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Atiyah classes for holomorphic vector bundles

Atiyah class: obstruction of the existence of holomorphic connections on a
holomorphic vector bundle.
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Holomorphic vector bundles

Definition

Let M be a complex manifold. A holomorphic vector bundle of rank r on M
is a complex manifold E with a holomorphic map

π : E →M

and a dim r complex v.s. str. on Ex = π−1(x) satisfying: There exists an open
covering {Ui} of M and holomorphic homeomorphisms: ϕi : π−1(Ui) ∼= Ui × Cr
commuting with the projections to Ui such that the induced map π−1(x) ∼= Cr is
C-linear.

A complex vb π : E →M is holomorphic

(1) ⇔ if there exists a trivialization such that the transition functions are
holomorphic.

(2) ⇔ if there is a flat T 0,1M -connection on E.

⇒ Let E|Ui
∼= Ui × Cr and let {ei} be a basis of Γ(E|Ui

). For s =
∑
λ sλeλ with

sλ ∈ C∞(Ui), define

∂̄ : Γ(E)→ Γ((T 0,1M)∗ ⊗ E), s 7→
∑
i

∂̄(sλ)eλ.

⇐ if there exists D0,1 : Γ(E)→ Γ((T 0,1M)∗ ⊗ E) such that (D0,1)2 = 0, then
there is a unique holomorphic vector bundle str. on E such that D0,1 = ∂̄.
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A section s : M → E is holomorphic if it is a holomorphic map, or ∂̄s = 0.

Definition

Let E be a holomorphic bundle on a complex manifold M . A holomorphic
connection on E is a C-linear map (of sheaves) D : E → ΩM ⊗ E with

D(fs) = ∂(f)⊗ s+ fD(s),

for any local holomorphic function f of M and any local holomorphic section s of
E.

Here E and ΩM denote the sheaves of holomorphic sections of E and (T 1,0M)∗.

D + ∂̄ defines an ordinary connection on E. But the (1, 0)-part of an
ordinary connection may not be a holomorphic connection.

D sends holomorphic sections of E to holomorphic sections of
(T 1,0M)∗ ⊗ E. Or, for any holomorphic tangent vector field X, DX
preserves the holomorphic sections of E.
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Let E be a holomorphic bundle and let {Ui} be an open covering s.t. there exist
holomorphic trivializations ϕi : E|Ui

∼= Ui × Cr.
A local holomorphic connection on Ui × Cr is ∂ +Ai, where Ai is a matrix valued
holomorphic 1-form on Ui. They can be glued to a connection on E iff

ϕ−1
i ◦ (∂ +Ai) ◦ ϕi = ϕ−1

j ◦ (∂ +Aj) ◦ ϕj

on Uij = Ui ∩ Uj , equivalently,

ϕ−1
j ◦ (ϕ−1

ij ◦ ∂ ◦ ϕij − ∂) ◦ ϕj = ϕ−1
j ◦Aj ◦ ϕj − ϕ

−1
i ◦Ai ◦ ϕi,

where ϕij = ϕi ◦ ϕ−1
j .

By the relation ϕij ◦ ϕjk ◦ ϕki = 1, the left hand side is actually a Čech cocycle.

Definition

The Atiyah class
A(E) ∈ H1(M,ΩM ⊗ End(E))

of the holomorphic bundle E is given by the Čech cocycle

A(E) = {Uij , ϕ−1
j ◦ (ϕ−1

ij d(ϕij)) ◦ ϕj}.
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Proposition (Atiyah)

A holomorphic bundle E admits a holomorphic connection iff its Atiyah class
A(E) ∈ H1(M,ΩM ⊗ End(E)) is trivial.

A(E) is related with the curvature of E.
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Let (E, h) be a hermitian holomorphic vector bundle. A connection ∇ on E is
called a Chern connection if

∇h = 0, ∇0,1 = ∂̄,

where ∇ = ∇1,0 +∇0,1 : Γ(E)→ Γ(((T ∗M)1,0 ⊕ (T ∗M)0,1)⊗ E).

The curvature of a Chern connection F∇ ∈ Ω1,1(M)⊗ End(E) and the Bianchi
identity yields

0 = (∇(F∇))1,2 = ∂̄(F∇).

This gives rise to a Dolbeault cohomology class [F∇].

Proposition

For the curvature F∇ of the Chern connection on a hermitian holomorphic vector
bundle (E, h) one has

[F∇] = A(E) ∈ H1(M,ΩM ⊗ End(E)).
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Let E be a holomorphic vector bundle on a complex manifold M . Let J1E the
vector bundle of the first jets of holomorphic sections of E. It fits into the short
exact sequence

0→ ΩM ⊗ E → J1E → E → 0

of holomorphic vector bundles.
The Atiyah class of E is the extension class

αE ∈ Ext1M (E,ΩM ⊗ E) ∼= H1(M,ΩM ⊗ End(E)).
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Generalized complex manifolds and generalized
holomorphic functions

Let M be a smooth manifold. On TM ⊕ T ∗M , there is a canonical bilinear form
valued in C∞(M):

(X + ξ, Y + η) = ξ(Y ) + η(X), X, Y ∈ X(M), ξ, η ∈ Ω1(M),

and a skew-symmetric bracket, called the Courant bracket:

[X + ξ, Y + η] := [X,Y ] + LXη − LY ξ −
1

2
d(η(X)− ξ(Y )).

Also we have the anchor ρ : TM ⊕ T ∗M → TM , the projection.

Properties

[[u, v], w] + c.p. = 1
6
d(([u, v], w) + ([v, w], u) + ([w, u], v));

[u, fv] = f [u, v] + ρ(u)fv − (u, v)df ;

ρ(u)(v, w) = ([u, v] + d(u, v), w) + (v, [u,w] + d(u,w)),

for u, v, w ∈ Γ(TM ⊕ T ∗M).

——– Courant algebroid (C, (·, ·), [·, ·], ρ) Liu-Xu-Weinstein 97.
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Definition (Hitchin, Gualtieri)

A generalized complex structure on M is an endomorphism J of TM ⊕ T ∗M
such that

• J 2 = −1;

• (J u,J v) = (u, v);

• the +i-eigenbundle L ⊂ (TM ⊕ T ∗M)⊗ C of J is closed under the Courant
bracket (integrability condition).
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In block-diagonal form, a skew-adjoint transformation on TM ⊕ T ∗M is

J =

(
J β
B −J∗

)
,

where J ∈ End(TM) and B ∈ Ω2(M) and β ∈ X2(M).

A B-field transform is an automorphism of TM ⊕ T ∗M given by a 2-form
B ∈ Ω2(M) via:

X + ξ 7→ X + ξ + ιXB, X ∈ X(M), ξ ∈ Ω1(M).

A key feature of generalized complex geometry is that its symmetry group is
Diff(M) n Ω2

cl(M):

(Bu,Bv) = (u, v), [Bu,Bv] = B[u, v], B ∈ Ω2
cl(M).
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With respect to the Lie algebroids L and L−, the +i and −i-eigenbundles of a
generalized complex structure, we have two Lie algebroid differentials

d+ : Γ(∧•L∗)→ Γ(∧•+1L∗),

d− : Γ(∧•L∗−)→ Γ(∧•+1L∗−).

(TM ⊕ T ∗M)⊗ C = L⊕ L−. Unlike d = ∂ + ∂̄, no d+ + d−.

Definition

A function f ∈ C∞(M) on a generalized complex manifold (M,J ) is called a
generalized holomorphic function if it satisfies d−f = 0.

This definition is invariant under the B-transform. Under a B-transform,

L− 7→ B(L−), d− 7→ dB− = d− +B,

so if d−f = (X, ξ) = 0,
dB−f = (X, ξ +B(X)) = 0.
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Example

Let J be a complex structure on M . The endomorphism of TM ⊕ T ∗M

JJ =

(
J 0
0 −J∗

)
is a generalized complex structure on M . Its +i-eigenbundle

LJ = T 1,0M ⊕ (T ∗M)0,1

is integrable iff J is a complex structure. Moreover, we have

d− = ∂̄.

Thus f ∈ C∞(M) is a generalized holomorphic function if it is a holomorphic
function.
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Example

Consider the endomorphism

Jω =

(
0 −ω−1

ω 0

)
,

where ω is a symplectic structure on M . The +i-eigenbundle

Lω = {X − iω(X)|X ∈ TCM}.

is integrable iff dω = 0. In this case,

d− = d.

So a function f ∈ C∞(M) is generalized holomorphic if it is constant.
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Example

Let M be a complex manifold with a complex structure J . If there is a bivector
field β on M such that

J =

(
J β
0 −J∗

)
is a generalized complex structure on M , then π = J ◦ β + iβ is a holomorphic
Poisson structure on M , i.e.

π ∈ Γ(∧2T 1,0M), ∂̄π = 0, [π, π] = 0.

The +i-eigenbundle is

L = {Y +
β(η)

2i
+ η|Y ∈ T 1,0M,η ∈ (T 0,1M)∗}.

In this case,

d− = ∂̄ −
1

4
[π, ·].

Hence f is generalized holomorphic if it is a holomorphic Casimir function.
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(Generalized Darboux Theorem) Any regular point in a generalized complex
manifold has a neighborhood which is equivalent, up to a diffeomorphism and a
B-transform, to a product of an open set in Ck with an open set in the standard
symplectic space (R2n−2k, ω0), i.e.

(Up,J ) ∼= (V ×W, eB(JJ0 × Jω0 )e−B).

Choose the generalized Darboux coordinates (z, p, q). A function f : M → C is
generalized holomorphic iff

∂f

∂z̄λ
= 0,

∂f

∂pµ
=

∂f

∂qµ
= 0, λ = 1, · · · , k;µ = 1, · · · , n− k.
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A generalized holomorphic homeomorphism f : (M,JM )→ (N,JN ) is
homeomorphism sastifying(

f∗ 0
0 (f−1)∗

)
◦ JM = JN ◦

(
f∗ 0
0 (f−1)∗

)
.
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Generalized holomorphic vector bundles

Definition (Jia-Lang-Liu)

Suppose that M is a generalized complex manifold. A real vector bundle
π : E →M is called a generalized holomorphic vector bundle, if

(1) E is a generalized complex manifold;

(2) there is an open cover {Ui}i∈I of M and a family of local trivializations
{ϕi : E|Ui

= π−1(Ui)→ Ui × Cr}i∈I satisfying that ϕi for each i is a
generalized holomorphic homeomorphism, where Ui × Cr is associated with
the standard product generalized complex structure.
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Proposition

Let E be a real vector bundle on M with a family of local trivializations
{ϕi : π−1(Ui)→ Ui × R2r} and transition functions
ϕij = ϕi ◦ ϕ−1

j : Ui ∩ Uj → GL(2r,R). Then E is generalized holomorphic vector

bundle on M with the local trivialization {ϕi} if and only if

(1) ϕij(p) ∈ GL(r,C), so E is a complex vector bundle;

(2) each entry Aλµ : Ui ∩ Uj → C of ϕij = (Aλµ)r×r is a generalized
holomorphic function.
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Sketch of proof

E is a GHVB with local trivialization {ϕi} iff

ϕij = ϕi ◦ ϕ−1
j : Uij × Cr → Uij × Cr

is a generalized holomorphic homeomorphism for any fixed i, j. Namely,(
(ϕij)∗ 0

0 (ϕji)
∗

)
◦
(
J11 J12
J21 J22

)
=

(
J11 J12
J21 J22

)
◦
(

(ϕij)∗ 0
0 (ϕji)

∗

)
.

This guarantees that(
(ϕ−1
i )∗ 0
0 (ϕi)

∗

)
◦
(
J11 J12
J21 J22

)
◦
(

(ϕi)∗ 0

0 (ϕ−1
i )∗

)

gives a generalized complex structure on E|Ui
= π−1(Ui), independent of ϕi.
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Denote by (Cr, J0) and let

(
J β
B −J∗

)
be the generalized complex structure

(GCS) on M . Then the GCS J on Uij × Cr is expressed as

J11 =

(
J 0
0 J0

)
, J12 =

(
β 0
0 0

)
, J21 =

(
B 0
0 0

)
, J22 =

(
−J∗ 0

0 −J∗0

)
.

Unraveling the above equation, we get

(ϕij)∗(p,v) ◦ J11 = J11 ◦ (ϕij)∗(p,v);

(ϕij)∗(p,v) ◦ J12 = J12 ◦ (ϕji)
∗
(p,v);

(ϕji)
∗
(p,v) ◦ J21 = J21 ◦ (ϕij)∗(p,v);

(ϕji)
∗
(p,v) ◦ J22 = J22 ◦ (ϕji)∗(p,v).

This implies (1) and (2).
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Example

(1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is
a holomorphic vector bundle;

(2) A GHVB on a symplectic manifold is a complex vector bundle with a flat
connection.

Let M be a holomorphic Poisson manifold. A Poisson module is a locally
free sheaf O(E) with an action s 7→ {f, s} of the structure sheaf with the
properties

{f, gs} = {f, g}s+ g{f, s}, {{f, g}, s} = {f, {g, s}} − {g, {f, s}}.

(E is a Poisson module ⇐⇒ T ∗πM -module)

(3) A GHVB on a holomorphic Poisson manifold is a holomorphic bundle with a
Poisson module structure given by

{f, s} :=
r∑

λ=1

{f, sλ}Meλ, s|Ui
=

r∑
λ=1

sλeλ,

where {e1, · · · , er} is a basis of Γ(E|Ui
).
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Theorem

Let (M,J ) be a generalized complex manifold and let L− ⊂ TCM ⊕ T ∗CM be the
−i-eigenbundle of J . If E is a generalized holomorphic vector bundle on M , there

exists an L−-connection ∂L on E such that ∂
2
L = 0.

To define
∂L : Γ(E)→ Γ(L∗− ⊗ E),

let {e1, · · · , er} be a basis of Γ(E|Ui
). For any s|Ui

=
∑r
λ=1 sλeλ ∈ Γ(E|Ui

) with
sλ ∈ C∞(Ui),

∂L(s)|Ui
:=

r∑
λ=1

(d−sλ)⊗ eλ, (∂̄ 7→ d−).

It is well-defined since the transition functions are generalized holomorphic.
Does it work the other way around?
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Generalized holomorphic vector bundles in the literature

Definition (Gualtieri)

A generalized holomorphic bundle on a generalized complex manifold (M,J ) is a
vector bundle E with an L−-module, i.e., an operator D̄ : Γ(E)→ Γ(L∗− ⊗ E)
such that

D̄(fs) = d−(f)s+ fD̄s; D̄2 = 0

for f ∈ C∞(M) and s ∈ Γ(E).

In general, there is no generalized complex structure on the total space E, which
must relate with the Poisson str. on M : {f, g} = (d+f, d−g).

Under what conditions the total space E of a generalized holomorphic
bundle admits a generalized complex str. such that D̄ = ∂̄L?

What is the structure on the total space E in general?

The GCS on the product space needs to be discussed, which can be the
deformation of the product GCSs on Ui × Cr.
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Generalized holomorphic tangent and cotangent bundles

Proposition

Let (M,J ) be a regular generalized complex manifold. Then G∗M := L− ∩ T ∗CM
is a generalized holomorphic vector bundle on M , which is called the generalized
holomorphic cotangent bundle of M .

Generalized holomorphic tangent bundle GM := L ∩ TCM .

(1) When M is a complex manifold, we have G∗M = (T 1,0M)∗ and
GM = T 1,0M ;

(2) When M is a symplectic manifold, then G∗M is degenerated to a vector
bundle of rank 0 on M and GM = TM .

(3) For a regular holomorphic Poisson manifold (M,J ), GM = T 1,0M and
G∗M = kerπ] ∩ (T 1,0M)∗.

The regularity is not essential.
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A section s of a generalized holomorphic vector bundle is called generalized
holomorphic if ∂Ls = 0.
Choosing a local trivialization ϕ : E|U → U × Cr, a section s can be written
locally as

s = (s1, · · · , sr), si : U → C.

Then s is a generalized holomorphic if all si are generalized holomorphic functions
on M .
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The first jet bundle of a generalized holomorphic bundle

Denote by Γm(E) the space of local generalized holomorphic sections around m.
Two local sections φ, ψ ∈ Γm(E) are equivalent iff

φ(m) = ψ(m), φ∗m = ψ∗m.

We denote the equivalence class of φ at m as [φ]m. Define

J1E = {[φ]m|m ∈M,φ ∈ Γm(E)}.

Locally, φ ∼ ψ iff there exists a local coordinate system (E|Ui
, ϕi; z, p, q, u

α) such
that

∂uα ◦ φ
∂zλ

|m =
∂uα ◦ ψ
∂zλ

|m, α = 1, · · · r;λ = 1, · · · , k,

where ϕi : E|Ui
→ Ui × Cr is a local trivialization of E, (z, p, q) is a coordinate

system on Ui and (uα)rα=1 is a coordinate system along the fiber.
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Proposition

We have that J1E is a generalized holomorphic bundle on M and it fits into the
short exact sequence

0→ G∗M ⊗ E → J1E → E → 0

of generalized holomorphic bundles on M .
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Generalized holomorphic connections

Definition

Let E be a generalized holomorphic bundle on a generalized complex manifold M .
A generalized holomorphic connection on E is a complex linear map
D : E → G∗M ⊗ E (of sheaves) such that

D(fs) = d+f ⊗ s+ fD(s)

for all local generalized holomorphic function f on M and all local generalized
holomorphic section s on E.

Here E and G∗M denotes the sheaves of generalized holomorphic sections of E
and G∗M .
Since d+f + d−f = ρ∗(df) ∈ Γ(T ∗CM), we have d+f ∈ Γ(G∗M) and d−(d+f) = 0.

Lemma

Let E be a generalized holomorphic vector bundle on M . A complex linear map
D : E → G∗M ⊗ E is a generalized holomorphic connection on E iff DX preserves
generalized holomorphic sections of E, where X is a generalized holomorphic
vector field.
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1 When M is a complex manifold, a generalized holomorphic connection on E
is a holomorphic connection;

2 When M is a symplectic manifold, since G∗M is of rank 0, the generalized
holomorphic connection on E can only be zero (d+ = 0). It is also clear
from the first jet bundle.
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Atiyah classes I

With respect to a trivialization ϕi : π−1(Ui)→ Ui × Cr on E, we may write a
local generalized holomorphic connection on Ui × Cr in the form d+ +Ai, where
Ai is a matrix valued generalized holomorphic one-form on Ui. They can be glued
to a connection on E iff

ϕ−1
i ◦ (d+ +Ai) ◦ ϕi = ϕ−1

j ◦ (d+ +Aj) ◦ ϕj

on Uij , equivalently,

ϕ−1
j ◦ (ϕ−1

ij ◦ d+ ◦ ϕij − d+) ◦ ϕj = ϕ−1
j ◦Aj ◦ ϕj − ϕ

−1
i ◦Ai ◦ ϕi,

where ϕij = ϕi ◦ ϕ−1
j . Also, by the relation ϕij ◦ ϕjk ◦ ϕki = 1, the left hand side

of the above equation is actually a cocycle.

Definition

The Atiyah class
A(E) ∈ H1(M,G∗M ⊗ End(E))

of a generalized holomorphic vector bundle E on a generalized complex manifold
(M,J ) is given by the Čech cocycle

A(E) = {Uij , ϕ−1
j ◦ (ϕ−1

ij d+(ϕij)) ◦ ϕj},

where d+ is the Lie algebroid differential of the +i-eigenbundle L+ of J .
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Theorem

Let E be a generalized holomorphic bundle on a generalized complex manifold M .
Then E admits a generalized holomorphic connection iff the Atiyah class

A(E) ∈ H1(M,G∗M ⊗ End(E))

vanishes.
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Atiyah classes II

When M is a regular generalized complex manifold, we have another definition for
Atiyah classes. Recall the exact sequence of generalized holomorphic bundles on
M :

0→ G∗M ⊗ E → J1E → E → 0.

Definition

Let E be a generalized holomorphic vector bundle on a regular generalized
complex manifold M . The Atiyah class of E is defined to be the first extension
class of the above short exact sequence:

A(E) ∈ Ext1M (E,G∗M ⊗ E).
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Theorem

Let E be a generalized holomorphic bundle on a regular generalized complex
manifold M . Then E admits a generalized holomorphic connection if and only if
A(E) = 0, namely, the above short exact sequence splits.
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Atiyah classes III

Chen-Stienon-Xu, 2016
For a Lie pair (L,A) and an A-module E, Γ(A)× Γ(E)→ Γ(E),

(1) Extend the A-module structure to an L-connection ∇ on E, i.e.
∇ : Γ(L)× Γ(E)→ Γ(E);

(2) The curvature R∇ : ∧2L→ End(E) induces an element
R∇ ∈ Γ(A∗ ⊗A⊥ ⊗ End(E)), as R∇|∧2A = 0:

R∇(a, l̃) = ∇a∇l −∇l∇a −∇[a,l].

Proposition

R∇ is a 1-cocycle and [R∇] does not depend on the choice of ∇.

We call [R∇] ∈ H1(A,A⊥ ⊗ End(E)) the Atiyah class.

(TMC, T
0,1M), (TM,F ), (g, h), (TM ./ Mg,Mg).
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Let E be a generalized holomorphic vector bundle on a regular generalized
complex manifold M . Consider the Lie pair

(TCM,ρ(L−)),

A generalized holomorphic vector bundle E is an L−-module and thus a
ρ(L−)-module since 〈∂̄L, kerρ〉 = 0.
Note that

ρ(L−)⊥ = L− ∩ T ∗CM = G∗M.

So a get the Atiyah class

A(E) ∈ H1(ρ(L−), G∗M ⊗ End(E)).

Theorem

This Atiyah class vanishes iff there exists a generalized holomorphic connection on
the generalized holomorphic vector bundle E.
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Example

Let E be a generalized holomorphic vector bundle over a holomorphic Poisson
manifold (M,π).The Atiyah class vanishes iff there exists a holomorphic
connection on E such that DX = 0 for any Hamiltonian vector field X on M . In
other words, the connection 1-form takes values in the kernel of π.

This is different from the definition of the Atiyah class of a holomorphic vector
bundle E on a holomorphic Poisson manifold M defined by Chen-Liu-Xiang, 2019,
which vanishes iff there is a holomorphic (T ∗M)1,0-connection on E.
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Summary and Outlook

We considered a particular class of generalized holomorphic vector bundles and
studied the Atiyah class.

We may study the Atiyah class of Gualtieri’s generalized holomorphic vector
bundles. Now we have a Courant algebroid, which is the double of two Dirac
structures:

(TM ⊕ T ∗M)⊗ C = L⊕ L−,

and an L−-module E.
Can we define the Atiyah class of a Courant algebroid with a Dirac structure?
Problem: the curvature of a Courant connection is not function linear unless
∇Df = 0, too strong!
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Thanks for your attention!
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More discussion

Let C be a Courant algebroid over M and E a vector bundle over M . Then a
C-connection on E is a map:

∇ : Γ(E)→ Γ(C ⊗ E)

such that
∇(fe) = Df ⊗ e+ f∇e, ∀f ∈ C∞(M), e ∈ Γ(E),

where D : C∞(M)→ Γ(C) is given by D(f) = ρ∗df .
The curvature of the Courant algebroid connection ∇ is defined as

R∇ : Γ(∧2C)→ Γ(End(E)), R∇(c, c′)e = ∇c∇c′e−∇c′∇ce−∇[c,c′]e.

It is C∞(M)-linear with respect to e since [ρ(c), ρ(c′)] = ρ[c, c′]. The function
linear property relative to c fails because the Courant bracket has different Leibniz
rule from the Lie bracket.

Lemma

The curvature R ∈ Γ(∧2C ⊗ End(E)) iff ∇Df = 0 for all f ∈ C∞(M).
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Lemma

If the condition ∇Df = 0 holds for all f ∈ C∞(M), then we have the Bianchi
identity

∇(R∇) = 0.
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Let A be a regular Dirac structure of the Courant algebroid C, so A is a Lie
algebroid. Let E be an A-module. Let ∇ be an C-connection on E extending the
A-connection satisfying that ∇Df = 0 for all f ∈ C∞(M). If there is such an
extension, then we shall get a cohomology class of the Lie algebroid A.
The curvature of ∇ is a bundle map R∇ : ∧2C → EndE defined by

R∇(c, c′) = ∇c∇c′ −∇c′∇c −∇[c,c′].

As E is an A-module, so R∇ vanishes when restricting on ∧2A. Moreover, by the
fact that ∇Df = 0 and [Df, c] = − 1

2
Dρ(e)f , we know R∇(a,Df) = 0. Thus the

curvature induces a bundle map

R∇E : A ∧
C

A+Df
→ EndE

given by

R∇E (a, [c]) = R∇(a, c) = ∇a∇c −∇c∇a −∇[a,c], a ∈ Γ(A), c ∈ Γ(C).

Here we identify ( C
A+Df )∗ with ker ρA, which is a vector bundle since A is regular.
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Proposition

(1) The element R∇E ∈ Γ(A∗⊗ker ρA⊗End(E)) is a 1-cocycle in the cohomology
of the Lie algebroid A with values in the A-module ker ρA ⊗ End(E);

(2) The cohomology class αE ∈ H1(A, ker ρA ⊗End(E)) does not depend on the
choice of C-connection extending the A-module;

(3) The Atiyah class αE vanishes if and only if there exists an A-compatible
C-connection on E.
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Let (L,B) be a Lie algebroid pair. Namely, L is a Lie algebroid with a Lie
subalgebroid B. Let C = L⊕ L∗ be the associated Courant algebroid with the
trivial Lie algebroid structure on L∗ and let A = B ⊕B⊥. Then A is a regular
Dirac structure of C.
Let E be a B-module. It naturally is an A-module with the trivial B⊥-action.

Proposition

With the above notations, the Atiyah class of the Courant pair (C, A) with respect
to the A-module E is exactly the Atiyah class of the Lie pair (L,B) with respect
to the associated B-module E.
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