Atiyah classes for generalized holomorphic vector bundles

Honglei Lang, CAU. joint with X. Jia, Z. Liu

Workshop on Atiyah classes and related topics, Jan. 6-Jan. 9, 2020, Seoul, Korea

Honglei Lang, CAU. joint with X. Jia, Z. Liu Atiyah classes for generalized holomorphic vector bun

Plans:

- Atiyah classes for holomorphic vector bundles
- 2 Generalized complex manifolds and generalized holomorphic functions
- **6** Generalized holomorphic vector bundles
- 4 Atiyah classes

Atiyah classes for holomorphic vector bundles

Atiyah class: obstruction of the existence of holomorphic connections on a holomorphic vector bundle.

Definition

Let M be a complex manifold. A **holomorphic vector bundle** of rank r on M is a complex manifold E with a holomorphic map

$$\pi: E \to M$$

and a dim r complex v.s. str. on $E_x = \pi^{-1}(x)$ satisfying: There exists an open covering $\{U_i\}$ of M and holomorphic homeomorphisms: $\varphi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ commuting with the projections to U_i such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^r$ is \mathbb{C} -linear.

Definition

Let M be a complex manifold. A **holomorphic vector bundle** of rank r on M is a complex manifold E with a holomorphic map

$$\pi: E \to M$$

and a dim r complex v.s. str. on $E_x = \pi^{-1}(x)$ satisfying: There exists an open covering $\{U_i\}$ of M and holomorphic homeomorphisms: $\varphi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ commuting with the projections to U_i such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^r$ is \mathbb{C} -linear.

A complex vb $\pi: E \to M$ is holomorphic

(1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.

Definition

Let M be a complex manifold. A **holomorphic vector bundle** of rank r on M is a complex manifold E with a holomorphic map

$$\pi: E \to M$$

and a dim r complex v.s. str. on $E_x = \pi^{-1}(x)$ satisfying: There exists an open covering $\{U_i\}$ of M and holomorphic homeomorphisms: $\varphi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ commuting with the projections to U_i such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^r$ is \mathbb{C} -linear.

A complex vb $\pi: E \to M$ is holomorphic

- (1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.
- (2) \Leftrightarrow if there is a flat $T^{0,1}M$ -connection on E.

Definition

Let M be a complex manifold. A **holomorphic vector bundle** of rank r on M is a complex manifold E with a holomorphic map

$$\pi: E \to M$$

and a dim r complex v.s. str. on $E_x = \pi^{-1}(x)$ satisfying: There exists an open covering $\{U_i\}$ of M and holomorphic homeomorphisms: $\varphi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ commuting with the projections to U_i such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^r$ is \mathbb{C} -linear.

A complex vb $\pi: E \to M$ is holomorphic

- (1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.
- (2) \Leftrightarrow if there is a flat $T^{0,1}M$ -connection on E.

⇒ Let $E|_{U_i} \cong U_i \times \mathbb{C}^r$ and let $\{e_i\}$ be a basis of $\Gamma(E|_{U_i})$. For $s = \sum_{\lambda} s_{\lambda} e_{\lambda}$ with $s_{\lambda} \in C^{\infty}(U_i)$, define

$$\bar{\partial}: \Gamma(E) \to \Gamma((T^{0,1}M)^* \otimes E), \qquad s \mapsto \sum_i \bar{\partial}(s_\lambda) e_\lambda.$$

Definition

Let M be a complex manifold. A **holomorphic vector bundle** of rank r on M is a complex manifold E with a holomorphic map

$$\pi: E \to M$$

and a dim r complex v.s. str. on $E_x = \pi^{-1}(x)$ satisfying: There exists an open covering $\{U_i\}$ of M and holomorphic homeomorphisms: $\varphi_i : \pi^{-1}(U_i) \cong U_i \times \mathbb{C}^r$ commuting with the projections to U_i such that the induced map $\pi^{-1}(x) \cong \mathbb{C}^r$ is \mathbb{C} -linear.

A complex vb $\pi: E \to M$ is holomorphic

- (1) \Leftrightarrow if there exists a trivialization such that the transition functions are holomorphic.
- (2) \Leftrightarrow if there is a flat $T^{0,1}M$ -connection on E.

⇒ Let $E|_{U_i} \cong U_i \times \mathbb{C}^r$ and let $\{e_i\}$ be a basis of $\Gamma(E|_{U_i})$. For $s = \sum_{\lambda} s_{\lambda} e_{\lambda}$ with $s_{\lambda} \in C^{\infty}(U_i)$, define

$$\bar{\partial}: \Gamma(E) \to \Gamma((T^{0,1}M)^* \otimes E), \qquad s \mapsto \sum_i \bar{\partial}(s_\lambda) e_\lambda.$$

 \Leftarrow if there exists $D^{0,1}: \Gamma(E) \to \Gamma((T^{0,1}M)^* \otimes E)$ such that $(D^{0,1})^2 = 0$, then there is a unique holomorphic vector bundle str. on E such that $D^{0,1} = \bar{\partial}_{\bar{e}}$

< □ ▶ < 酉 ▶ < 壹 ▶ < 壹 ▶ 5 / 45

Definition

Let *E* be a holomorphic bundle on a complex manifold *M*. A holomorphic connection on *E* is a \mathbb{C} -linear map (of sheaves) $D: E \to \Omega_M \otimes E$ with

$$D(fs) = \partial(f) \otimes s + fD(s),$$

for any local holomorphic function f of M and any local holomorphic section s of E.

Here E and Ω_M denote the sheaves of holomorphic sections of E and $(T^{1,0}M)^*$.

Definition

Let *E* be a holomorphic bundle on a complex manifold *M*. A holomorphic connection on *E* is a \mathbb{C} -linear map (of sheaves) $D: E \to \Omega_M \otimes E$ with

$$D(fs) = \partial(f) \otimes s + fD(s),$$

for any local holomorphic function f of M and any local holomorphic section s of E.

Here E and Ω_M denote the sheaves of holomorphic sections of E and $(T^{1,0}M)^*$.

• $D + \bar{\partial}$ defines an ordinary connection on E. But the (1,0)-part of an ordinary connection may not be a holomorphic connection.

Definition

Let *E* be a holomorphic bundle on a complex manifold *M*. A holomorphic connection on *E* is a \mathbb{C} -linear map (of sheaves) $D: E \to \Omega_M \otimes E$ with

$$D(fs) = \partial(f) \otimes s + fD(s),$$

for any local holomorphic function f of M and any local holomorphic section s of E.

Here E and Ω_M denote the sheaves of holomorphic sections of E and $(T^{1,0}M)^*$.

- $D + \bar{\partial}$ defines an ordinary connection on E. But the (1,0)-part of an ordinary connection may not be a holomorphic connection.
- D sends holomorphic sections of E to holomorphic sections of $(T^{1,0}M)^* \otimes E$. Or, for any holomorphic tangent vector field X, D_X preserves the holomorphic sections of E.

Let E be a holomorphic bundle and let $\{U_i\}$ be an open covering s.t. there exist holomorphic trivializations $\varphi_i : E|_{U_i} \cong U_i \times \mathbb{C}^r$.

A local holomorphic connection on $U_i \times \mathbb{C}^r$ is $\partial + A_i$, where A_i is a matrix valued holomorphic 1-form on U_i . They can be glued to a connection on E iff

$$\varphi_i^{-1} \circ (\partial + A_i) \circ \varphi_i = \varphi_j^{-1} \circ (\partial + A_j) \circ \varphi_j$$

on $U_{ij} = U_i \cap U_j$, equivalently,

$$\varphi_j^{-1} \circ (\varphi_{ij}^{-1} \circ \partial \circ \varphi_{ij} - \partial) \circ \varphi_j = \varphi_j^{-1} \circ A_j \circ \varphi_j - \varphi_i^{-1} \circ A_i \circ \varphi_i,$$

where $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}$. By the relation $\varphi_{ij} \circ \varphi_{jk} \circ \varphi_{ki} = 1$, the left hand side is actually a Čech cocycle. Let E be a holomorphic bundle and let $\{U_i\}$ be an open covering s.t. there exist holomorphic trivializations $\varphi_i : E|_{U_i} \cong U_i \times \mathbb{C}^r$.

A local holomorphic connection on $U_i \times \mathbb{C}^r$ is $\partial + A_i$, where A_i is a matrix valued holomorphic 1-form on U_i . They can be glued to a connection on E iff

$$\varphi_i^{-1} \circ (\partial + A_i) \circ \varphi_i = \varphi_j^{-1} \circ (\partial + A_j) \circ \varphi_j$$

on $U_{ij} = U_i \cap U_j$, equivalently,

$$\varphi_j^{-1} \circ (\varphi_{ij}^{-1} \circ \partial \circ \varphi_{ij} - \partial) \circ \varphi_j = \varphi_j^{-1} \circ A_j \circ \varphi_j - \varphi_i^{-1} \circ A_i \circ \varphi_i,$$

where $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}$. By the relation $\varphi_{ij} \circ \varphi_{jk} \circ \varphi_{ki} = 1$, the left hand side is actually a Čech cocycle.

Definition

The Atiyah class

 $A(E) \in \mathrm{H}^1(M, \Omega_M \otimes \mathrm{End}(E))$

of the holomorphic bundle E is given by the Čech cocycle

$$A(E) = \{U_{ij}, \varphi_j^{-1} \circ (\varphi_{ij}^{-1}d(\varphi_{ij})) \circ \varphi_j\}.$$

Proposition (Atiyah)

A holomorphic bundle E admits a holomorphic connection iff its Atiyah class $A(E) \in \mathrm{H}^1(M, \Omega_M \otimes \mathrm{End}(E))$ is trivial.

Proposition (Atiyah)

A holomorphic bundle E admits a holomorphic connection iff its Atiyah class $A(E) \in \mathrm{H}^1(M, \Omega_M \otimes \mathrm{End}(E))$ is trivial.

A(E) is related with the curvature of E.

Let (E,h) be a hermitian holomorphic vector bundle. A connection ∇ on E is called a **Chern connection** if

$$\nabla h = 0, \qquad \nabla^{0,1} = \bar{\partial},$$

where $\nabla = \nabla^{1,0} + \nabla^{0,1} : \Gamma(E) \to \Gamma(((T^*M)^{1,0} \oplus (T^*M)^{0,1}) \otimes E).$

Let (E,h) be a hermitian holomorphic vector bundle. A connection ∇ on E is called a **Chern connection** if

$$\nabla h = 0, \qquad \nabla^{0,1} = \bar{\partial},$$

where $\nabla = \nabla^{1,0} + \nabla^{0,1} : \Gamma(E) \to \Gamma(((T^*M)^{1,0} \oplus (T^*M)^{0,1}) \otimes E)$. The curvature of a Chern connection $F_{\nabla} \in \Omega^{1,1}(M) \otimes \operatorname{End}(E)$ and the Bianchi identity yields

$$0 = (\nabla(F_{\nabla}))^{1,2} = \bar{\partial}(F_{\nabla}).$$

This gives rise to a Dolbeault cohomology class $[F_{\nabla}]$.

Let (E,h) be a hermitian holomorphic vector bundle. A connection ∇ on E is called a **Chern connection** if

$$\nabla h = 0, \qquad \nabla^{0,1} = \bar{\partial},$$

where $\nabla = \nabla^{1,0} + \nabla^{0,1} : \Gamma(E) \to \Gamma(((T^*M)^{1,0} \oplus (T^*M)^{0,1}) \otimes E)$. The curvature of a Chern connection $F_{\nabla} \in \Omega^{1,1}(M) \otimes \operatorname{End}(E)$ and the Bianchi identity yields

$$0 = (\nabla(F_{\nabla}))^{1,2} = \bar{\partial}(F_{\nabla}).$$

This gives rise to a Dolbeault cohomology class $[F_{\nabla}]$.

Proposition

For the curvature F_{∇} of the Chern connection on a hermitian holomorphic vector bundle (E, h) one has

 $[F_{\nabla}] = A(E) \in \mathrm{H}^1(M, \Omega_M \otimes \mathrm{End}(E)).$

Let E be a holomorphic vector bundle on a complex manifold M. Let \mathfrak{J}^1E the vector bundle of the first jets of holomorphic sections of E. It fits into the short exact sequence

$$0 \to \Omega_M \otimes E \to \mathfrak{J}^1 E \to E \to 0$$

of holomorphic vector bundles.

The **Atiyah class** of E is the extension class

 $\alpha_E \in \operatorname{Ext}^1_M(E, \Omega_M \otimes E) \cong \operatorname{H}^1(M, \Omega_M \otimes \operatorname{End}(E)).$

Generalized complex manifolds and generalized holomorphic functions

Let M be a smooth manifold. On $TM \oplus T^*M$, there is a canonical bilinear form valued in $C^{\infty}(M)$:

 $(X + \xi, Y + \eta) = \xi(Y) + \eta(X), \qquad X, Y \in \mathfrak{X}(M), \xi, \eta \in \Omega^1(M),$

and a skew-symmetric bracket, called the Courant bracket:

$$[X + \xi, Y + \eta] := [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y)).$$

Also we have the anchor $\rho: TM \oplus T^*M \to TM$, the projection.

Generalized complex manifolds and generalized holomorphic functions

Let M be a smooth manifold. On $TM \oplus T^*M$, there is a canonical bilinear form valued in $C^{\infty}(M)$:

 $(X + \xi, Y + \eta) = \xi(Y) + \eta(X), \qquad X, Y \in \mathfrak{X}(M), \xi, \eta \in \Omega^1(M),$

and a skew-symmetric bracket, called the Courant bracket:

$$[X + \xi, Y + \eta] := [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y)).$$

Also we have the anchor $\rho: TM \oplus T^*M \to TM$, the projection.

Properties

•
$$[[u,v],w] + c.p. = \frac{1}{6}d(([u,v],w) + ([v,w],u) + ([w,u],v));$$

•
$$[u, fv] = f[u, v] + \rho(u)fv - (u, v)df;$$

•
$$\rho(u)(v,w) = ([u,v] + d(u,v),w) + (v,[u,w] + d(u,w)),$$

for $u, v, w \in \Gamma(TM \oplus T^*M)$.

Generalized complex manifolds and generalized holomorphic functions

Let M be a smooth manifold. On $TM \oplus T^*M$, there is a canonical bilinear form valued in $C^{\infty}(M)$:

 $(X + \xi, Y + \eta) = \xi(Y) + \eta(X), \qquad X, Y \in \mathfrak{X}(M), \xi, \eta \in \Omega^1(M),$

and a skew-symmetric bracket, called the Courant bracket:

$$[X + \xi, Y + \eta] := [X, Y] + \mathcal{L}_X \eta - \mathcal{L}_Y \xi - \frac{1}{2} d(\eta(X) - \xi(Y)).$$

Also we have the anchor $\rho: TM \oplus T^*M \to TM$, the projection.

Properties

•
$$[[u,v],w] + c.p. = \frac{1}{6}d(([u,v],w) + ([v,w],u) + ([w,u],v));$$

•
$$[u, fv] = f[u, v] + \rho(u)fv - (u, v)df;$$

•
$$\rho(u)(v,w) = ([u,v] + d(u,v), w) + (v, [u,w] + d(u,w)),$$

for $u, v, w \in \Gamma(TM \oplus T^*M)$.

Courant algebroid $(\mathcal{C}, (\cdot, \cdot), [\cdot, \cdot], \rho)$ Liu-Xu-Weinstein 97.

Definition (Hitchin, Gualtieri)

A generalized complex structure on M is an endomorphism \mathcal{J} of $TM \oplus T^*M$ such that

- $\mathcal{J}^2 = -1;$
- $(\mathcal{J}u, \mathcal{J}v) = (u, v);$
- the +i-eigenbundle $L \subset (TM \oplus T^*M) \otimes \mathbb{C}$ of \mathcal{J} is closed under the Courant bracket (integrability condition).

In block-diagonal form, a skew-adjoint transformation on $TM \oplus T^*M$ is

$$\mathcal{I} = \begin{pmatrix} J & \beta \\ B & -J^* \end{pmatrix},$$

where $J \in \operatorname{End}(TM)$ and $B \in \Omega^2(M)$ and $\beta \in \mathfrak{X}^2(M)$.

In block-diagonal form, a skew-adjoint transformation on $TM \oplus T^*M$ is

$$\mathcal{I} = \begin{pmatrix} J & \beta \\ B & -J^* \end{pmatrix},$$

where $J \in \text{End}(TM)$ and $B \in \Omega^2(M)$ and $\beta \in \mathfrak{X}^2(M)$. A *B*-field transform is an automorphism of $TM \oplus T^*M$ given by a 2-form $B \in \Omega^2(M)$ via:

$$X + \xi \mapsto X + \xi + \iota_X B, \qquad X \in \mathfrak{X}(M), \xi \in \Omega^1(M).$$

In block-diagonal form, a skew-adjoint transformation on $TM \oplus T^*M$ is

$$\mathcal{I} = \begin{pmatrix} J & \beta \\ B & -J^* \end{pmatrix},$$

where $J \in \text{End}(TM)$ and $B \in \Omega^2(M)$ and $\beta \in \mathfrak{X}^2(M)$. A *B*-field transform is an automorphism of $TM \oplus T^*M$ given by a 2-form $B \in \Omega^2(M)$ via:

$$X + \xi \mapsto X + \xi + \iota_X B, \qquad X \in \mathfrak{X}(M), \xi \in \Omega^1(M).$$

A key feature of generalized complex geometry is that its symmetry group is $\text{Diff}(M) \ltimes \Omega^2_{cl}(M)$:

$$(Bu, Bv) = (u, v),$$
 $[Bu, Bv] = B[u, v],$ $B \in \Omega^2_{cl}(M)$

◆□ → < 部 → < 書 → < 書 → < 書 → < 目 → の へ ○ 12 / 45 With respect to the Lie algebroids L and L_{-} , the +i and -i-eigenbundles of a generalized complex structure, we have two Lie algebroid differentials

$$d_{+}: \Gamma(\wedge^{\bullet}L^{*}) \to \Gamma(\wedge^{\bullet+1}L^{*}), \\ d_{-}: \Gamma(\wedge^{\bullet}L^{*}_{-}) \to \Gamma(\wedge^{\bullet+1}L^{*}_{-})$$

 $(TM \oplus T^*M) \otimes \mathbb{C} = L \oplus L_-$. Unlike $d = \partial + \overline{\partial}$, no $d_+ + d_-$.

With respect to the Lie algebroids L and L_{-} , the +i and -i-eigenbundles of a generalized complex structure, we have two Lie algebroid differentials

$$d_{+}: \Gamma(\wedge^{\bullet}L^{*}) \to \Gamma(\wedge^{\bullet+1}L^{*}), \\ d_{-}: \Gamma(\wedge^{\bullet}L^{*}_{-}) \to \Gamma(\wedge^{\bullet+1}L^{*}_{-}).$$

 $(TM \oplus T^*M) \otimes \mathbb{C} = L \oplus L_-$. Unlike $d = \partial + \overline{\partial}$, no $d_+ + d_-$.

Definition

A function $f \in C^{\infty}(M)$ on a generalized complex manifold (M, \mathcal{J}) is called a **generalized holomorphic function** if it satisfies $d_{-}f = 0$.

This definition is invariant under the *B*-transform. Under a *B*-transform,

$$L_- \mapsto B(L_-), \qquad d_- \mapsto d_-^B = d_- + B,$$

so if $d_{-}f = (X, \xi) = 0$,

$$d_{-}^{B}f = (X, \xi + B(X)) = 0.$$

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Example

Let J be a complex structure on M. The endomorphism of $TM\oplus T^*M$

$$\mathcal{J}_J = \begin{pmatrix} J & 0\\ 0 & -J^* \end{pmatrix}$$

is a generalized complex structure on M. Its +i-eigenbundle

$$L_J = T^{1,0}M \oplus (T^*M)^{0,1}$$

is integrable iff J is a complex structure. Moreover, we have

$$d_{-} = \bar{\partial}.$$

Thus $f \in C^{\infty}(M)$ is a generalized holomorphic function if it is a holomorphic function.

Example

Consider the endomorphism

$$\mathcal{J}_{\omega} = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix},$$

where ω is a symplectic structure on M. The +i-eigenbundle

$$L_{\omega} = \{ X - i\omega(X) | X \in T_{\mathbb{C}}M \}.$$

is integrable iff $d\omega = 0$. In this case,

$$d_{-} = d_{-}$$

15/45

So a function $f \in C^{\infty}(M)$ is generalized holomorphic if it is constant.

Example

Let M be a complex manifold with a complex structure J. If there is a bivector field β on M such that

$$\mathcal{I} = \begin{pmatrix} J & \beta \\ 0 & -J^* \end{pmatrix}$$

is a generalized complex structure on M, then $\pi = J \circ \beta + i\beta$ is a holomorphic Poisson structure on M, i.e.

$$\pi \in \Gamma(\wedge^2 T^{1,0}M), \qquad \bar{\partial}\pi = 0, \qquad [\pi,\pi] = 0.$$

The +i-eigenbundle is

$$L = \{Y + \frac{\beta(\eta)}{2i} + \eta | Y \in T^{1,0}M, \eta \in (T^{0,1}M)^*\}.$$

In this case,

$$d_{-} = \bar{\partial} - \frac{1}{4} [\pi, \cdot].$$

Hence f is generalized holomorphic if it is a holomorphic Casimir function.

(Generalized Darboux Theorem) Any regular point in a generalized complex manifold has a neighborhood which is equivalent, up to a diffeomorphism and a *B*-transform, to a product of an open set in \mathbb{C}^k with an open set in the standard symplectic space ($\mathbb{R}^{2n-2k}, \omega_0$), i.e.

$$(U_p, \mathcal{J}) \cong (V \times W, e^B(\mathcal{J}_{J_0} \times \mathcal{J}_{\omega_0})e^{-B}).$$

(Generalized Darboux Theorem) Any regular point in a generalized complex manifold has a neighborhood which is equivalent, up to a diffeomorphism and a *B*-transform, to a product of an open set in \mathbb{C}^k with an open set in the standard symplectic space $(\mathbb{R}^{2n-2k}, \omega_0)$, i.e.

$$(U_p, \mathcal{J}) \cong (V \times W, e^B(\mathcal{J}_{J_0} \times \mathcal{J}_{\omega_0})e^{-B}).$$

Choose the generalized Darboux coordinates (z, p, q). A function $f: M \to \mathbb{C}$ is generalized holomorphic iff

$$\frac{\partial f}{\partial \bar{z}_{\lambda}} = 0, \qquad \frac{\partial f}{\partial p_{\mu}} = \frac{\partial f}{\partial q_{\mu}} = 0, \qquad \lambda = 1, \cdots, k; \mu = 1, \cdots, n-k.$$

イロト イポト イヨト イヨト 三日

17/45

A generalized holomorphic homeomorphism $f: (M, \mathcal{J}_M) \to (N, \mathcal{J}_N)$ is homeomorphism satifying

$$\begin{pmatrix} f_* & 0\\ 0 & (f^{-1})^* \end{pmatrix} \circ \mathcal{J}_M = \mathcal{J}_N \circ \begin{pmatrix} f_* & 0\\ 0 & (f^{-1})^* \end{pmatrix}.$$

Definition (Jia-Lang-Liu)

Suppose that M is a generalized complex manifold. A real vector bundle $\pi: E \to M$ is called a **generalized holomorphic vector bundle**, if

- (1) E is a generalized complex manifold;
- (2) there is an open cover $\{U_i\}_{i \in I}$ of M and a family of local trivializations $\{\varphi_i : E|_{U_i} = \pi^{-1}(U_i) \to U_i \times \mathbb{C}^r\}_{i \in I}$ satisfying that φ_i for each i is a generalized holomorphic homeomorphism, where $U_i \times \mathbb{C}^r$ is associated with the standard product generalized complex structure.

Proposition

Let *E* be a real vector bundle on *M* with a family of local trivializations $\{\varphi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{R}^{2r}\}$ and transition functions $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1} : U_i \cap U_j \to \operatorname{GL}(2r, \mathbb{R})$. Then *E* is generalized holomorphic vector bundle on *M* with the local trivialization $\{\varphi_i\}$ if and only if

- (1) $\varphi_{ij}(p) \in \operatorname{GL}(r, \mathbb{C})$, so *E* is a complex vector bundle;
- (2) each entry $A_{\lambda\mu}: U_i \cap U_j \to \mathbb{C}$ of $\varphi_{ij} = (A_{\lambda\mu})_{r \times r}$ is a generalized holomorphic function.

E is a GHVB with local trivialization $\{\varphi_i\}$ iff

$$\varphi_{ij} = \varphi_i \circ \varphi_j^{-1} : U_{ij} \times \mathbb{C}^r \to U_{ij} \times \mathbb{C}^r$$

is a generalized holomorphic homeomorphism for any fixed i, j. Namely,

$$\begin{pmatrix} (\varphi_{ij})_* & 0\\ 0 & (\varphi_{ji})^* \end{pmatrix} \circ \begin{pmatrix} \mathcal{J}_{11} & \mathcal{J}_{12}\\ \mathcal{J}_{21} & \mathcal{J}_{22} \end{pmatrix} = \begin{pmatrix} \mathcal{J}_{11} & \mathcal{J}_{12}\\ \mathcal{J}_{21} & \mathcal{J}_{22} \end{pmatrix} \circ \begin{pmatrix} (\varphi_{ij})_* & 0\\ 0 & (\varphi_{ji})^* \end{pmatrix}.$$

This guarantees that

$$\begin{pmatrix} (\varphi_i^{-1})_* & 0 \\ 0 & (\varphi_i)^* \end{pmatrix} \circ \begin{pmatrix} \mathcal{J}_{11} & \mathcal{J}_{12} \\ \mathcal{J}_{21} & \mathcal{J}_{22} \end{pmatrix} \circ \begin{pmatrix} (\varphi_i)_* & 0 \\ 0 & (\varphi_i^{-1})^* \end{pmatrix}$$

gives a generalized complex structure on $E|_{U_i} = \pi^{-1}(U_i)$, independent of φ_i .

Denote by (\mathbb{C}^r, J_0) and let $\begin{pmatrix} J & \beta \\ B & -J^* \end{pmatrix}$ be the generalized complex structure (GCS) on M. Then the GCS \mathcal{J} on $U_{ij} \times \mathbb{C}^r$ is expressed as

$$\mathcal{J}_{11} = \begin{pmatrix} J & 0 \\ 0 & J_0 \end{pmatrix}, \quad \mathcal{J}_{12} = \begin{pmatrix} \beta & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathcal{J}_{21} = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathcal{J}_{22} = \begin{pmatrix} -J^* & 0 \\ 0 & -J_0^* \end{pmatrix}.$$

Unraveling the above equation, we get

$$\begin{aligned} & (\varphi_{ij})_{*(p,v)} \circ \mathcal{J}_{11} &= \mathcal{J}_{11} \circ (\varphi_{ij})_{*(p,v)}; \\ & (\varphi_{ij})_{*(p,v)} \circ \mathcal{J}_{12} &= \mathcal{J}_{12} \circ (\varphi_{ji})_{(p,v)}^{*}; \\ & (\varphi_{ji})_{(p,v)}^{*} \circ \mathcal{J}_{21} &= \mathcal{J}_{21} \circ (\varphi_{ij})_{*(p,v)}; \\ & (\varphi_{ji})_{(p,v)}^{*} \circ \mathcal{J}_{22} &= \mathcal{J}_{22} \circ (\varphi_{ji})_{*(p,v)}. \end{aligned}$$

This implies (1) and (2).

- (1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is a holomorphic vector bundle;
- (2) A GHVB on a symplectic manifold is a complex vector bundle with a flat connection.

- (1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is a holomorphic vector bundle;
- (2) A GHVB on a symplectic manifold is a complex vector bundle with a flat connection.

Let M be a holomorphic Poisson manifold. A **Poisson module** is a locally free sheaf $\mathcal{O}(E)$ with an action $s \mapsto \{f, s\}$ of the structure sheaf with the properties

 $\{f,gs\}=\{f,g\}s+g\{f,s\},\qquad \{\{f,g\},s\}=\{f,\{g,s\}\}-\{g,\{f,s\}\}.$

(E is a Poisson module $\iff T_{\pi}^*M$ -module)

- (1) A generalized holomorphic vector bundle (GHVB) on a complex manifold is a holomorphic vector bundle;
- (2) A GHVB on a symplectic manifold is a complex vector bundle with a flat connection.

Let M be a holomorphic Poisson manifold. A **Poisson module** is a locally free sheaf $\mathcal{O}(E)$ with an action $s \mapsto \{f, s\}$ of the structure sheaf with the properties

$$\{f,gs\} = \{f,g\}s + g\{f,s\}, \qquad \{\{f,g\},s\} = \{f,\{g,s\}\} - \{g,\{f,s\}\}.$$

(*E* is a Poisson module $\iff T_{\pi}^*M$ -module)

(3) A GHVB on a holomorphic Poisson manifold is a holomorphic bundle with a Poisson module structure given by

$$\{f,s\} := \sum_{\lambda=1}^r \{f,s_\lambda\}_M e_\lambda, \qquad s|_{U_i} = \sum_{\lambda=1}^r s_\lambda e_\lambda,$$

where $\{e_1, \cdots, e_r\}$ is a basis of $\Gamma(E|_{U_i})$.

Let (M, \mathcal{J}) be a generalized complex manifold and let $L_{-} \subset T_{\mathbb{C}}M \oplus T_{\mathbb{C}}^{*}M$ be the -i-eigenbundle of \mathcal{J} . If E is a generalized holomorphic vector bundle on M, there exists an L_{-} -connection $\overline{\partial}_{L}$ on E such that $\overline{\partial}_{L}^{2} = 0$.

Let (M, \mathcal{J}) be a generalized complex manifold and let $L_{-} \subset T_{\mathbb{C}}M \oplus T_{\mathbb{C}}^*M$ be the -i-eigenbundle of \mathcal{J} . If E is a generalized holomorphic vector bundle on M, there exists an L_{-} -connection $\overline{\partial}_{L}$ on E such that $\overline{\partial}_{L}^{2} = 0$.

To define

$$\overline{\partial}_L: \Gamma(E) \to \Gamma(L_-^* \otimes E),$$

let $\{e_1, \dots, e_r\}$ be a basis of $\Gamma(E|_{U_i})$. For any $s|_{U_i} = \sum_{\lambda=1}^r s_\lambda e_\lambda \in \Gamma(E|_{U_i})$ with $s_\lambda \in C^{\infty}(U_i)$,

$$\overline{\partial}_L(s)|_{U_i} := \sum_{\lambda=1} (d_-s_\lambda) \otimes e_\lambda, \qquad (\overline{\partial} \mapsto d_-).$$

It is well-defined since the transition functions are generalized holomorphic.

Let (M, \mathcal{J}) be a generalized complex manifold and let $L_{-} \subset T_{\mathbb{C}}M \oplus T_{\mathbb{C}}^*M$ be the -i-eigenbundle of \mathcal{J} . If E is a generalized holomorphic vector bundle on M, there exists an L_{-} -connection $\overline{\partial}_{L}$ on E such that $\overline{\partial}_{L}^{2} = 0$.

To define

$$\overline{\partial}_L: \Gamma(E) \to \Gamma(L_-^* \otimes E),$$

let $\{e_1, \dots, e_r\}$ be a basis of $\Gamma(E|_{U_i})$. For any $s|_{U_i} = \sum_{\lambda=1}^r s_\lambda e_\lambda \in \Gamma(E|_{U_i})$ with $s_\lambda \in C^{\infty}(U_i)$,

$$\overline{\partial}_L(s)|_{U_i} := \sum_{\lambda=1}^{r} (d_-s_\lambda) \otimes e_\lambda, \qquad (\overline{\partial} \mapsto d_-).$$

24/45

It is well-defined since the transition functions are generalized holomorphic. Does it work the other way around?

Definition (Gualtieri)

A generalized holomorphic bundle on a generalized complex manifold (M, \mathcal{J}) is a vector bundle E with an L_{-} -module, i.e., an operator $\overline{D} : \Gamma(E) \to \Gamma(L_{-}^{*} \otimes E)$ such that

$$\bar{D}(fs) = d_-(f)s + f\bar{D}s; \qquad \bar{D}^2 = 0$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.

Definition (Gualtieri)

A generalized holomorphic bundle on a generalized complex manifold (M, \mathcal{J}) is a vector bundle E with an L_{-} -module, i.e., an operator $\overline{D} : \Gamma(E) \to \Gamma(L_{-}^{*} \otimes E)$ such that

$$\bar{D}(fs) = d_-(f)s + f\bar{D}s; \qquad \bar{D}^2 = 0$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.

In general, there is no generalized complex structure on the total space E, which must relate with the Poisson str. on M: $\{f,g\} = (d_+f, d_-g)$.

- Under what conditions the total space E of a generalized holomorphic bundle admits a generalized complex str. such that $\overline{D} = \overline{\partial}_L$?
- What is the structure on the total space E in general?

Definition (Gualtieri)

A generalized holomorphic bundle on a generalized complex manifold (M, \mathcal{J}) is a vector bundle E with an L_{-} -module, i.e., an operator $\overline{D} : \Gamma(E) \to \Gamma(L_{-}^{*} \otimes E)$ such that

$$\bar{D}(fs) = d_-(f)s + f\bar{D}s; \qquad \bar{D}^2 = 0$$

for $f \in C^{\infty}(M)$ and $s \in \Gamma(E)$.

In general, there is no generalized complex structure on the total space E, which must relate with the Poisson str. on M: $\{f,g\} = (d_+f, d_-g)$.

- Under what conditions the total space E of a generalized holomorphic bundle admits a generalized complex str. such that $\overline{D} = \overline{\partial}_L$?
- What is the structure on the total space E in general?

The GCS on the product space needs to be discussed, which can be the deformation of the product GCSs on $U_i \times \mathbb{C}^r$.

Generalized holomorphic tangent and cotangent bundles

Proposition

Let (M, \mathcal{J}) be a regular generalized complex manifold. Then $G^*M := L_- \cap T^*_{\mathbb{C}}M$ is a generalized holomorphic vector bundle on M, which is called the **generalized** holomorphic cotangent bundle of M.

Generalized holomorphic tangent bundle $GM := L \cap T_{\mathbb{C}}M$.

Proposition

Let (M, \mathcal{J}) be a regular generalized complex manifold. Then $G^*M := L_- \cap T^*_{\mathbb{C}}M$ is a generalized holomorphic vector bundle on M, which is called the **generalized** holomorphic cotangent bundle of M.

Generalized holomorphic tangent bundle $GM := L \cap T_{\mathbb{C}}M$.

- (1) When M is a complex manifold, we have $G^*M = (T^{1,0}M)^*$ and $GM = T^{1,0}M$;
- (2) When M is a symplectic manifold, then G^*M is degenerated to a vector bundle of rank 0 on M and GM = TM.
- (3) For a regular holomorphic Poisson manifold (M, \mathcal{J}) , $GM = T^{1,0}M$ and $G^*M = \ker \pi^{\sharp} \cap (T^{1,0}M)^*$.

The regularity is not essential.

A section s of a generalized holomorphic vector bundle is called **generalized** holomorphic if $\overline{\partial}_L s = 0$.

Choosing a local trivialization $\varphi:E|_U\to U\times \mathbb{C}^r,$ a section s can be written locally as

$$s = (s_1, \cdots, s_r), \qquad s_i : U \to \mathbb{C}.$$

Then s is a generalized holomorphic if all s_i are generalized holomorphic functions on M.

Denote by $\Gamma_m(E)$ the space of local generalized holomorphic sections around m. Two local sections $\phi, \psi \in \Gamma_m(E)$ are **equivalent** iff

$$\phi(m) = \psi(m), \qquad \phi_{*m} = \psi_{*m}.$$

We denote the equivalence class of ϕ at m as $[\phi]_m$. Define

$$\mathfrak{J}^1 E = \{ [\phi]_m | m \in M, \phi \in \Gamma_m(E) \}.$$

Locally, $\phi \sim \psi$ iff there exists a local coordinate system $(E|_{U_i}, \varphi_i; z, p, q, u^{\alpha})$ such that

$$\frac{\partial u^{\alpha} \circ \phi}{\partial z_{\lambda}}|_{m} = \frac{\partial u^{\alpha} \circ \psi}{\partial z_{\lambda}}|_{m}, \qquad \alpha = 1, \cdots r; \lambda = 1, \cdots, k,$$

where $\varphi_i : E|_{U_i} \to U_i \times \mathbb{C}^r$ is a local trivialization of E, (z, p, q) is a coordinate system on U_i and $(u^{\alpha})_{\alpha=1}^r$ is a coordinate system along the fiber.

28 / 45

Proposition

We have that $\Im^1 E$ is a generalized holomorphic bundle on M and it fits into the short exact sequence

$$0 \to G^* M \otimes E \to \mathfrak{J}^1 E \to E \to 0$$

of generalized holomorphic bundles on M.

Definition

Let *E* be a generalized holomorphic bundle on a generalized complex manifold *M*. A **generalized holomorphic connection** on *E* is a complex linear map $D: E \to G^*M \otimes E$ (of sheaves) such that

$$D(fs) = d_+ f \otimes s + f D(s)$$

for all local generalized holomorphic function f on M and all local generalized holomorphic section s on E.

Here E and G^*M denotes the sheaves of generalized holomorphic sections of Eand G^*M . Since $d_+f + d_-f = \rho^*(df) \in \Gamma(T^*_{\mathbb{C}}M)$, we have $d_+f \in \Gamma(G^*M)$ and $d_-(d_+f) = 0$.

Definition

Let *E* be a generalized holomorphic bundle on a generalized complex manifold *M*. A **generalized holomorphic connection** on *E* is a complex linear map $D: E \to G^*M \otimes E$ (of sheaves) such that

$$D(fs) = d_+ f \otimes s + f D(s)$$

for all local generalized holomorphic function f on M and all local generalized holomorphic section s on E.

Here E and G^*M denotes the sheaves of generalized holomorphic sections of Eand G^*M . Since $d_+f + d_-f = \rho^*(df) \in \Gamma(T^*_{\mathbb{C}}M)$, we have $d_+f \in \Gamma(G^*M)$ and $d_-(d_+f) = 0$.

Lemma

Let E be a generalized holomorphic vector bundle on M. A complex linear map $D: E \to G^*M \otimes E$ is a generalized holomorphic connection on E iff D_X preserves generalized holomorphic sections of E, where X is a generalized holomorphic vector field.

- () When M is a complex manifold, a generalized holomorphic connection on E is a holomorphic connection;
- When M is a symplectic manifold, since G^*M is of rank 0, the generalized holomorphic connection on E can only be zero $(d_+ = 0)$. It is also clear from the first jet bundle.

Atiyah classes I

With respect to a trivialization $\varphi_i : \pi^{-1}(U_i) \to U_i \times \mathbb{C}^r$ on E, we may write a local generalized holomorphic connection on $U_i \times \mathbb{C}^r$ in the form $d_+ + A_i$, where A_i is a matrix valued generalized holomorphic one-form on U_i . They can be glued to a connection on E iff

$$\varphi_i^{-1} \circ (d_+ + A_i) \circ \varphi_i = \varphi_j^{-1} \circ (d_+ + A_j) \circ \varphi_j$$

on U_{ij} , equivalently,

$$\varphi_j^{-1} \circ (\varphi_{ij}^{-1} \circ d_+ \circ \varphi_{ij} - d_+) \circ \varphi_j = \varphi_j^{-1} \circ A_j \circ \varphi_j - \varphi_i^{-1} \circ A_i \circ \varphi_i$$

where $\varphi_{ij} = \varphi_i \circ \varphi_j^{-1}$. Also, by the relation $\varphi_{ij} \circ \varphi_{jk} \circ \varphi_{ki} = 1$, the left hand side of the above equation is actually a cocycle.

Definition

The Atiyah class

 $A(E) \in \mathrm{H}^1(M, G^*M \otimes \mathrm{End}(E))$

of a generalized holomorphic vector bundle E on a generalized complex manifold (M,\mathcal{J}) is given by the Čech cocycle

$$A(E) = \{U_{ij}, \varphi_j^{-1} \circ (\varphi_{ij}^{-1}d_+(\varphi_{ij})) \circ \varphi_j\},\$$

where d_+ is the Lie algebroid differential of the +i-eigenbundle L_+ of \mathcal{J} .

Let E be a generalized holomorphic bundle on a generalized complex manifold M. Then E admits a generalized holomorphic connection iff the Atiyah class

 $A(E) \in \mathrm{H}^1(M, G^*M \otimes \mathrm{End}(E))$

vanishes.

When M is a regular generalized complex manifold, we have another definition for Atiyah classes. Recall the exact sequence of generalized holomorphic bundles on M:

 $0 \to G^* M \otimes E \to \mathfrak{J}^1 E \to E \to 0.$

Definition

Let E be a generalized holomorphic vector bundle on a regular generalized complex manifold M. The **Atiyah class** of E is defined to be the first extension class of the above short exact sequence:

 $A(E) \in \operatorname{Ext}^{1}_{M}(E, G^{*}M \otimes E).$

Let E be a generalized holomorphic bundle on a regular generalized complex manifold M. Then E admits a generalized holomorphic connection if and only if A(E) = 0, namely, the above short exact sequence splits.

Atiyah classes III

Chen-Stienon-Xu, 2016

For a Lie pair (L, A) and an A-module E, $\Gamma(A) \times \Gamma(E) \to \Gamma(E)$,

- (1) Extend the A-module structure to an L-connection ∇ on E, i.e. $\nabla: \Gamma(L) \times \Gamma(E) \rightarrow \Gamma(E);$
- (2) The curvature $R^{\nabla} : \wedge^2 L \to \operatorname{End}(E)$ induces an element $R^{\nabla} \in \Gamma(A^* \otimes A^{\perp} \otimes \operatorname{End}(E))$, as $R^{\nabla}|_{\wedge^2 A} = 0$:

$$R^{\nabla}(a,\tilde{l}) = \nabla_a \nabla_l - \nabla_l \nabla_a - \nabla_{[a,l]}.$$

Proposition

 R^{∇} is a 1-cocycle and $[R^{\nabla}]$ does not depend on the choice of ∇ .

We call $[R^{\nabla}] \in H^1(A, A^{\perp} \otimes \text{End}(E))$ the Atiyah class.

 $(TM_{\mathbb{C}}, T^{0,1}M),$ (TM, F), $(\mathfrak{g}, \mathfrak{h}),$ $(TM \bowtie M^{\mathfrak{g}}, M^{\mathfrak{g}}).$

36 / 45

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三豆 めのの

Let E be a generalized holomorphic vector bundle on a regular generalized complex manifold M. Consider the Lie pair

 $(T_{\mathbb{C}}M, \rho(L_{-})),$

A generalized holomorphic vector bundle E is an L_- -module and thus a $\rho(L_-)$ -module since $\langle\bar\partial_L,\ker\rho\rangle=0.$ Note that

$$\rho(L_{-})^{\perp} = L_{-} \cap T^*_{\mathbb{C}}M = G^*M.$$

So a get the Atiyah class

$$A(E) \in \mathrm{H}^1(\rho(L_-), G^*M \otimes \mathrm{End}(E)).$$

Theorem

This Atiyah class vanishes iff there exists a generalized holomorphic connection on the generalized holomorphic vector bundle E.

Let E be a generalized holomorphic vector bundle over a holomorphic Poisson manifold (M, π) . The Atiyah class vanishes iff there exists a holomorphic connection on E such that $D_X = 0$ for any Hamiltonian vector field X on M. In other words, the connection 1-form takes values in the kernel of π .

Let E be a generalized holomorphic vector bundle over a holomorphic Poisson manifold (M, π) . The Atiyah class vanishes iff there exists a holomorphic connection on E such that $D_X = 0$ for any Hamiltonian vector field X on M. In other words, the connection 1-form takes values in the kernel of π .

This is different from the definition of the Atiyah class of a holomorphic vector bundle E on a holomorphic Poisson manifold M defined by Chen-Liu-Xiang, 2019, which vanishes iff there is a holomorphic $(T^*M)^{1,0}$ -connection on E.

We may study the Atiyah class of Gualtieri's generalized holomorphic vector bundles. Now we have a Courant algebroid, which is the double of two Dirac structures:

 $(TM \oplus T^*M) \otimes \mathbb{C} = L \oplus L_-,$

and an L_{-} -module E.

We may study the Atiyah class of Gualtieri's generalized holomorphic vector bundles. Now we have a Courant algebroid, which is the double of two Dirac structures:

 $(TM \oplus T^*M) \otimes \mathbb{C} = L \oplus L_-,$

and an L_{-} -module E.

Can we define the Atiyah class of a Courant algebroid with a Dirac structure?

We may study the Atiyah class of Gualtieri's generalized holomorphic vector bundles. Now we have a Courant algebroid, which is the double of two Dirac structures:

$$(TM \oplus T^*M) \otimes \mathbb{C} = L \oplus L_{-},$$

and an L_{-} -module E.

Can we define the Atiyah class of a Courant algebroid with a Dirac structure? Problem: the curvature of a Courant connection is not function linear unless $\nabla_{\mathcal{D}f} = 0$, too strong!

Thanks for your attention!

More discussion

Let C be a Courant algebroid over M and E a vector bundle over M. Then a C-connection on E is a map:

 $\nabla: \Gamma(E) \to \Gamma(\mathcal{C} \otimes E)$

such that

 $\nabla(fe) = \mathcal{D}f \otimes e + f\nabla e, \qquad \forall f \in C^{\infty}(M), e \in \Gamma(E),$

where $\mathcal{D}: C^{\infty}(M) \to \Gamma(\mathcal{C})$ is given by $\mathcal{D}(f) = \rho^* df$. The curvature of the Courant algebroid connection ∇ is defined as

 $R^{\nabla}: \Gamma(\wedge^2 \mathcal{C}) \to \Gamma(\operatorname{End}(E)), \qquad R^{\nabla}(c,c')e = \nabla_c \nabla_{c'} e - \nabla_{c'} \nabla_c e - \nabla_{[c,c']} e.$

It is $C^{\infty}(M)$ -linear with respect to e since $[\rho(c), \rho(c')] = \rho[c, c']$. The function linear property relative to c fails because the Courant bracket has different Leibniz rule from the Lie bracket.

Lemma

The curvature $R \in \Gamma(\wedge^2 \mathcal{C} \otimes \operatorname{End}(E))$ iff $\nabla_{\mathcal{D}f} = 0$ for all $f \in C^{\infty}(M)$.

Lemma

If the condition $\nabla_{\mathcal{D}f} = 0$ holds for all $f \in C^{\infty}(M)$, then we have the Bianchi identity

$$\nabla(R^{\nabla}) = 0.$$

Let A be a regular Dirac structure of the Courant algebroid \mathcal{C} , so A is a Lie algebroid. Let E be an A-module. Let ∇ be an \mathcal{C} -connection on E extending the A-connection satisfying that $\nabla_{\mathcal{D}f} = 0$ for all $f \in C^{\infty}(M)$. If there is such an extension, then we shall get a cohomology class of the Lie algebroid A. The curvature of ∇ is a bundle map $R^{\nabla} : \wedge^2 \mathcal{C} \to \operatorname{End} E$ defined by

$$R^{\nabla}(c,c') = \nabla_c \nabla_{c'} - \nabla_{c'} \nabla_c - \nabla_{[c,c']}.$$

As E is an A-module, so R^{∇} vanishes when restricting on $\wedge^2 A$. Moreover, by the fact that $\nabla_{\mathcal{D}f} = 0$ and $[\mathcal{D}f, c] = -\frac{1}{2}\mathcal{D}\rho(e)f$, we know $R^{\nabla}(a, \mathcal{D}f) = 0$. Thus the curvature induces a bundle map

$$R_E^{\nabla}: A \wedge \frac{\mathcal{C}}{A + \mathcal{D}f} \to \mathrm{End}E$$

given by

$$R_E^{\nabla}(a, [c]) = R^{\nabla}(a, c) = \nabla_a \nabla_c - \nabla_c \nabla_a - \nabla_{[a, c]}, \qquad a \in \Gamma(A), c \in \Gamma(\mathcal{C}).$$

Here we identify $\left(\frac{\mathcal{C}}{A+\mathcal{D}f}\right)^*$ with ker ρ_A , which is a vector bundle since A is regular.

Proposition

- (1) The element $R_E^{\nabla} \in \Gamma(A^* \otimes \ker \rho_A \otimes \operatorname{End}(E))$ is a 1-cocycle in the cohomology of the Lie algebroid A with values in the A-module $\ker \rho_A \otimes \operatorname{End}(E)$;
- (2) The cohomology class $\alpha_E \in H^1(A, \ker \rho_A \otimes \operatorname{End}(E))$ does not depend on the choice of *C*-connection extending the *A*-module;
- (3) The Atiyah class α_E vanishes if and only if there exists an A-compatible C-connection on E.

Let (L, B) be a Lie algebroid pair. Namely, L is a Lie algebroid with a Lie subalgebroid B. Let $\mathcal{C} = L \oplus L^*$ be the associated Courant algebroid with the trivial Lie algebroid structure on L^* and let $A = B \oplus B^{\perp}$. Then A is a regular Dirac structure of \mathcal{C} .

Let E be a B-module. It naturally is an A-module with the trivial B^{\perp} -action.

Proposition

With the above notations, the Atiyah class of the Courant pair (\mathcal{C}, A) with respect to the A-module E is exactly the Atiyah class of the Lie pair (L, B) with respect to the associated B-module E.