U_2 \cdot U_m)$, $m \geq 3$. Then the Ricci tensor of M is Q^{\perp} -parallel if and only if M is an open part of a tube of some radius r around a totally geodesic $SU_{2,m-1}/S(U_2 \cdot U_{m-1})$ in $SU_{2,m}/S(U_2 \cdot U_m)$.

References

- [1] D. V. Alekseevskii, Compact quaternion spaces, Func. Anal. Appl. 2 (1966), 106–114.
- [2] I. Jeong, Machado, Carlos J. D. Pérez and Y. J. Suh, Real hypersurfaces in complex two-plane Grassmannians with D[⊥]-parallel structure Jacobi operator, Inter. J. Math. 22 (2011), no. 5, 655– 673.
- [3] H. Lee, Y.S. Choi, and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator, *Bull. Malaysian Math. Soc.* 38 (2015), no. 3, 617–634.
- [4] H. Lee and Y.J. Suh, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, Bull. Korean Math. Soc. 47 (2010), no. 3, 551–561.
- [5] H. Lee, Y.J. Suh, and C. Woo, Real hypersurfaces with commuting Jacobi operators in complex two-plane Grassmannians, Houston J. Math., 40 (2014), no. 3, 751-766.
- [6] J.D. Pérez and Y.J. Suh, The Ricci tensor of real hypersurfaces in complex two-plane Grassmannians, J. Korean Math. Soc. 44 (2007), 211–235.
- [7] J. D. Pérez, Y.J. Suh and C. Woo, Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with commuting shape operator, Open Math. 13 (2015), no. 1, 493–501.
- [8] Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator, Bull. Austral. Math. Soc. 68 (2003), 493-502.
- Y.J. Suh, Real hypersurfaces in complex two-plane Grassmannians with parallel shape operator II, J. Korean Math. Soc. 41 (2004), 535-565.
- [10] Y.J. Suh and C. Woo, Real Hypersurfaces in complex hyperbolic two-plane Grassmannians with parallel Ricci tensor, Math. Nachr. 287 (2014), 1524-1529.