Atiyah classes for generalized holomorphic vector bundles

Honglei Lang, CAU. joint with X. Jia, Z. Liu

Workshop on Atiyah classes and related topics, Jan. 6-Jan. 9, 2020, Seoul, Korea

Plans:
(1) Atiyah classes for holomorphic vector bundles
(2) Generalized complex manifolds and generalized holomorphic functions
(3) Generalized holomorphic vector bundles
(4) Atiyah classes

Atiyah classes for holomorphic vector bundles

Atiyah class: obstruction of the existence of holomorphic connections on a holomorphic vector bundle.

Holomorphic vector bundles

Definition

Let M be a complex manifold. A holomorphic vector bundle of rank r on M is a complex manifold E with a holomorphic map

$$
\pi: E \rightarrow M
$$

and a $\operatorname{dim} r$ complex v.s. str. on $E_{x}=\pi^{-1}(x)$ satisfying: There exists an open covering $\left\{U_{i}\right\}$ of M and holomorphic homeomorphisms: $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{C}^{r}$ commuting with the projections to U_{i} such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^{r}$ is \mathbb{C}-linear.

Holomorphic vector bundles

Definition

Let M be a complex manifold. A holomorphic vector bundle of rank r on M is a complex manifold E with a holomorphic map

$$
\pi: E \rightarrow M
$$

and a $\operatorname{dim} r$ complex v.s. str. on $E_{x}=\pi^{-1}(x)$ satisfying: There exists an open covering $\left\{U_{i}\right\}$ of M and holomorphic homeomorphisms: $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{C}^{r}$ commuting with the projections to U_{i} such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^{r}$ is \mathbb{C}-linear.

A complex vb $\pi: E \rightarrow M$ is holomorphic
(1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.

Holomorphic vector bundles

Definition

Let M be a complex manifold. A holomorphic vector bundle of rank r on M is a complex manifold E with a holomorphic map

$$
\pi: E \rightarrow M
$$

and a $\operatorname{dim} r$ complex v.s. str. on $E_{x}=\pi^{-1}(x)$ satisfying: There exists an open covering $\left\{U_{i}\right\}$ of M and holomorphic homeomorphisms: $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{C}^{r}$ commuting with the projections to U_{i} such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^{r}$ is \mathbb{C}-linear.

A complex vb $\pi: E \rightarrow M$ is holomorphic
(1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.
(2) \Leftrightarrow if there is a flat $T^{0,1} M$-connection on E.

Holomorphic vector bundles

Definition

Let M be a complex manifold. A holomorphic vector bundle of rank r on M is a complex manifold E with a holomorphic map

$$
\pi: E \rightarrow M
$$

and a $\operatorname{dim} r$ complex v.s. str. on $E_{x}=\pi^{-1}(x)$ satisfying: There exists an open covering $\left\{U_{i}\right\}$ of M and holomorphic homeomorphisms: $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{C}^{r}$ commuting with the projections to U_{i} such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^{r}$ is \mathbb{C}-linear.

A complex vb $\pi: E \rightarrow M$ is holomorphic
(1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.
(2) \Leftrightarrow if there is a flat $T^{0,1} M$-connection on E.
\Rightarrow Let $\left.E\right|_{U_{i}} \cong U_{i} \times \mathbb{C}^{r}$ and let $\left\{e_{i}\right\}$ be a basis of $\Gamma\left(\left.E\right|_{U_{i}}\right)$. For $s=\sum_{\lambda} s_{\lambda} e_{\lambda}$ with $s_{\lambda} \in C^{\infty}\left(U_{i}\right)$, define

$$
\bar{\partial}: \Gamma(E) \rightarrow \Gamma\left(\left(T^{0,1} M\right)^{*} \otimes E\right), \quad s \mapsto \sum_{i} \bar{\partial}\left(s_{\lambda}\right) e_{\lambda}
$$

Holomorphic vector bundles

Definition

Let M be a complex manifold. A holomorphic vector bundle of rank r on M is a complex manifold E with a holomorphic map

$$
\pi: E \rightarrow M
$$

and a $\operatorname{dim} r$ complex v.s. str. on $E_{x}=\pi^{-1}(x)$ satisfying: There exists an open covering $\left\{U_{i}\right\}$ of M and holomorphic homeomorphisms: $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \cong U_{i} \times \mathbb{C}^{r}$ commuting with the projections to U_{i} such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^{r}$ is \mathbb{C}-linear.

A complex vb $\pi: E \rightarrow M$ is holomorphic
(1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.
(2) \Leftrightarrow if there is a flat $T^{0,1} M$-connection on E.
\Rightarrow Let $\left.E\right|_{U_{i}} \cong U_{i} \times \mathbb{C}^{r}$ and let $\left\{e_{i}\right\}$ be a basis of $\Gamma\left(\left.E\right|_{U_{i}}\right)$. For $s=\sum_{\lambda} s_{\lambda} e_{\lambda}$ with $s_{\lambda} \in C^{\infty}\left(U_{i}\right)$, define

$$
\bar{\partial}: \Gamma(E) \rightarrow \Gamma\left(\left(T^{0,1} M\right)^{*} \otimes E\right), \quad s \mapsto \sum_{i} \bar{\partial}\left(s_{\lambda}\right) e_{\lambda}
$$

\Leftarrow if there exists $D^{0,1}: \Gamma(E) \rightarrow \Gamma\left(\left(T^{0,1} M\right)^{*} \otimes E\right)$ such that $\left(D^{0,1}\right)^{2}=0$, then there is a unique holomorphic vector bundle str. on E such that $D^{0,1}=\bar{\partial}_{\overline{\bar{E}}}$,

A section $s: M \rightarrow E$ is holomorphic if it is a holomorphic map, or $\bar{\partial} s=0$.

A section $s: M \rightarrow E$ is holomorphic if it is a holomorphic map, or $\bar{\partial} s=0$.

Definition

Let E be a holomorphic bundle on a complex manifold M. A holomorphic connection on E is a \mathbb{C}-linear map (of sheaves) $D: E \rightarrow \Omega_{M} \otimes E$ with

$$
D(f s)=\partial(f) \otimes s+f D(s)
$$

for any local holomorphic function f of M and any local holomorphic section s of E.

Here E and Ω_{M} denote the sheaves of holomorphic sections of E and $\left(T^{1,0} M\right)^{*}$.

A section $s: M \rightarrow E$ is holomorphic if it is a holomorphic map, or $\bar{\partial} s=0$.

Definition

Let E be a holomorphic bundle on a complex manifold M. A holomorphic connection on E is a \mathbb{C}-linear map (of sheaves) $D: E \rightarrow \Omega_{M} \otimes E$ with

$$
D(f s)=\partial(f) \otimes s+f D(s)
$$

for any local holomorphic function f of M and any local holomorphic section s of E.

Here E and Ω_{M} denote the sheaves of holomorphic sections of E and $\left(T^{1,0} M\right)^{*}$.

- $D+\bar{\partial}$ defines an ordinary connection on E. But the (1,0)-part of an ordinary connection may not be a holomorphic connection.

A section $s: M \rightarrow E$ is holomorphic if it is a holomorphic map, or $\bar{\partial} s=0$.

Definition

Let E be a holomorphic bundle on a complex manifold M. A holomorphic connection on E is a \mathbb{C}-linear map (of sheaves) $D: E \rightarrow \Omega_{M} \otimes E$ with

$$
D(f s)=\partial(f) \otimes s+f D(s)
$$

for any local holomorphic function f of M and any local holomorphic section s of E.

Here E and Ω_{M} denote the sheaves of holomorphic sections of E and $\left(T^{1,0} M\right)^{*}$.

- $D+\bar{\partial}$ defines an ordinary connection on E. But the (1,0)-part of an ordinary connection may not be a holomorphic connection.
- D sends holomorphic sections of E to holomorphic sections of $\left(T^{1,0} M\right)^{*} \otimes E$. Or, for any holomorphic tangent vector field X, D_{X} preserves the holomorphic sections of E.

Let E be a holomorphic bundle and let $\left\{U_{i}\right\}$ be an open covering s.t. there exist holomorphic trivializations $\varphi_{i}:\left.E\right|_{U_{i}} \cong U_{i} \times \mathbb{C}^{r}$.
A local holomorphic connection on $U_{i} \times \mathbb{C}^{r}$ is $\partial+A_{i}$, where A_{i} is a matrix valued holomorphic 1-form on U_{i}. They can be glued to a connection on E iff

$$
\varphi_{i}^{-1} \circ\left(\partial+A_{i}\right) \circ \varphi_{i}=\varphi_{j}^{-1} \circ\left(\partial+A_{j}\right) \circ \varphi_{j}
$$

on $U_{i j}=U_{i} \cap U_{j}$, equivalently,

$$
\varphi_{j}^{-1} \circ\left(\varphi_{i j}^{-1} \circ \partial \circ \varphi_{i j}-\partial\right) \circ \varphi_{j}=\varphi_{j}^{-1} \circ A_{j} \circ \varphi_{j}-\varphi_{i}^{-1} \circ A_{i} \circ \varphi_{i},
$$

where $\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}$.
By the relation $\varphi_{i j} \circ \varphi_{j k} \circ \varphi_{k i}=1$, the left hand side is actually a Čech cocycle.

Let E be a holomorphic bundle and let $\left\{U_{i}\right\}$ be an open covering s.t. there exist holomorphic trivializations $\varphi_{i}:\left.E\right|_{U_{i}} \cong U_{i} \times \mathbb{C}^{r}$.
A local holomorphic connection on $U_{i} \times \mathbb{C}^{r}$ is $\partial+A_{i}$, where A_{i} is a matrix valued holomorphic 1-form on U_{i}. They can be glued to a connection on E iff

$$
\varphi_{i}^{-1} \circ\left(\partial+A_{i}\right) \circ \varphi_{i}=\varphi_{j}^{-1} \circ\left(\partial+A_{j}\right) \circ \varphi_{j}
$$

on $U_{i j}=U_{i} \cap U_{j}$, equivalently,

$$
\varphi_{j}^{-1} \circ\left(\varphi_{i j}^{-1} \circ \partial \circ \varphi_{i j}-\partial\right) \circ \varphi_{j}=\varphi_{j}^{-1} \circ A_{j} \circ \varphi_{j}-\varphi_{i}^{-1} \circ A_{i} \circ \varphi_{i},
$$

where $\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}$.
By the relation $\varphi_{i j} \circ \varphi_{j k} \circ \varphi_{k i}=1$, the left hand side is actually a Čech cocycle.

Definition

The Atiyah class

$$
A(E) \in \mathrm{H}^{1}\left(M, \Omega_{M} \otimes \operatorname{End}(E)\right)
$$

of the holomorphic bundle E is given by the Čech cocycle

$$
A(E)=\left\{U_{i j}, \varphi_{j}^{-1} \circ\left(\varphi_{i j}^{-1} d\left(\varphi_{i j}\right)\right) \circ \varphi_{j}\right\}
$$

Proposition (Atiyah)
A holomorphic bundle E admits a holomorphic connection iff its Atiyah class $A(E) \in \mathrm{H}^{1}\left(M, \Omega_{M} \otimes \operatorname{End}(E)\right)$ is trivial.

Proposition (Atiyah)

A holomorphic bundle E admits a holomorphic connection iff its Atiyah class $A(E) \in \mathrm{H}^{1}\left(M, \Omega_{M} \otimes \operatorname{End}(E)\right)$ is trivial.
$A(E)$ is related with the curvature of E.

Let (E, h) be a hermitian holomorphic vector bundle. A connection ∇ on E is called a Chern connection if

$$
\nabla h=0, \quad \nabla^{0,1}=\bar{\partial},
$$

where $\nabla=\nabla^{1,0}+\nabla^{0,1}: \Gamma(E) \rightarrow \Gamma\left(\left(\left(T^{*} M\right)^{1,0} \oplus\left(T^{*} M\right)^{0,1}\right) \otimes E\right)$.

Let (E, h) be a hermitian holomorphic vector bundle. A connection ∇ on E is called a Chern connection if

$$
\nabla h=0, \quad \nabla^{0,1}=\bar{\partial},
$$

where $\nabla=\nabla^{1,0}+\nabla^{0,1}: \Gamma(E) \rightarrow \Gamma\left(\left(\left(T^{*} M\right)^{1,0} \oplus\left(T^{*} M\right)^{0,1}\right) \otimes E\right)$.
The curvature of a Chern connection $F_{\nabla} \in \Omega^{1,1}(M) \otimes \operatorname{End}(E)$ and the Bianchi identity yields

$$
0=\left(\nabla\left(F_{\nabla}\right)\right)^{1,2}=\bar{\partial}\left(F_{\nabla}\right) .
$$

This gives rise to a Dolbeault cohomology class $\left[F_{\nabla}\right]$.

Let (E, h) be a hermitian holomorphic vector bundle. A connection ∇ on E is called a Chern connection if

$$
\nabla h=0, \quad \nabla^{0,1}=\bar{\partial},
$$

where $\nabla=\nabla^{1,0}+\nabla^{0,1}: \Gamma(E) \rightarrow \Gamma\left(\left(\left(T^{*} M\right)^{1,0} \oplus\left(T^{*} M\right)^{0,1}\right) \otimes E\right)$.
The curvature of a Chern connection $F_{\nabla} \in \Omega^{1,1}(M) \otimes \operatorname{End}(E)$ and the Bianchi identity yields

$$
0=\left(\nabla\left(F_{\nabla}\right)\right)^{1,2}=\bar{\partial}\left(F_{\nabla}\right) .
$$

This gives rise to a Dolbeault cohomology class $\left[F_{\nabla}\right]$.

Proposition

For the curvature F_{∇} of the Chern connection on a hermitian holomorphic vector bundle (E, h) one has

$$
\left[F_{\nabla}\right]=A(E) \in \mathrm{H}^{1}\left(M, \Omega_{M} \otimes \operatorname{End}(E)\right)
$$

Let E be a holomorphic vector bundle on a complex manifold M. Let $\mathfrak{J}^{1} E$ the vector bundle of the first jets of holomorphic sections of E. It fits into the short exact sequence

$$
0 \rightarrow \Omega_{M} \otimes E \rightarrow \mathfrak{J}^{1} E \rightarrow E \rightarrow 0
$$

of holomorphic vector bundles.
The Atiyah class of E is the extension class

$$
\alpha_{E} \in \operatorname{Ext}_{M}^{1}\left(E, \Omega_{M} \otimes E\right) \cong \mathrm{H}^{1}\left(M, \Omega_{M} \otimes \operatorname{End}(E)\right)
$$

Generalized complex manifolds and generalized holomorphic functions

Let M be a smooth manifold. On $T M \oplus T^{*} M$, there is a canonical bilinear form valued in $C^{\infty}(M)$:

$$
(X+\xi, Y+\eta)=\xi(Y)+\eta(X), \quad X, Y \in \mathfrak{X}(M), \xi, \eta \in \Omega^{1}(M)
$$

and a skew-symmetric bracket, called the Courant bracket:

$$
[X+\xi, Y+\eta]:=[X, Y]+\mathcal{L}_{X} \eta-\mathcal{L}_{Y} \xi-\frac{1}{2} d(\eta(X)-\xi(Y))
$$

Also we have the anchor $\rho: T M \oplus T^{*} M \rightarrow T M$, the projection.

Generalized complex manifolds and generalized holomorphic functions

Let M be a smooth manifold. On $T M \oplus T^{*} M$, there is a canonical bilinear form valued in $C^{\infty}(M)$:

$$
(X+\xi, Y+\eta)=\xi(Y)+\eta(X), \quad X, Y \in \mathfrak{X}(M), \xi, \eta \in \Omega^{1}(M)
$$

and a skew-symmetric bracket, called the Courant bracket:

$$
[X+\xi, Y+\eta]:=[X, Y]+\mathcal{L}_{X} \eta-\mathcal{L}_{Y} \xi-\frac{1}{2} d(\eta(X)-\xi(Y))
$$

Also we have the anchor $\rho: T M \oplus T^{*} M \rightarrow T M$, the projection.

Properties

- $[[u, v], w]+c \cdot p .=\frac{1}{6} d(([u, v], w)+([v, w], u)+([w, u], v)) ;$
- $[u, f v]=f[u, v]+\rho(u) f v-(u, v) d f ;$
- $\rho(u)(v, w)=([u, v]+d(u, v), w)+(v,[u, w]+d(u, w))$,
for $u, v, w \in \Gamma\left(T M \oplus T^{*} M\right)$.

Generalized complex manifolds and generalized holomorphic functions

Let M be a smooth manifold. On $T M \oplus T^{*} M$, there is a canonical bilinear form valued in $C^{\infty}(M)$:

$$
(X+\xi, Y+\eta)=\xi(Y)+\eta(X), \quad X, Y \in \mathfrak{X}(M), \xi, \eta \in \Omega^{1}(M)
$$

and a skew-symmetric bracket, called the Courant bracket:

$$
[X+\xi, Y+\eta]:=[X, Y]+\mathcal{L}_{X} \eta-\mathcal{L}_{Y} \xi-\frac{1}{2} d(\eta(X)-\xi(Y))
$$

Also we have the anchor $\rho: T M \oplus T^{*} M \rightarrow T M$, the projection.

Properties

- $[[u, v], w]+c \cdot p .=\frac{1}{6} d(([u, v], w)+([v, w], u)+([w, u], v)) ;$
- $[u, f v]=f[u, v]+\rho(u) f v-(u, v) d f ;$
- $\rho(u)(v, w)=([u, v]+d(u, v), w)+(v,[u, w]+d(u, w))$, for $u, v, w \in \Gamma\left(T M \oplus T^{*} M\right)$.
—— Courant algebroid $(\mathcal{C},(\cdot, \cdot),[\cdot, \cdot], \rho)$ Liu-Xu-Weinstein 97.

Definition (Hitchin, Gualtieri)

A generalized complex structure on M is an endomorphism \mathcal{J} of $T M \oplus T^{*} M$ such that

- $\mathcal{J}^{2}=-1$;
- $(\mathcal{J} u, \mathcal{J} v)=(u, v)$;
- the $+i$-eigenbundle $L \subset\left(T M \oplus T^{*} M\right) \otimes \mathbb{C}$ of \mathcal{J} is closed under the Courant bracket (integrability condition).

In block-diagonal form, a skew-adjoint transformation on $T M \oplus T^{*} M$ is

$$
\mathcal{J}=\left(\begin{array}{cc}
J & \beta \\
B & -J^{*}
\end{array}\right)
$$

where $J \in \operatorname{End}(T M)$ and $B \in \Omega^{2}(M)$ and $\beta \in \mathfrak{X}^{2}(M)$.

In block-diagonal form, a skew-adjoint transformation on $T M \oplus T^{*} M$ is

$$
\mathcal{J}=\left(\begin{array}{cc}
J & \beta \\
B & -J^{*}
\end{array}\right)
$$

where $J \in \operatorname{End}(T M)$ and $B \in \Omega^{2}(M)$ and $\beta \in \mathfrak{X}^{2}(M)$.
A B-field transform is an automorphism of $T M \oplus T^{*} M$ given by a 2 -form $B \in \Omega^{2}(M)$ via:

$$
X+\xi \mapsto X+\xi+\iota_{X} B, \quad X \in \mathfrak{X}(M), \xi \in \Omega^{1}(M)
$$

In block-diagonal form, a skew-adjoint transformation on $T M \oplus T^{*} M$ is

$$
\mathcal{J}=\left(\begin{array}{cc}
J & \beta \\
B & -J^{*}
\end{array}\right)
$$

where $J \in \operatorname{End}(T M)$ and $B \in \Omega^{2}(M)$ and $\beta \in \mathfrak{X}^{2}(M)$.
A B-field transform is an automorphism of $T M \oplus T^{*} M$ given by a 2 -form $B \in \Omega^{2}(M)$ via:

$$
X+\xi \mapsto X+\xi+\iota_{X} B, \quad X \in \mathfrak{X}(M), \xi \in \Omega^{1}(M)
$$

A key feature of generalized complex geometry is that its symmetry group is $\operatorname{Diff}(M) \ltimes \Omega_{c l}^{2}(M)$:

$$
(B u, B v)=(u, v), \quad[B u, B v]=B[u, v], \quad B \in \Omega_{c l}^{2}(M)
$$

With respect to the Lie algebroids L and L_{-}, the $+i$ and $-i$-eigenbundles of a generalized complex structure, we have two Lie algebroid differentials

$$
\begin{aligned}
& d_{+}: \Gamma\left(\wedge^{\bullet} L^{*}\right) \rightarrow \Gamma\left(\wedge^{\bullet+1} L^{*}\right) \\
& d_{-}: \Gamma\left(\wedge^{\bullet} L_{-}^{*}\right) \rightarrow \Gamma\left(\wedge^{\bullet+1} L_{-}^{*}\right)
\end{aligned}
$$

$\left(T M \oplus T^{*} M\right) \otimes \mathbb{C}=L \oplus L_{-}$. Unlike $d=\partial+\bar{\partial}$, no $d_{+}+d_{-}$.

With respect to the Lie algebroids L and L_{-}, the $+i$ and $-i$-eigenbundles of a generalized complex structure, we have two Lie algebroid differentials

$$
\begin{aligned}
& d_{+}: \Gamma\left(\wedge^{\bullet} L^{*}\right) \rightarrow \Gamma\left(\wedge^{\bullet+1} L^{*}\right) \\
& d_{-}: \Gamma\left(\wedge^{\bullet} L_{-}^{*}\right) \rightarrow \Gamma\left(\wedge^{\bullet+1} L_{-}^{*}\right)
\end{aligned}
$$

$\left(T M \oplus T^{*} M\right) \otimes \mathbb{C}=L \oplus L_{-}$. Unlike $d=\partial+\bar{\partial}$, no $d_{+}+d_{-}$.

Definition

A function $f \in C^{\infty}(M)$ on a generalized complex manifold (M, \mathcal{J}) is called a generalized holomorphic function if it satisfies $d_{-} f=0$.

This definition is invariant under the B-transform. Under a B-transform,

$$
L_{-} \mapsto B\left(L_{-}\right), \quad d_{-} \mapsto d_{-}^{B}=d_{-}+B
$$

so if $d_{-} f=(X, \xi)=0$,

$$
d_{-}^{B} f=(X, \xi+B(X))=0 .
$$

Example

Let J be a complex structure on M. The endomorphism of $T M \oplus T^{*} M$

$$
\mathcal{J}_{J}=\left(\begin{array}{cc}
J & 0 \\
0 & -J^{*}
\end{array}\right)
$$

is a generalized complex structure on M. Its $+i$-eigenbundle

$$
L_{J}=T^{1,0} M \oplus\left(T^{*} M\right)^{0,1}
$$

is integrable iff J is a complex structure. Moreover, we have

$$
d_{-}=\bar{\partial}
$$

Thus $f \in C^{\infty}(M)$ is a generalized holomorphic function if it is a holomorphic function.

Example

Consider the endomorphism

$$
\mathcal{J}_{\omega}=\left(\begin{array}{cc}
0 & -\omega^{-1} \\
\omega & 0
\end{array}\right)
$$

where ω is a symplectic structure on M. The $+i$-eigenbundle

$$
L_{\omega}=\left\{X-i \omega(X) \mid X \in T_{\mathbb{C}} M\right\}
$$

is integrable iff $d \omega=0$. In this case,

$$
d_{-}=d .
$$

So a function $f \in C^{\infty}(M)$ is generalized holomorphic if it is constant.

Example

Let M be a complex manifold with a complex structure J. If there is a bivector field β on M such that

$$
\mathcal{J}=\left(\begin{array}{cc}
J & \beta \\
0 & -J^{*}
\end{array}\right)
$$

is a generalized complex structure on M, then $\pi=J \circ \beta+i \beta$ is a holomorphic Poisson structure on M, i.e.

$$
\pi \in \Gamma\left(\wedge^{2} T^{1,0} M\right), \quad \bar{\partial} \pi=0, \quad[\pi, \pi]=0
$$

The $+i$-eigenbundle is

$$
L=\left\{\left.Y+\frac{\beta(\eta)}{2 i}+\eta \right\rvert\, Y \in T^{1,0} M, \eta \in\left(T^{0,1} M\right)^{*}\right\}
$$

In this case,

$$
d_{-}=\bar{\partial}-\frac{1}{4}[\pi, \cdot]
$$

Hence f is generalized holomorphic if it is a holomorphic Casimir function.
(Generalized Darboux Theorem) Any regular point in a generalized complex manifold has a neighborhood which is equivalent, up to a diffeomorphism and a B-transform, to a product of an open set in \mathbb{C}^{k} with an open set in the standard symplectic space $\left(\mathbb{R}^{2 n-2 k}, \omega_{0}\right)$, i.e.

$$
\left(U_{p}, \mathcal{J}\right) \cong\left(V \times W, e^{B}\left(\mathcal{J}_{J_{0}} \times \mathcal{J}_{\omega_{0}}\right) e^{-B}\right)
$$

(Generalized Darboux Theorem) Any regular point in a generalized complex manifold has a neighborhood which is equivalent, up to a diffeomorphism and a B-transform, to a product of an open set in \mathbb{C}^{k} with an open set in the standard symplectic space $\left(\mathbb{R}^{2 n-2 k}, \omega_{0}\right)$, i.e.

$$
\left(U_{p}, \mathcal{J}\right) \cong\left(V \times W, e^{B}\left(\mathcal{J}_{J_{0}} \times \mathcal{J}_{\omega_{0}}\right) e^{-B}\right)
$$

Choose the generalized Darboux coordinates (z, p, q). A function $f: M \rightarrow \mathbb{C}$ is generalized holomorphic iff

$$
\frac{\partial f}{\partial \bar{z}_{\lambda}}=0, \quad \frac{\partial f}{\partial p_{\mu}}=\frac{\partial f}{\partial q_{\mu}}=0, \quad \lambda=1, \cdots, k ; \mu=1, \cdots, n-k .
$$

A generalized holomorphic homeomorphism $f:\left(M, \mathcal{J}_{M}\right) \rightarrow\left(N, \mathcal{J}_{N}\right)$ is homeomorphism sastifying

$$
\left(\begin{array}{cc}
f_{*} & 0 \\
0 & \left(f^{-1}\right)^{*}
\end{array}\right) \circ \mathcal{J}_{M}=\mathcal{J}_{N} \circ\left(\begin{array}{cc}
f_{*} & 0 \\
0 & \left(f^{-1}\right)^{*}
\end{array}\right) .
$$

Generalized holomorphic vector bundles

Definition (Jia-Lang-Liu)

Suppose that M is a generalized complex manifold. A real vector bundle $\pi: E \rightarrow M$ is called a generalized holomorphic vector bundle, if
(1) E is a generalized complex manifold;
(2) there is an open cover $\left\{U_{i}\right\}_{i \in I}$ of M and a family of local trivializations $\left\{\varphi_{i}:\left.E\right|_{U_{i}}=\pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{r}\right\}_{i \in I}$ satisfying that φ_{i} for each i is a generalized holomorphic homeomorphism, where $U_{i} \times \mathbb{C}^{r}$ is associated with the standard product generalized complex structure.

Proposition

Let E be a real vector bundle on M with a family of local trivializations $\left\{\varphi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{R}^{2 r}\right\}$ and transition functions $\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}: U_{i} \cap U_{j} \rightarrow \mathrm{GL}(2 r, \mathbb{R})$. Then E is generalized holomorphic vector bundle on M with the local trivialization $\left\{\varphi_{i}\right\}$ if and only if
(1) $\varphi_{i j}(p) \in \operatorname{GL}(r, \mathbb{C})$, so E is a complex vector bundle;
(2) each entry $A_{\lambda \mu}: U_{i} \cap U_{j} \rightarrow \mathbb{C}$ of $\varphi_{i j}=\left(A_{\lambda \mu}\right)_{r \times r}$ is a generalized holomorphic function.

Sketch of proof

E is a GHVB with local trivialization $\left\{\varphi_{i}\right\}$ iff

$$
\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}: U_{i j} \times \mathbb{C}^{r} \rightarrow U_{i j} \times \mathbb{C}^{r}
$$

is a generalized holomorphic homeomorphism for any fixed i, j. Namely,

$$
\left(\begin{array}{cc}
\left(\varphi_{i j}\right)_{*} & 0 \\
0 & \left(\varphi_{j i}\right)^{*}
\end{array}\right) \circ\left(\begin{array}{ll}
\mathcal{J}_{11} & \mathcal{J}_{12} \\
\mathcal{J}_{21} & \mathcal{J}_{22}
\end{array}\right)=\left(\begin{array}{cc}
\mathcal{J}_{11} & \mathcal{J}_{12} \\
\mathcal{J}_{21} & \mathcal{J}_{22}
\end{array}\right) \circ\left(\begin{array}{cc}
\left(\varphi_{i j}\right)_{*} & 0 \\
0 & \left(\varphi_{j i}\right)^{*}
\end{array}\right) .
$$

This guarantees that

$$
\left(\begin{array}{cc}
\left(\varphi_{i}^{-1}\right)_{*} & 0 \\
0 & \left(\varphi_{i}\right)^{*}
\end{array}\right) \circ\left(\begin{array}{ll}
\mathcal{J}_{11} & \mathcal{J}_{12} \\
\mathcal{J}_{21} & \mathcal{J}_{22}
\end{array}\right) \circ\left(\begin{array}{cc}
\left(\varphi_{i}\right)_{*} & 0 \\
0 & \left(\varphi_{i}^{-1}\right)^{*}
\end{array}\right)
$$

gives a generalized complex structure on $\left.E\right|_{U_{i}}=\pi^{-1}\left(U_{i}\right)$, independent of φ_{i}.

Denote by $\left(\mathbb{C}^{r}, J_{0}\right)$ and let $\left(\begin{array}{cc}J & \beta \\ B & -J^{*}\end{array}\right)$ be the generalized complex structure (GCS) on M. Then the GCS \mathcal{J} on $U_{i j} \times \mathbb{C}^{r}$ is expressed as

$$
\mathcal{J}_{11}=\left(\begin{array}{ll}
J & 0 \\
0 & J_{0}
\end{array}\right), \quad \mathcal{J}_{12}=\left(\begin{array}{cc}
\beta & 0 \\
0 & 0
\end{array}\right), \quad \mathcal{J}_{21}=\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right), \quad \mathcal{J}_{22}=\left(\begin{array}{cc}
-J^{*} & 0 \\
0 & -J_{0}^{*}
\end{array}\right) .
$$

Unraveling the above equation, we get

$$
\begin{aligned}
\left(\varphi_{i j}\right)_{*(p, v)} \circ \mathcal{J}_{11} & =\mathcal{J}_{11} \circ\left(\varphi_{i j}\right)_{*(p, v)} ; \\
\left(\varphi_{i j}\right)_{*(p, v)} \circ \mathcal{J}_{12} & =\mathcal{J}_{12} \circ\left(\varphi_{j i}\right)_{(p, v)}^{*} ; \\
\left(\varphi_{j i}\right)_{(p, v)}^{*} \circ \mathcal{J}_{21} & =\mathcal{J}_{21} \circ\left(\varphi_{i j}\right)_{*(p, v)} ; \\
\left(\varphi_{j i}\right)_{(p, v)}^{*} \circ \mathcal{J}_{22} & =\mathcal{J}_{22} \circ\left(\varphi_{j i}\right)_{*(p, v)} .
\end{aligned}
$$

This implies (1) and (2).

Example

(1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is a holomorphic vector bundle;
(2) A GHVB on a symplectic manifold is a complex vector bundle with a flat connection.

Example

(1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is a holomorphic vector bundle;
(2) A GHVB on a symplectic manifold is a complex vector bundle with a flat connection.
Let M be a holomorphic Poisson manifold. A Poisson module is a locally free sheaf $\mathcal{O}(E)$ with an action $s \mapsto\{f, s\}$ of the structure sheaf with the properties

$$
\{f, g s\}=\{f, g\} s+g\{f, s\}, \quad\{\{f, g\}, s\}=\{f,\{g, s\}\}-\{g,\{f, s\}\} .
$$

(E is a Poisson module $\Longleftrightarrow T_{\pi}^{*} M$-module)

Example

(1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is a holomorphic vector bundle;
(2) A GHVB on a symplectic manifold is a complex vector bundle with a flat connection.
Let M be a holomorphic Poisson manifold. A Poisson module is a locally free sheaf $\mathcal{O}(E)$ with an action $s \mapsto\{f, s\}$ of the structure sheaf with the properties

$$
\{f, g s\}=\{f, g\} s+g\{f, s\}, \quad\{\{f, g\}, s\}=\{f,\{g, s\}\}-\{g,\{f, s\}\} .
$$

(E is a Poisson module $\Longleftrightarrow T_{\pi}^{*} M$-module)
(3) A GHVB on a holomorphic Poisson manifold is a holomorphic bundle with a Poisson module structure given by

$$
\{f, s\}:=\sum_{\lambda=1}^{r}\left\{f, s_{\lambda}\right\}_{M} e_{\lambda},\left.\quad s\right|_{U_{i}}=\sum_{\lambda=1}^{r} s_{\lambda} e_{\lambda},
$$

where $\left\{e_{1}, \cdots, e_{r}\right\}$ is a basis of $\Gamma\left(\left.E\right|_{U_{i}}\right)$.

Theorem

Let (M, \mathcal{J}) be a generalized complex manifold and let $L_{-} \subset T_{\mathbb{C}} M \oplus T_{\mathbb{C}}^{*} M$ be the $-i$-eigenbundle of \mathcal{J}. If E is a generalized holomorphic vector bundle on M, there exists an L_{-}-connection $\bar{\partial}_{L}$ on E such that $\bar{\partial}_{L}^{2}=0$.

Theorem

Let (M, \mathcal{J}) be a generalized complex manifold and let $L_{-} \subset T_{\mathbb{C}} M \oplus T_{\mathbb{C}}^{*} M$ be the $-i$-eigenbundle of \mathcal{J}. If E is a generalized holomorphic vector bundle on M, there exists an L_{-}-connection $\bar{\partial}_{L}$ on E such that $\bar{\partial}_{L}^{2}=0$.

To define

$$
\bar{\partial}_{L}: \Gamma(E) \rightarrow \Gamma\left(L_{-}^{*} \otimes E\right),
$$

let $\left\{e_{1}, \cdots, e_{r}\right\}$ be a basis of $\Gamma\left(\left.E\right|_{U_{i}}\right)$. For any $\left.s\right|_{U_{i}}=\sum_{\lambda=1}^{r} s_{\lambda} e_{\lambda} \in \Gamma\left(\left.E\right|_{U_{i}}\right)$ with $s_{\lambda} \in C^{\infty}\left(U_{i}\right)$,

$$
\left.\bar{\partial}_{L}(s)\right|_{U_{i}}:=\sum_{\lambda=1}^{r}\left(d_{-} s_{\lambda}\right) \otimes e_{\lambda}, \quad\left(\bar{\partial} \mapsto d_{-}\right)
$$

It is well-defined since the transition functions are generalized holomorphic.

Theorem

Let (M, \mathcal{J}) be a generalized complex manifold and let $L_{-} \subset T_{\mathbb{C}} M \oplus T_{\mathbb{C}}^{*} M$ be the $-i$-eigenbundle of \mathcal{J}. If E is a generalized holomorphic vector bundle on M, there exists an L_{-}-connection $\bar{\partial}_{L}$ on E such that $\bar{\partial}_{L}^{2}=0$.

To define

$$
\bar{\partial}_{L}: \Gamma(E) \rightarrow \Gamma\left(L_{-}^{*} \otimes E\right),
$$

let $\left\{e_{1}, \cdots, e_{r}\right\}$ be a basis of $\Gamma\left(\left.E\right|_{U_{i}}\right)$. For any $\left.s\right|_{U_{i}}=\sum_{\lambda=1}^{r} s_{\lambda} e_{\lambda} \in \Gamma\left(\left.E\right|_{U_{i}}\right)$ with $s_{\lambda} \in C^{\infty}\left(U_{i}\right)$,

$$
\left.\bar{\partial}_{L}(s)\right|_{U_{i}}:=\sum_{\lambda=1}^{r}\left(d_{-} s_{\lambda}\right) \otimes e_{\lambda}, \quad\left(\bar{\partial} \mapsto d_{-}\right) .
$$

It is well-defined since the transition functions are generalized holomorphic.
Does it work the other way around?

Generalized holomorphic vector bundles in the literature

Definition (Gualtieri)

A generalized holomorphic bundle on a generalized complex manifold (M, \mathcal{J}) is a vector bundle E with an L_{-}-module, i.e., an operator $\bar{D}: \Gamma(E) \rightarrow \Gamma\left(L_{-}^{*} \otimes E\right)$ such that

$$
\bar{D}(f s)=d_{-}(f) s+f \bar{D} s ; \quad \bar{D}^{2}=0
$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.

Generalized holomorphic vector bundles in the literature

Definition (Gualtieri)
A generalized holomorphic bundle on a generalized complex manifold (M, \mathcal{J}) is a vector bundle E with an L_{-}-module, i.e., an operator $\bar{D}: \Gamma(E) \rightarrow \Gamma\left(L_{-}^{*} \otimes E\right)$ such that

$$
\bar{D}(f s)=d_{-}(f) s+f \bar{D} s ; \quad \bar{D}^{2}=0
$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.
In general, there is no generalized complex structure on the total space E, which must relate with the Poisson str. on $M:\{f, g\}=\left(d_{+} f, d_{-} g\right)$.

- Under what conditions the total space E of a generalized holomorphic bundle admits a generalized complex str. such that $\bar{D}=\bar{\partial}_{L}$?
- What is the structure on the total space E in general?

Generalized holomorphic vector bundles in the literature

Definition (Gualtieri)

A generalized holomorphic bundle on a generalized complex manifold (M, \mathcal{J}) is a vector bundle E with an L_{-}-module, i.e., an operator $\bar{D}: \Gamma(E) \rightarrow \Gamma\left(L_{-}^{*} \otimes E\right)$ such that

$$
\bar{D}(f s)=d_{-}(f) s+f \bar{D} s ; \quad \bar{D}^{2}=0
$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.
In general, there is no generalized complex structure on the total space E, which must relate with the Poisson str. on $M:\{f, g\}=\left(d_{+} f, d_{-} g\right)$.

- Under what conditions the total space E of a generalized holomorphic bundle admits a generalized complex str. such that $\bar{D}=\bar{\partial}_{L}$?
- What is the structure on the total space E in general?

The GCS on the product space needs to be discussed, which can be the deformation of the product GCSs on $U_{i} \times \mathbb{C}^{r}$.

Generalized holomorphic tangent and cotangent bundles

Proposition

Let (M, \mathcal{J}) be a regular generalized complex manifold. Then $G^{*} M:=L_{-} \cap T_{\mathbb{C}}^{*} M$ is a generalized holomorphic vector bundle on M, which is called the generalized holomorphic cotangent bundle of M.

Generalized holomorphic tangent bundle $G M:=L \cap T_{\mathbb{C}} M$.

Generalized holomorphic tangent and cotangent bundles

Proposition

Let (M, \mathcal{J}) be a regular generalized complex manifold. Then $G^{*} M:=L_{-} \cap T_{\mathbb{C}}^{*} M$ is a generalized holomorphic vector bundle on M, which is called the generalized holomorphic cotangent bundle of M.

Generalized holomorphic tangent bundle $G M:=L \cap T_{\mathbb{C}} M$.
(1) When M is a complex manifold, we have $G^{*} M=\left(T^{1,0} M\right)^{*}$ and $G M=T^{1,0} M$;
(2) When M is a symplectic manifold, then $G^{*} M$ is degenerated to a vector bundle of rank 0 on M and $G M=T M$.
(3) For a regular holomorphic Poisson manifold $(M, \mathcal{J}), G M=T^{1,0} M$ and $G^{*} M=\operatorname{ker} \pi^{\sharp} \cap\left(T^{1,0} M\right)^{*}$.
The regularity is not essential.

A section s of a generalized holomorphic vector bundle is called generalized holomorphic if $\bar{\partial}_{L} s=0$.
Choosing a local trivialization $\varphi:\left.E\right|_{U} \rightarrow U \times \mathbb{C}^{r}$, a section s can be written locally as

$$
s=\left(s_{1}, \cdots, s_{r}\right), \quad s_{i}: U \rightarrow \mathbb{C}
$$

Then s is a generalized holomorphic if all s_{i} are generalized holomorphic functions on M.

The first jet bundle of a generalized holomorphic bundle

Denote by $\Gamma_{m}(E)$ the space of local generalized holomorphic sections around m. Two local sections $\phi, \psi \in \Gamma_{m}(E)$ are equivalent iff

$$
\phi(m)=\psi(m), \quad \phi_{* m}=\psi_{* m} .
$$

We denote the equivalence class of ϕ at m as $[\phi]_{m}$. Define

$$
\mathfrak{J}^{1} E=\left\{[\phi]_{m} \mid m \in M, \phi \in \Gamma_{m}(E)\right\} .
$$

Locally, $\phi \sim \psi$ iff there exists a local coordinate system $\left(\left.E\right|_{U_{i}}, \varphi_{i} ; z, p, q, u^{\alpha}\right)$ such that

$$
\left.\frac{\partial u^{\alpha} \circ \phi}{\partial z_{\lambda}}\right|_{m}=\left.\frac{\partial u^{\alpha} \circ \psi}{\partial z_{\lambda}}\right|_{m}, \quad \alpha=1, \cdots r ; \lambda=1, \cdots, k,
$$

where $\varphi_{i}:\left.E\right|_{U_{i}} \rightarrow U_{i} \times \mathbb{C}^{r}$ is a local trivialization of $E,(z, p, q)$ is a coordinate system on U_{i} and $\left(u^{\alpha}\right)_{\alpha=1}^{r}$ is a coordinate system along the fiber.

Proposition

We have that $\mathfrak{J}^{1} E$ is a generalized holomorphic bundle on M and it fits into the short exact sequence

$$
0 \rightarrow G^{*} M \otimes E \rightarrow \mathfrak{J}^{1} E \rightarrow E \rightarrow 0
$$

of generalized holomorphic bundles on M.

Generalized holomorphic connections

Definition

Let E be a generalized holomorphic bundle on a generalized complex manifold M. A generalized holomorphic connection on E is a complex linear map $D: E \rightarrow G^{*} M \otimes E$ (of sheaves) such that

$$
D(f s)=d_{+} f \otimes s+f D(s)
$$

for all local generalized holomorphic function f on M and all local generalized holomorphic section s on E.

Here E and $G^{*} M$ denotes the sheaves of generalized holomorphic sections of E and $G^{*} M$.
Since $d_{+} f+d_{-} f=\rho^{*}(d f) \in \Gamma\left(T_{\mathbb{C}}^{*} M\right)$, we have $d_{+} f \in \Gamma\left(G^{*} M\right)$ and $d_{-}\left(d_{+} f\right)=0$.

Generalized holomorphic connections

Definition

Let E be a generalized holomorphic bundle on a generalized complex manifold M. A generalized holomorphic connection on E is a complex linear map $D: E \rightarrow G^{*} M \otimes E$ (of sheaves) such that

$$
D(f s)=d_{+} f \otimes s+f D(s)
$$

for all local generalized holomorphic function f on M and all local generalized holomorphic section s on E.

Here E and $G^{*} M$ denotes the sheaves of generalized holomorphic sections of E and $G^{*} M$.
Since $d_{+} f+d_{-} f=\rho^{*}(d f) \in \Gamma\left(T_{\mathbb{C}}^{*} M\right)$, we have $d_{+} f \in \Gamma\left(G^{*} M\right)$ and $d_{-}\left(d_{+} f\right)=0$.

Lemma

Let E be a generalized holomorphic vector bundle on M. A complex linear map $D: E \rightarrow G^{*} M \otimes E$ is a generalized holomorphic connection on E iff D_{X} preserves generalized holomorphic sections of E, where X is a generalized holomorphic vector field.
(1) When M is a complex manifold, a generalized holomorphic connection on E is a holomorphic connection;
(2) When M is a symplectic manifold, since $G^{*} M$ is of rank 0 , the generalized holomorphic connection on E can only be zero $\left(d_{+}=0\right)$. It is also clear from the first jet bundle.

Atiyah classes I

With respect to a trivialization $\varphi_{i}: \pi^{-1}\left(U_{i}\right) \rightarrow U_{i} \times \mathbb{C}^{r}$ on E, we may write a local generalized holomorphic connection on $U_{i} \times \mathbb{C}^{r}$ in the form $d_{+}+A_{i}$, where A_{i} is a matrix valued generalized holomorphic one-form on U_{i}. They can be glued to a connection on E iff

$$
\varphi_{i}^{-1} \circ\left(d_{+}+A_{i}\right) \circ \varphi_{i}=\varphi_{j}^{-1} \circ\left(d_{+}+A_{j}\right) \circ \varphi_{j}
$$

on $U_{i j}$, equivalently,

$$
\varphi_{j}^{-1} \circ\left(\varphi_{i j}^{-1} \circ d_{+} \circ \varphi_{i j}-d_{+}\right) \circ \varphi_{j}=\varphi_{j}^{-1} \circ A_{j} \circ \varphi_{j}-\varphi_{i}^{-1} \circ A_{i} \circ \varphi_{i},
$$

where $\varphi_{i j}=\varphi_{i} \circ \varphi_{j}^{-1}$. Also, by the relation $\varphi_{i j} \circ \varphi_{j k} \circ \varphi_{k i}=1$, the left hand side of the above equation is actually a cocycle.

Definition

The Atiyah class

$$
A(E) \in \mathrm{H}^{1}\left(M, G^{*} M \otimes \operatorname{End}(E)\right)
$$

of a generalized holomorphic vector bundle E on a generalized complex manifold (M, \mathcal{J}) is given by the C Cech cocycle

$$
A(E)=\left\{U_{i j}, \varphi_{j}^{-1} \circ\left(\varphi_{i j}^{-1} d_{+}\left(\varphi_{i j}\right)\right) \circ \varphi_{j}\right\}
$$

where d_{+}is the Lie algebroid differential of the $+i$-eigenbundle L_{+}of \mathcal{J}.

Theorem

Let E be a generalized holomorphic bundle on a generalized complex manifold M. Then E admits a generalized holomorphic connection iff the Atiyah class

$$
A(E) \in \mathrm{H}^{1}\left(M, G^{*} M \otimes \operatorname{End}(E)\right)
$$

vanishes.

Atiyah classes II

When M is a regular generalized complex manifold, we have another definition for Atiyah classes. Recall the exact sequence of generalized holomorphic bundles on M:

$$
0 \rightarrow G^{*} M \otimes E \rightarrow \mathfrak{J}^{1} E \rightarrow E \rightarrow 0
$$

Definition

Let E be a generalized holomorphic vector bundle on a regular generalized complex manifold M. The Atiyah class of E is defined to be the first extension class of the above short exact sequence:

$$
A(E) \in \operatorname{Ext}_{M}^{1}\left(E, G^{*} M \otimes E\right)
$$

Theorem

Let E be a generalized holomorphic bundle on a regular generalized complex manifold M. Then E admits a generalized holomorphic connection if and only if $A(E)=0$, namely, the above short exact sequence splits.

Atiyah classes III

Chen-Stienon-Xu, 2016
For a Lie pair (L, A) and an A-module $E, \Gamma(A) \times \Gamma(E) \rightarrow \Gamma(E)$,
(1) Extend the A-module structure to an L-connection ∇ on E, i.e.

$$
\nabla: \Gamma(L) \times \Gamma(E) \rightarrow \Gamma(E)
$$

(2) The curvature $R^{\nabla}: \wedge^{2} L \rightarrow \operatorname{End}(E)$ induces an element $R^{\nabla} \in \Gamma\left(A^{*} \otimes A^{\perp} \otimes \operatorname{End}(E)\right)$, as $\left.R^{\nabla}\right|_{\wedge^{2} A}=0$:

$$
R^{\nabla}(a, \tilde{l})=\nabla_{a} \nabla_{l}-\nabla_{l} \nabla_{a}-\nabla_{[a, l]} .
$$

Proposition

R^{∇} is a 1-cocycle and $\left[R^{\nabla}\right]$ does not depend on the choice of ∇.
We call $\left[R^{\nabla}\right] \in \mathrm{H}^{1}\left(A, A^{\perp} \otimes \operatorname{End}(E)\right)$ the Atiyah class.

$$
\left(T M_{\mathbb{C}}, T^{0,1} M\right), \quad(T M, F), \quad(\mathfrak{g}, \mathfrak{h}), \quad\left(T M \bowtie M^{\mathfrak{g}}, M^{\mathfrak{g}}\right)
$$

Let E be a generalized holomorphic vector bundle on a regular generalized complex manifold M. Consider the Lie pair

$$
\left(T_{\mathbb{C}} M, \rho\left(L_{-}\right)\right)
$$

A generalized holomorphic vector bundle E is an L_{--}module and thus a $\rho\left(L_{-}\right)$-module since $\left\langle\bar{\partial}_{L}, \operatorname{ker} \rho\right\rangle=0$.
Note that

$$
\rho\left(L_{-}\right)^{\perp}=L_{-} \cap T_{\mathbb{C}}^{*} M=G^{*} M
$$

So a get the Atiyah class

$$
A(E) \in \mathrm{H}^{1}\left(\rho\left(L_{-}\right), G^{*} M \otimes \operatorname{End}(E)\right)
$$

Theorem

This Atiyah class vanishes iff there exists a generalized holomorphic connection on the generalized holomorphic vector bundle E.

Example

Let E be a generalized holomorphic vector bundle over a holomorphic Poisson manifold (M, π).The Atiyah class vanishes iff there exists a holomorphic connection on E such that $D_{X}=0$ for any Hamiltonian vector field X on M. In other words, the connection 1 -form takes values in the kernel of π.

Example

Let E be a generalized holomorphic vector bundle over a holomorphic Poisson manifold (M, π). The Atiyah class vanishes iff there exists a holomorphic connection on E such that $D_{X}=0$ for any Hamiltonian vector field X on M. In other words, the connection 1-form takes values in the kernel of π.

This is different from the definition of the Atiyah class of a holomorphic vector bundle E on a holomorphic Poisson manifold M defined by Chen-Liu-Xiang, 2019, which vanishes iff there is a holomorphic $\left(T^{*} M\right)^{1,0}$-connection on E.

Summary and Outlook

We considered a particular class of generalized holomorphic vector bundles and studied the Atiyah class.

Summary and Outlook

We considered a particular class of generalized holomorphic vector bundles and studied the Atiyah class.
We may study the Atiyah class of Gualtieri's generalized holomorphic vector bundles. Now we have a Courant algebroid, which is the double of two Dirac structures:

$$
\left(T M \oplus T^{*} M\right) \otimes \mathbb{C}=L \oplus L_{-},
$$

and an L_{-}-module E.

Summary and Outlook

We considered a particular class of generalized holomorphic vector bundles and studied the Atiyah class.
We may study the Atiyah class of Gualtieri's generalized holomorphic vector bundles. Now we have a Courant algebroid, which is the double of two Dirac structures:

$$
\left(T M \oplus T^{*} M\right) \otimes \mathbb{C}=L \oplus L_{-},
$$

and an L_{-}module E.
Can we define the Atiyah class of a Courant algebroid with a Dirac structure?

Summary and Outlook

We considered a particular class of generalized holomorphic vector bundles and studied the Atiyah class.
We may study the Atiyah class of Gualtieri's generalized holomorphic vector bundles. Now we have a Courant algebroid, which is the double of two Dirac structures:

$$
\left(T M \oplus T^{*} M\right) \otimes \mathbb{C}=L \oplus L_{-},
$$

and an L_{-}-module E.
Can we define the Atiyah class of a Courant algebroid with a Dirac structure? Problem: the curvature of a Courant connection is not function linear unless $\nabla_{\mathcal{D} f}=0$, too strong!

Thanks for your attention!

More discussion

Let \mathcal{C} be a Courant algebroid over M and E a vector bundle over M. Then a \mathcal{C}-connection on E is a map:

$$
\nabla: \Gamma(E) \rightarrow \Gamma(\mathcal{C} \otimes E)
$$

such that

$$
\nabla(f e)=\mathcal{D} f \otimes e+f \nabla e, \quad \forall f \in C^{\infty}(M), e \in \Gamma(E),
$$

where $\mathcal{D}: C^{\infty}(M) \rightarrow \Gamma(\mathcal{C})$ is given by $\mathcal{D}(f)=\rho^{*} d f$.
The curvature of the Courant algebroid connection ∇ is defined as

$$
R^{\nabla}: \Gamma\left(\wedge^{2} \mathcal{C}\right) \rightarrow \Gamma(\operatorname{End}(E)), \quad R^{\nabla}\left(c, c^{\prime}\right) e=\nabla_{c} \nabla_{c^{\prime}} e-\nabla_{c^{\prime}} \nabla_{c} e-\nabla_{\left[c, c^{\prime}\right]} e
$$

It is $C^{\infty}(M)$-linear with respect to e since $\left[\rho(c), \rho\left(c^{\prime}\right)\right]=\rho\left[c, c^{\prime}\right]$. The function linear property relative to c fails because the Courant bracket has different Leibniz rule from the Lie bracket.

Lemma

The curvature $R \in \Gamma\left(\wedge^{2} \mathcal{C} \otimes \operatorname{End}(E)\right)$ iff $\nabla_{\mathcal{D} f}=0$ for all $f \in C^{\infty}(M)$.

Lemma

If the condition $\nabla_{\mathcal{D} f}=0$ holds for all $f \in C^{\infty}(M)$, then we have the Bianchi identity

$$
\nabla\left(R^{\nabla}\right)=0
$$

Let A be a regular Dirac structure of the Courant algebroid \mathcal{C}, so A is a Lie algebroid. Let E be an A-module. Let ∇ be an \mathcal{C}-connection on E extending the A-connection satisfying that $\nabla_{\mathcal{D} f}=0$ for all $f \in C^{\infty}(M)$. If there is such an extension, then we shall get a cohomology class of the Lie algebroid A. The curvature of ∇ is a bundle map $R^{\nabla}: \wedge^{2} \mathcal{C} \rightarrow \operatorname{End} E$ defined by

$$
R^{\nabla}\left(c, c^{\prime}\right)=\nabla_{c} \nabla_{c^{\prime}}-\nabla_{c^{\prime}} \nabla_{c}-\nabla_{\left[c, c^{\prime}\right]} .
$$

As E is an A-module, so R^{∇} vanishes when restricting on $\wedge^{2} A$. Moreover, by the fact that $\nabla_{\mathcal{D} f}=0$ and $[\mathcal{D} f, c]=-\frac{1}{2} \mathcal{D} \rho(e) f$, we know $R^{\nabla}(a, \mathcal{D} f)=0$. Thus the curvature induces a bundle map

$$
R_{E}^{\nabla}: A \wedge \frac{\mathcal{C}}{A+\mathcal{D} f} \rightarrow \operatorname{End} E
$$

given by

$$
R_{E}^{\nabla}(a,[c])=R^{\nabla}(a, c)=\nabla_{a} \nabla_{c}-\nabla_{c} \nabla_{a}-\nabla_{[a, c]}, \quad a \in \Gamma(A), c \in \Gamma(\mathcal{C}) .
$$

Here we identify $\left(\frac{\mathcal{C}}{A+\mathcal{D} f}\right)^{*}$ with $\operatorname{ker} \rho_{A}$, which is a vector bundle since A is regular.

Proposition

(1) The element $R_{E}^{\nabla} \in \Gamma\left(A^{*} \otimes \operatorname{ker} \rho_{A} \otimes \operatorname{End}(E)\right)$ is a 1-cocycle in the cohomology of the Lie algebroid A with values in the A-module $\operatorname{ker} \rho_{A} \otimes \operatorname{End}(E)$;
(2) The cohomology class $\alpha_{E} \in H^{1}\left(A, \operatorname{ker} \rho_{A} \otimes \operatorname{End}(E)\right)$ does not depend on the choice of \mathcal{C}-connection extending the A-module;
(3) The Atiyah class α_{E} vanishes if and only if there exists an A-compatible \mathcal{C}-connection on E.

Let (L, B) be a Lie algebroid pair. Namely, L is a Lie algebroid with a Lie subalgebroid B. Let $\mathcal{C}=L \oplus L^{*}$ be the associated Courant algebroid with the trivial Lie algebroid structure on L^{*} and let $A=B \oplus B^{\perp}$. Then A is a regular Dirac structure of \mathcal{C}.
Let E be a B-module. It naturally is an A-module with the trivial B^{\perp}-action.

Proposition

With the above notations, the Atiyah class of the Courant pair (\mathcal{C}, A) with respect to the A-module E is exactly the Atiyah class of the Lie pair (L, B) with respect to the associated B-module E.

