Hopf algebras arising from dg manifolds

Zhuo Chen (Tsinghua University)

joint work with Jiahao Cheng and Dadi Ni

KIAS, Seoul

7 Jan 2020

Workshop on Atiyah classes and related topics

1. Introduction

In 1957, Atiyah defined an obstruction class, the Atiyah class, to the existence of holomorphic connections on a holomorphic vector bundle.

It plays important roles, for example, in

- i). deformation quantization (Kontsevich 2003),
- ii). Rozansky-Witten invariants (Kapranov 1999, Kontsevich 1999),
- iii). Chern character and Riemann-Roch theorem (Ramadoss 2008, Markarian 2009).

1. Introduction

Atiyah classes form a bridge between complex geometry and Lie theory.

 (X, \mathcal{O}_X) : complex smooth algebraic variety.

The Atiyah class α_X of T_X defines a Lie bracket on $T_X[-1]$.

Theorem (Ramadoss 2008)

The universal enveloping algebra

$$U((T_X[-1]; \alpha_X)) \simeq (D^{\bullet}_{\text{poly}}(X), d_H),$$

in $D^+(\mathcal{O}_X)$. Here $(D^{\bullet}_{\mathrm{poly}}(X), d_H) = Hochschild$ cochain complex of polydifferential operators, which is a Hopf algebra.

We are inspired by Ramadoss's work, and will show a parallel picture in dg geometry context.

2. dg manifold: graded manifold

 \mathbb{K} is either \mathbb{R} or \mathbb{C} . Grading := \mathbb{Z} -grading.

A finite dimensional graded manifold \mathcal{M} is a pair $(M, \mathcal{O}_{\mathcal{M}})$:

- i). M : smooth manifold, called the support of \mathcal{M} ,
 - $\mathcal{O}_{\mathcal{M}}$: sheaf of graded commutative algebra on M.
- ii). \exists finite dimensional graded \mathbb{K} -vector space V, s.t.

$$orall x \in M$$
, \exists open $U \subset M$, s.t. $\mathcal{O}_{\mathcal{M}}(U) \simeq C^{\infty}(U, \mathbb{K}) \otimes_{\mathbb{K}} \hat{S}(V^{\vee})$.

 $C^{\infty}_{\mathcal{M}}:=\mathcal{O}_{\mathcal{M}}(M)$, the graded ring of functions on \mathcal{M} .

2. dg manifold

A degree k vector field X on \mathcal{M} is a \mathbb{K} -linear morphism:

$$X: (C_{\mathcal{M}}^{\infty})^{\bullet} \to (C_{\mathcal{M}}^{\infty})^{\bullet+k},$$

$$X(fg) = X(f)g + (-1)^{k\widetilde{f}}fX(g).$$

 $\mathscr{X}(\mathcal{M}) := \text{all vector fields on } \mathcal{M}.$

A dg manifold is a pair (\mathcal{M}, Q) :

- \mathcal{M} : a graded manifold,
- *Q*: degree 1 vector field, s.t.

$$Q^2 = 0$$
 (homological condition).

2. dg manifold: examples

i). g : Lie algebra.

$$(\mathfrak{g}[1],d_{CE})$$
 is a dg manifold, $C^\infty_{\mathfrak{g}[1]}=\wedge^ullet \mathfrak{g}^ee$, $d_{\mathrm{CE}}:\wedge^ullet \mathfrak{g}^ee o \wedge^{ullet+1} \mathfrak{g}^ee$.

- ii). A: Lie algebroid, by similar construction:
 - $(A[1], d_{CE}^A)$ is a dg manifold.
- iii). Kapranov dg manifolds, Fedosov dg manifolds, etc...

3. dg module

 (\mathcal{M}, Q) : dg manifold.

A dg module over (\mathcal{M}, Q) is a pair (\mathfrak{N}, L_Q) :

- i). $\mathfrak N$ is a graded $\mathcal C^\infty_{\mathcal M}$ -module,
- ii). $L_Q:\mathfrak{N} o \mathfrak{N}$ is a degree +1 and \mathbb{K} -linear map, s.t.

$$L_Q(f\xi) = Q(f)\xi + (-1)^{\widetilde{f}} f L_Q(\xi)$$

$$\forall \xi \in \mathfrak{N}, f \in C^{\infty}_{\mathcal{M}}.$$

3. dg module

Morphism $\varphi: (\mathfrak{N}_1, L_Q) \to (\mathfrak{N}_2, L_Q)$:

i). $\varphi:\mathfrak{N}_1 o \mathfrak{N}_2$ is a morphism of $\mathcal{C}^\infty_\mathcal{M}$ -modules, i.e.,

$$\varphi(f\xi) = f\varphi(\xi),$$

 $\forall f \in C^{\infty}_{\mathcal{M}}, \ \xi \in \mathfrak{N}_1.$

ii).

$$L_Q \circ \varphi = \varphi \circ L_Q.$$

Denote by dg-mod the category of dg modules over (\mathcal{M}, Q) .

4. dg module: examples

- i). (\mathcal{E}, L_Q) : a dg vector bundle, $(\Gamma(\mathcal{E}), L_Q)$ is a dg module.
- ii). $(\mathscr{X}(\mathcal{M}), L_Q = [Q, \cdot])$ is a dg module.
- iii). $D_{\mathcal{M}} := U(T_{\mathcal{M}})$, differential operators on \mathcal{M} , i.e., the universal enveloping algebra of the Lie algebroid $T_{\mathcal{M}}$.
 - $(D_{\mathcal{M}}, L_Q)$ is a dg module, which does not correspond to the space of global sections of any dg vector bundle.

5. homotopy category

Quasi-isomorphism of dg modules, is a morphism of dg modules

$$\varphi: (\mathfrak{N}_1, L_Q) \to (\mathfrak{N}_2, L_Q), \text{ s.t.}$$

$$H^{\bullet}(\varphi): H^{\bullet}(\mathfrak{N}_1, L_Q) \simeq H^{\bullet}(\mathfrak{N}_2, L_Q)$$

is an isomorphism.

The homotopy category $\Pi(\mathbf{dg}-\mathbf{mod}) :=$

Gabriel-Zisman localization of **dg**—**mod** by the set of quasi-isomorphism of dg modules.

The homology category $H(\mathbf{dg}-\mathbf{mod}) := \text{the category } \mathbf{dg}-\mathbf{mod}$ modulo cochain homotopies.

Sequence of natural functors:

$$dg$$
-mod $\rightarrow H(dg$ -mod) $\rightarrow \Pi(dg$ -mod).

A dg complex over (\mathcal{M}, Q) is a triple $(\Upsilon^{\bullet}, L_Q, \delta)$:

- i). $\Upsilon^{ullet} = \bigoplus_p \Upsilon^p$, $L_Q : \Upsilon^p \to \Upsilon^p$, each (Υ^p, L_Q) is a dg module over (\mathcal{M}, Q) .
- ii). $\delta:\Upsilon^{ullet} o\Upsilon^{ullet+1}$ is a $C^\infty_{\mathcal{M}}$ -linear operator, i.e.

$$\delta(f\xi) = (-1)^{\widetilde{f}} f \delta(\xi), \ \forall f \in C_{\mathcal{M}}^{\infty}, \ \xi \in \Upsilon,$$
$$[\delta, L_{Q}] = \delta \circ L_{Q} + L_{Q} \circ \delta = 0.$$

iii). $\delta \circ \delta = 0$.

It is convenient to denote such a dg complex by a diagram of double complex:

We call δ the **horizontal differential** and L_Q the **vertical differential**.

Morphism $\varphi: (\Upsilon_1^{\bullet}, L_Q, \delta_1) \to (\Upsilon_2^{\bullet}, L_Q, \delta_2)$:

i).
$$\varphi(f\xi) = f\varphi(\xi), \ \forall f \in C_{\mathcal{M}}^{\infty}, \ \xi \in \Upsilon_{1}^{\bullet,\bullet}.$$

ii).
$$\delta_2\circ\varphi=\varphi\circ\delta_1,$$

$$L_Q\circ\varphi=\varphi\circ L_Q.$$

Denote by $Ch(\mathbf{dg}-\mathbf{mod})$ the category of dg complexes over (\mathcal{M}, Q) .

A dg complex $(\Upsilon^{\bullet}, L_Q, \delta)$ could be seen as a double complex:

$$(\oplus \Upsilon^{p,q}, L_Q, \delta).$$

The operation of taking total complex is a functor:

tot :
$$Ch(dg-mod) \rightarrow dg-mod$$
,

$$(\Upsilon^{\bullet}, L_Q, \delta) \mapsto (\text{tot}\Upsilon = \bigoplus_{p+q} \Upsilon^{p,q} , L_Q^{\text{tot}} = L_Q + \delta).$$

Denote the category of dg complexes over (\mathcal{M}, Q) by $Ch(\mathbf{dg}-\mathbf{mod})$.

A quasi-isomorphism $\varphi: (\Upsilon_1, L_Q, \delta_1) \to (\Upsilon_2, L_Q, \delta_2)$ of dg complexes is a morphism in $Ch(\mathbf{dg-mod})$ that induces a quasi-isomorphism between the corresponding total complexes $(\mathrm{tot}\Upsilon_1, L_Q + \delta_1)$ and $(\mathrm{tot}\Upsilon_2, L_Q + \delta_2)$.

The <u>derived category</u> $D(\mathbf{dg-mod})$ of dg complexes over (\mathcal{M}, Q) is the <u>Gabriel-Zisman</u> localization of $Ch(\mathbf{dg-mod})$ by the set of quasi-isomorphisms.

Taking total complex can be regarded as a functor

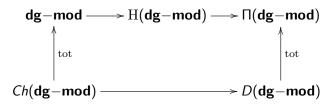
tot :
$$Ch(dg-mod) \rightarrow dg-mod$$
.

Denote by

$$tot:\ \textit{D}(\textbf{dg-mod}) \rightarrow \Pi(\textbf{dg-mod})$$

the induced functor between the two Gabriel-Zisman localizations of categories.

A natural diagram summarizes the relations between all the categories that we introduced.



6. dg complex of polyvector fields

- ⊗: tensor product of dg modules.
- $\widetilde{\otimes}$: tensor product of dg complexes.
- $|\cdot|$: total degree of a dg complex.

dg module of polyvector fields:

$$\mathcal{T}^n_{poly}:=(\Gamma(\widetilde{\wedge}^nT_{\mathcal{M}}),L_Q),\ n=0,1,\dots$$

$$(\mathscr{T}^{\bullet}_{poly}, L_Q, 0) \in \mathrm{Ch}(\mathsf{dg-mod}).$$

$$\mathscr{T}^{p,q}_{poly} = (\mathscr{T}^p_{poly})^q.$$

6. dg complex of polydifferential operators

dg modules of polydifferential operators:

$$\mathscr{D}_{\mathrm{poly}}^{n} := (D_{\mathcal{M}}^{\widetilde{\otimes} n} = \widetilde{\otimes}^{n} \mathscr{D}_{\mathrm{poly}}^{1}, L_{Q}), \ n = 0, 1, ...$$

dg complex of polydifferential operators:

$$(\mathcal{D}_{\operatorname{poly}}^{\bullet},L_Q,d_H)$$

 d_H is the Hochschild coboundary:

$$d_{\mathcal{H}}(D_{1}\widetilde{\otimes}\cdots\widetilde{\otimes}D_{n}) = \\ (-1)^{\sum_{i=1}^{n}|D_{i}|}((-1)^{1+\sum_{i=1}^{n}|D_{i}|}1\widetilde{\otimes}D_{1}\widetilde{\otimes}\cdots\widetilde{\otimes}D_{n} + \\ -\sum_{i=1}^{n}(-1)^{\sum_{j=1}^{i-1}|D_{j}|}D_{1}\widetilde{\otimes}\cdots D_{i-1}\widetilde{\otimes}\Delta(D_{i})\widetilde{\otimes}D_{i+1}\cdots D_{n} \\ +D_{1}\widetilde{\otimes}\cdots\widetilde{\otimes}D_{n}\widetilde{\otimes}1).$$

We will consider $(tot \mathcal{D}_{polv}, L_Q + d_H) \in \mathbf{dg}\mathbf{-mod}$.

The space of polydifferential operators

$$\mathcal{D}_{\mathrm{poly}} := \oplus_{n \geq 0} \mathcal{D}_{\mathrm{poly}}^n = \oplus_{n \geq 0, m \in \mathbb{Z}} \mathcal{D}_{\mathrm{poly}}^{n,m}$$

admits a Hopf algebra structure:

• The multiplication:

$$\mathscr{D}_{\mathrm{poly}} \bigotimes \mathscr{D}_{\mathrm{poly}} \to \mathscr{D}_{\mathrm{poly}}$$

$$(D_1\widetilde{\otimes}\cdots\widetilde{\otimes}D_n)\bigotimes(D_{n+1}\widetilde{\otimes}\cdots\widetilde{\otimes}D_{n+m})\mapsto D_1\widetilde{\otimes}\cdots\widetilde{\otimes}D_n\widetilde{\otimes}D_{n+1}\widetilde{\otimes}\cdots D_m.$$

The comultiplication:

$$\mathscr{D}_{\mathrm{poly}} \to \mathscr{D}_{\mathrm{poly}} \bigotimes \mathscr{D}_{\mathrm{poly}},$$

$$D_1 \widetilde{\otimes} ... D_n \mapsto \sum_{p+q=n} \sum_{(p,q)\text{-shuffle } \sigma} \kappa(\sigma) \ D_{\sigma(1)} \widetilde{\otimes} ... D_{\sigma(p)} \bigotimes D_{\sigma(p+1)} \widetilde{\otimes} ... D_{\sigma(n)}.$$

- The unit is the natural inclusion $\eta: C^\infty_{\mathcal{M}} = \mathscr{D}^0_{\mathrm{poly}} \hookrightarrow \mathscr{D}_{\mathrm{poly}}.$
- The counit $\varepsilon: \mathscr{D}_{\operatorname{poly}} \twoheadrightarrow \mathscr{D}_{\operatorname{poly}}^0 = C^{\infty}_{\mathcal{M}}$ is the natural projection.
- The antipode is the map

$$t: \mathscr{D}_{\mathrm{poly}} o \mathscr{D}_{\mathrm{poly}}$$

$$t(D_1 \widetilde{\otimes} D_2 \cdots \widetilde{\otimes} D_n) = (-1)^{\natural} D_n \widetilde{\otimes} \cdots D_2 \widetilde{\otimes} D_1,$$
 where $\natural = \sum_{i=0}^{n-1} |D_{n-i}| (|D_1| + \cdots + |D_{n-i-1}|).$

From the dg complex of polydifferential operators:

$$(\mathcal{D}_{\mathrm{poly}}^{\bullet}, L_Q, d_H),$$

we get a dg module $(tot \mathcal{D}_{poly}, L_Q + d_H)$, a Hopf algebra object, in the homotopy category $\Pi(\mathbf{dg}-\mathbf{mod})$.

The Lie bracket of two elements $D\in \mathscr{D}^i_{\mathrm{poly}}$ and $E\in \mathscr{D}^j_{\mathrm{poly}}$ is the element

$$[\![D,E]\!]=D\widetilde{\otimes}E-(-1)^{|D||E|}E\widetilde{\otimes}D\in\mathcal{D}_{\mathrm{poly}}^{i+j}.$$

Denote by $L(\mathscr{D}_{\operatorname{poly}}^1)$ the smallest Lie subalgebra of $\mathscr{D}_{\operatorname{poly}}^{\bullet}$ containing $\mathscr{D}_{\operatorname{poly}}^1$. The space $L(\mathscr{D}_{\operatorname{poly}}^1)$ is made of all \mathbb{K} -linear combinations of elements of the form $[\![D_1,\cdots,[\![D_{n-1},D_n]\!],\cdots]\!]$ with $D_1,\cdots,D_n\in\mathscr{D}_{\operatorname{poly}}^1$.

We will need
$$(totL(\mathcal{D}_{poly}^1), L_Q + d_H; [[,]]) =$$

free Lie algebra object spanned by $tot\mathcal{D}_{poly}^1 = \mathcal{D}_{\mathcal{M}}[-1],$
in **dg-mod**, the category of dg modules over (\mathcal{M}, Q) .

7. Atiyah class: connection

A smooth connection ∇ on a dg module (\mathfrak{N}, L_Q) is a \mathbb{K} -linear and degree 0 morphism:

$$\nabla:\mathscr{X}(\mathcal{M})\otimes_{\mathbb{K}}\mathfrak{N} o\mathfrak{N}$$

s.t.

$$abla_{fX}\xi = f \nabla_X \xi$$

$$abla_X(f\xi) = X(f)\xi + (-1)^{\widetilde{X}\widetilde{f}} f \nabla_X \xi$$

$$\forall f \in C^{\infty}_{\mathcal{M}}, \ X \in \mathcal{X}(\mathcal{M}), \ \xi \in \mathfrak{N}.$$

7. Atiyah class: Atiyah cocycle

The Atiyah cocyle

$$\alpha_{\mathfrak{N}}^{\nabla} := [L_{Q}, \nabla] \in \operatorname{Hom}^{1}(\mathscr{X}(\mathcal{M}) \otimes_{C_{\mathcal{M}}^{\infty}} \mathfrak{N}, \mathfrak{N}),$$

$$\alpha_{\mathfrak{N}}^{\nabla}(X, \xi) = L_{Q}(\nabla_{X}\xi) - \nabla_{[Q|X]}\xi - (-1)^{\widetilde{X}}\nabla_{X}L_{Q}(\xi).$$

The Atiyah class of the dg module ${\mathfrak N}$

$$\alpha_{\mathfrak{N}} := [\alpha_{\mathfrak{N}}^{\nabla}] \in H^{1}\left(\operatorname{Hom}(\mathscr{X}(\mathcal{M}) \otimes_{C_{\mathcal{M}}^{\infty}} \mathfrak{N}, \mathfrak{N}), L_{Q}\right)$$
$$\simeq \operatorname{Hom}_{H(\operatorname{dg-mod})}(\mathscr{X}(\mathcal{M})[-1] \otimes_{C_{\mathcal{M}}^{\infty}} \mathfrak{N}, \mathfrak{N}).$$

It is independent of ∇ . It can be regarded as a morphism

$$\alpha_{\mathfrak{N}}: (\mathscr{X}(\mathcal{M})[-1], L_{\mathcal{Q}}) \otimes_{\mathcal{C}_{\infty}^{\infty}} (\mathfrak{N}, L_{\mathcal{Q}}) \to (\mathfrak{N}, L_{\mathcal{Q}})$$

in the homology category H(dg-mod).

7. Atiyah class

The Atiyah class $\alpha_{\mathcal{M}}$ of a dg manifold (\mathcal{M}, Q) is defined to be the Atiyah class of the dg module $(\mathscr{X}(\mathcal{M})[-1], L_Q)$,

which can be seen as a morphism

$$\alpha_{\mathcal{M}}: (\mathscr{X}(\mathcal{M})[-1], L_Q) \otimes_{C^{\infty}_{\mathcal{M}}} (\mathscr{X}(\mathcal{M})[-1], L_Q) \to (\mathscr{X}(\mathcal{M})[-1], L_Q)$$

in the homology category H(dg-mod).

7. Atiyah class

Theorem (Mehta-Stiénon-Xu 2015)

Given a torsion free connection ∇ on $T_{\mathcal{M}}$, there is a L_{∞} -algebra structure $\{\lambda_k\}_{k\geq 1}$ on $\mathscr{X}(\mathcal{M})[-1]$, s,t. $\lambda_1=L_Q$, $\lambda_2=\alpha_{\mathcal{M}}^{\nabla}$.

As a corollary,

$$\alpha_{\mathcal{M}}: (\mathcal{X}(\mathcal{M})[-1], L_Q) \otimes_{C^{\infty}_{\mathcal{M}}} (\mathcal{X}(\mathcal{M})[-1], L_Q) \to (\mathcal{X}(\mathcal{M})[-1], L_Q)$$

defines a Lie algebra object in $H(\mathbf{dg}-\mathbf{mod})$, and thus in the homotopy category $\Pi(\mathbf{dg}-\mathbf{mod})$.

Question: Does the universal enveloping algebra of the Lie algebra $(\mathscr{X}(\mathcal{M})[-1], L_Q; \alpha_{\mathcal{M}})$ exists in $\Pi(\mathbf{dg-mod})$?

4. Main Results

If it exists, the <u>universal enveloping algebra</u> of a Lie algebra object G in $Ch(\mathbf{dg-mod})$ (resp. $D(\mathbf{dg-mod})$) is an associative algebra object U(G) in $Ch(\mathbf{dg-mod})$ (resp. $D(\mathbf{dg-mod})$) together with a morphism of Lie algebra objects $i: G \to U(G)$ satisfying the following universal property:

given any associative algebra object K and any morphism of Lie algebras $f: G \to K$ in $Ch(\mathbf{dg-mod})$ (resp. $D(\mathbf{dg-mod})$), there exists a unique morphism of associative algebras $f': U(G) \to K$ in $Ch(\mathbf{dg-mod})$ (resp. $D(\mathbf{dg-mod})$) such that $f = f' \circ i$.

If exists, U(G) is unique up to isomorphism in $Ch(\mathbf{dg-mod})$ (resp. $D(\mathbf{dg-mod})$).

8. Main results

Our results could be seen as a universal realization of Atiyah classes.

Theorem (Cheng-Chen-Ni)

i). The natural inclusion map

$$\theta: (\mathscr{X}(\mathcal{M})[-1], L_Q; \alpha_{\mathcal{M}}) \to (\text{tot}L(\mathscr{D}^1_{\text{poly}}), L_Q + d_H; [,])$$

is an isomorphism of Lie algebra objects in $\Pi(\mathbf{dg}-\mathbf{mod})$:

$$\begin{split} (\mathcal{X}(\mathcal{M})[-1], L_Q) \otimes_{C^\infty_{\mathcal{M}}} (\mathcal{X}(\mathcal{M})[-1], L_Q) & \xrightarrow{\alpha_{\mathcal{M}}} (\mathcal{X}(\mathcal{M})[-1], L_Q) \\ \theta \otimes \theta & & & & & & \\ \theta \otimes \theta & & & & & & \\ (\operatorname{tot} L(\mathcal{D}^1_{\operatorname{poly}}), L_Q + d_H) \otimes_{C^\infty_{\mathcal{M}}} (\operatorname{tot} L(\mathcal{D}^1_{\operatorname{poly}}), L_Q + d_H) & \xrightarrow{\mathbb{I} \cdot \mathbb{I}} (\operatorname{tot} L(\mathcal{D}^1_{\operatorname{poly}}), L_Q + d_H). \end{split}$$

4. Main Results

ii). The universal enveloping algebra

$$U((\mathcal{X}(\mathcal{M})[-1],L_Q;\,\alpha_{\mathcal{M}}))\simeq (\mathrm{tot}\mathcal{D}_{\mathrm{poly}},L_Q+d_H),$$

which is a Hopf algebra object, in $\Pi(\mathbf{dg}-\mathbf{mod})$.

8. Main results

Our proof is based on

- i). Poincaré-Birkhoff-Witt isomorphism in Lie theory,
- ii). Hochschild-Kostant-Rosenberg quasi-isomorphism for dg manifolds (Liao-Stiénon-Xu 2017),
- iii). Properties of Atiyah classes; hard calculations.

5. Application

Our main results could be adapted to the Atiyah class of a dg Lie algebroid, the proof is essentially the same.

Example: Fedosov dg Lie algebroid associated with Lie pairs.

5. Application: Lie pair

M: smooth manifold, $R := C^{\infty}(M, \mathbb{K})$.

A Lie algebroid $L = (L, [,], \rho)$:

- i). \mathbb{K} -linear anchor map $\rho: L \to T_M$.
- ii). Bracket $[\ ,\]:\ \Gamma L\otimes_{\mathbb{K}}\Gamma L\to\Gamma L$, s.t.

$$[X, fY] = f[X, Y] + (\rho(X)f)Y,$$

for all $X, Y \in \Gamma(L)$ and $f \in R$.

5. Application: Atiyah class of Lie pair

<u>Lie pair</u> (L, A): a pair of Lie algebroids, where $A \subset L$ is a Lie sub-algebroid.

Let $j: B \rightarrow L$ be a splitting of the exact sequence

$$0 \to A \xrightarrow{i} L \xrightarrow{pr} B \to 0,$$

then $L \simeq A \oplus B$.

A-module structure on B (Bott connection):

$$\Gamma(A) \otimes_{\mathbb{K}} \Gamma(B) \to \Gamma(B),$$

 $\nabla^{\text{Bott}}_{a} b := pr([a, j(b)]),$

for $a \in \Gamma(A)$, $b \in \Gamma(B)$.

5. Application: Atiyah class of Lie pair

Let $\nabla : \Gamma(L) \otimes_{\mathbb{K}} \Gamma(B) \to \Gamma(B)$ be a torsion free *L*-connection.

The Atiyah cocycle $\alpha_B^{\nabla} \in \Gamma(A^{\vee} \otimes B^{\vee} \otimes End(B))$,

$$\alpha_B^{\nabla}(a,b)e:=\nabla_a^{\mathrm{Bott}}\nabla_{j(b)}e-\nabla_{j(b)}\nabla_a^{\mathrm{Bott}}e-\nabla_{[a,j(b)]}e,$$

for all $a \in \Gamma(A)$, and $b, e \in \Gamma(B)$.

The Atiyah class of the Lie pair (L, A) is the cohomology class

$$\alpha_B = [\alpha_B^{\nabla}] \in H^1_{\mathrm{CE}}(A, B^{\vee} \otimes End(B)).$$

5. Application: Atiyah class of Lie pair

 $(A[1], d_{\mathrm{CE}}^A)$ is a dg manifold, $\Omega(A) := C^{\infty}(A[1])$.

Let $(B^!, d_{\rm CE}^{B^!})$ be the dg vector bundle over $(A[1], d_{\rm CE}^A)$ which is the pull back of B:

$$\begin{array}{ccc} (B^!,d_{\mathrm{CE}}^{B^!}) & \longrightarrow B \\ \downarrow & & \downarrow \\ (A[1],d_{\mathrm{CE}}^A) & \longrightarrow M \, . \end{array}$$

5. Application: Atiyah class of Lie pair

The Lie pair Atiyah class can be regarded as a Lie bracket

$$\alpha_B:\ (\Gamma(B^!)[-1],d_{\mathrm{CE}}^{B^!})\otimes_{\Omega(A)}(\Gamma(B^!)[-1],d_{\mathrm{CE}}^{B^!})\to (\Gamma(B^!)[-1],d_{\mathrm{CE}}^{B^!})$$

in the homology category $H(\Omega(A)-\mathbf{mod})$ of dg modules over $\Omega(A)$.

Equivalently, it can be regarded as a Lie bracket

$$\alpha_B: \ \Gamma(B)[-1] \otimes_{C_M^{\infty}} \Gamma(B)[-1] \to \Gamma(B)[-1]$$

in the derived category $D^b(A)$ of A-modules (Chen-Stiénon-Xu 2014).

Hochschild complex $(D_{\text{poly}}^{\bullet}(B), d_H)$ associated with Lie pair (L, A), where $D_{\text{poly}}^n(B) = \otimes_{C_M}^n \frac{U(L)}{U(L)\Gamma(A)}$ (Chen-Stiénon-Xu 2014).

Fedosov dg manifold associated with (L, A) (Stiénon-Xu 2016, Batakidis-Voglaire 2018):

$$(\mathcal{M}, Q) := (L[1] \oplus B, d_L^{\nabla^i}).$$

$$C_{\mathcal{M}}^{\infty} = \Gamma(SB^{\vee} \otimes \wedge^{\bullet}L) = \Gamma(SB^{\vee}) \otimes_{C_{\mathcal{M}}^{\infty}} \Omega(L).$$

Construction:

i). PBW isomorphism (Laurent-Gengoux-Stiénon-Xu 2012):

$$\mathrm{pbw}^{\nabla,j}:\ \Gamma(SB)\to D^1_{\mathrm{poly}}(B),$$

ii). canonical connection:

$$abla^{\mathrm{can}}: \ \Gamma(L) \otimes_{\mathbb{K}} D^1_{\mathrm{poly}}(B) \to D^1_{\mathrm{poly}}(B) \,,
abla^{\mathrm{can}}_I u := I \cdot u,$$

iii). the *L*-connection $\nabla^{\underline{\ell}}: \Gamma(L) \otimes_{\mathbb{K}} \Gamma(SB) \to \Gamma(SB)$ is the pull back of $\nabla^{\operatorname{can}}$ via $\operatorname{pbw}^{\nabla,j}$.

 $d_I^{\nabla^{\sharp}}$ is the Chevalley-Eilenberg differential associated with ∇^{\sharp} .

$$\mathcal{M} = L[1] \oplus B$$
.

Natural maps:

$$(A[1], d_{\mathrm{CE}}^{A}) \stackrel{\iota}{\to} (\mathcal{M} = L[1] \oplus B, Q = \nabla^{\frac{\iota}{2}}) \stackrel{\pi}{\to} (L[1], d_{\mathrm{CE}}^{L}).$$

Fedosov dg Lie algebroid

$$(\mathcal{F}, L_Q) := \ker \pi_*$$

.

The diagram formed by natural maps

$$\begin{array}{ccc} (B^!, d_{\mathrm{CE}}^{B^!}) \stackrel{\iota}{\longrightarrow} (\mathcal{F}, L_Q) \\ & & \downarrow \\ (A[1], d_{\mathrm{CE}}^A) \stackrel{\iota}{\longrightarrow} (\mathcal{M}, Q) \end{array}$$

is a pull back diagram of dg vector bundles. In other words, $\iota^*(\mathcal{F}, L_Q) = (B^!, d_{\mathrm{CE}}^{B^!})$ or

$$(\Gamma(B^!), d_{\mathrm{CE}}^{B^!}) = (\Gamma(\mathcal{F}), L_Q) \otimes_{C_{\mathcal{M}}^{\infty}} (\Omega(A), d_{\mathrm{CE}}^A).$$

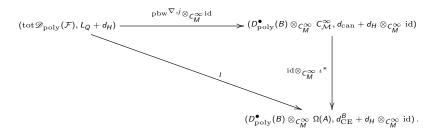
The following fact is due to Liao-Stiénon-Xu 2019.

The restriction map ι^* : $(\Gamma(\mathcal{F}), L_Q) \to (\Gamma(B^!), d_{\mathrm{CE}}^{B^!})$ is a quasi-isomorphism of dg modules.

Consequently, the following diagram commutes in the homotopy category $\Pi(\mathbf{dg}\mathbf{-mod})$:

$$\begin{split} & (\Gamma(\mathcal{F})[-1], L_Q) \otimes_{C^\infty_{\mathcal{M}}} \left(\Gamma(\mathcal{F})[-1], L_Q \right) \xrightarrow{\alpha_{\mathcal{F}}} \left(\Gamma(\mathcal{F})[-1], L_Q \right) \\ & \downarrow_{\iota^* \otimes \iota^*} \bigvee \qquad \qquad \qquad \downarrow_{\iota^*} \\ & (\Gamma(B^!)[-1], d^{B^!}_{\mathrm{CE}}) \otimes_{\Omega(A)} \left(\Gamma(B^!)[-1], d^{B^!}_{\mathrm{CE}} \right) \xrightarrow{\alpha_B} \left(\Gamma(B^!)[-1], d^{B^!}_{\mathrm{CE}} \right). \end{split}$$

Define a map I of dg modules over (\mathcal{M}, Q) —



The following facts are due to Bandiera-Stiénon-Xu 2019:

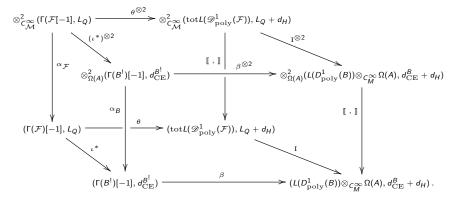
- ▶ the horizontal map $\operatorname{pbw}^{\nabla,j} \otimes_{\mathcal{C}_M^{\infty}} \operatorname{id}$ is an isomorphism of dg modules;
- ▶ the vertical map $id \otimes_{\mathcal{C}_{M}^{\infty}} \iota^{*}$ is a quasi-isomorphism of dg modules.

Thus I is a quasi-isomorphism of dg modules.

5. Application: big diagram

Theorem (Cheng-Chen-Ni)

The following diagram commutes in the homotopy category $\Pi(\mathbf{dg}-\mathbf{mod})$:



Moreover, the map β in the front lower edge is an isomorphism in $\Pi(\mathbf{dg}-\mathbf{mod})$.

5. Application: big diagram

Thus we can recover:

Theorem (Chen-Stiénon-Xu 2014)

i). The inclusion map β : $\Gamma(B[-1]) \to L(D^1_{\text{poly}}(B))$ is an isomorphism of Lie algebra objects in the derived category $D^b(\mathcal{A})$ of A-modules,

$$\Gamma(B[-1]) \otimes_{C_M^{\infty}} \Gamma(B[-1]) \xrightarrow{\beta \otimes \beta} L(D_{\text{poly}}^1(B)) \otimes_{C_M^{\infty}} L(D_{\text{poly}}^1(B))$$

$$\downarrow^{\mathbb{I}} \mathbb{I}$$

$$\Gamma(B[-1]) \xrightarrow{\beta} L(D_{\text{poly}}^1(B)).$$

 $(L(D^1_{\operatorname{poly}}(B); \, \llbracket \, , \, \rrbracket) = \mathsf{free} \,\, \mathsf{Lie} \,\, \mathsf{algebra} \,\, \mathsf{spanned} \,\, \mathsf{by} \,\, D^1_{\operatorname{poly}}(B).$

5. Application: big diagram

ii). The universal enveloping algebra

$$U((\Gamma(B[-1]); \alpha_B)) \simeq (D^{\bullet}_{\text{poly}}(B), d_H),$$

which is a Hopf algebra, in $D^b(A)$.

 $\frac{\text{Hopf algebras arising from dg manifolds}}{\text{https://arxiv.org/abs/1911.01388}}, \text{ available at}$

Thank You!