Kontsevich–Duflo type theorem for dg manifolds

joint work with Mathieu Stiénon and Ping Xu

Workshop on Atiyah classes and related topics January 6 - 9, 2020 KIAS, Seoul

《曰》 《聞》 《臣》 《臣》 三臣

3 Kontsevich–Duflo theorem for dg manifolds

Sontsevich-Duflo theorem for dg manifolds

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Differential graded Lie algebra

Let $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}^i$ be a (\mathbb{Z} -)graded vector space. A differential graded Lie algebra (dgla) is a triple ($\mathfrak{g}, d, [-, -]$), where

• (\mathfrak{g}, d) is a cochain complex:

$$\cdots \longrightarrow \mathfrak{g}^{i} \xrightarrow{d} \mathfrak{g}^{i+1} \longrightarrow \cdots$$

Denote the degree of x by |x|, i.e. x ∈ g^{|x|}.
(g, [-, -]) is a graded Lie algebra:

$$[-,-]: \mathfrak{g}^{i} \times \mathfrak{g}^{j} \to \mathfrak{g}^{i+j}$$
$$[x,y] = -(-1)^{|x||y|}[y,x]$$
$$[x,[y,z]] = [[x,y],z] + (-1)^{|x||y|}[y,[x,z]]$$

• compatibility condition (\Rightarrow $H(\mathfrak{g}, d)$ is a graded Lie algebra):

$$d[x,y] = [dx,y] + (-1)^{|x|} [x,dy]$$

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Example (Polyvector fields)

 $M = C^{\infty}$ manifold

•
$$\mathfrak{g} = \mathcal{T}^{\bullet}_{\operatorname{poly}}(M) = \bigoplus_{i \ge -1} \mathcal{T}^{i}_{\operatorname{poly}}(M)$$

 $\mathfrak{g}^{i} = \mathcal{T}^{i}_{\operatorname{poly}}(M) = \Gamma(\Lambda^{i+1}\mathcal{T}_{M})$

• Schouten bracket $[-,-]: \mathcal{T}^k_{\mathsf{poly}}(M) \otimes \mathcal{T}'_{\mathsf{poly}}(M) \to \mathcal{T}^{k+l}_{\mathsf{poly}}(M)$

$$\begin{split} [X, f] &= X(f), \quad \forall X \in \mathcal{T}^{0}_{\mathsf{poly}}(M), f \in \mathcal{T}^{-1}_{\mathsf{poly}}(M) = C^{\infty}(M) \\ [X, Y] &= \mathsf{Lie} \text{ bracket of vector fields,} \quad \forall X, Y \in \mathcal{T}^{0}_{\mathsf{poly}}(M) \\ [\xi, \eta \land \zeta] &= [\xi, \eta] \land \zeta + (-1)^{|\xi||\eta|} \eta \land [\xi, \zeta] \end{split}$$

- $d = \text{zero differential}, \ d = 0 : \mathcal{T}^i_{\text{poly}}(M) \to \mathcal{T}^{i+1}_{\text{poly}}(M)$
- (𝒯[●]_{poly}(𝒴), 0, [−, −]) is a dgla

Kontsevich-Duflo theorem for dg manifolds

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Example (Polydifferential operators)

$$\mathfrak{g} = \mathcal{D}^ullet_{\mathsf{poly}}(M) = igoplus_{i \geqslant -1} \mathcal{D}^i_{\mathsf{poly}}(M)$$

•
$$\mathcal{D}_{poly}^{i}(M) = \underbrace{\mathcal{D}(M) \otimes_{R} \cdots \otimes_{R} \mathcal{D}(M)}_{i+1 \text{ factors}}$$

 $R = C^{\infty}(M), \ \mathcal{D}(M) = \text{ differential operators on } M$

Gerstenhaber bracket

$$\llbracket -, - \rrbracket : \mathcal{D}^k_{\mathsf{poly}}(M) \otimes \mathcal{D}'_{\mathsf{poly}}(M) \to \mathcal{D}^{k+l}_{\mathsf{poly}}(M)$$

- Hochschild differential $d_{\mathcal{H}}: \mathcal{D}^{i}_{\text{poly}}(M) \to \mathcal{D}^{i+1}_{\text{poly}}(M)$
- (𝒫[●]_{poly}(𝔥), 𝑌_艘, [[,]]) is a dgla (a sub-dgla of the dgla of Hochschild cochains)

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

L_{∞} morphism

Let
$$(\mathfrak{g}, d_\mathfrak{g}, [-, -]_\mathfrak{g})$$
, $(\mathfrak{h}, d_\mathfrak{h}, [-, -]_\mathfrak{h})$ be dglas.

Idea of L_{∞} morphism: Lift Lie algebra morphism $H(\mathfrak{g}, d_{\mathfrak{g}}) \rightarrow H(\mathfrak{h}, d_{\mathfrak{h}})$ to cochain level.

An L_{∞} morphism $\Phi = (\Phi_n)_{n=1}^{\infty} : \mathfrak{g} \rightsquigarrow \mathfrak{h}$ is a sequence of linear maps $\Phi_n : \Lambda^n \mathfrak{g} \to \mathfrak{h}$ of degree 1 - n such that

•
$$d_{\mathfrak{h}}\Phi_1(v_1) = \Phi_1(d_{\mathfrak{g}}v_1)$$

• $\Phi_1([v_1, v_2]_{\mathfrak{g}}) - [\Phi_1(v_1), \Phi_1(v_2)]_{\mathfrak{h}} = d_{\mathfrak{h}} \Phi_2(v_1 \wedge v_2) - \Phi_2(d_{\mathfrak{g}}v_1 \wedge v_2) - (-1)^{|v_1|} \Phi_2(v_1 \wedge d_{\mathfrak{g}}v_2)$

• and higher equations (infinitely many equations)

An L_{∞} quasi-isomorphism $\Phi : \mathfrak{g} \rightsquigarrow \mathfrak{h}$ is an L_{∞} morphism Φ such that $\Phi_{1*} : H(\mathfrak{g}, d_{\mathfrak{g}}) \rightarrow H(\mathfrak{h}, d_{\mathfrak{h}})$ is an isomorphism.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Kontsevich formality

Hochschild-Kostant-Rosenberg map (skew-symmetrization)

$$\mathsf{hkr}: \mathcal{T}^{\bullet}_{\mathsf{poly}}(M) \to \mathcal{D}^{\bullet}_{\mathsf{poly}}(M)$$
$$\mathsf{hkr}(X_1 \wedge \dots \wedge X_k) = \frac{1}{k!} \sum_{\sigma \in \mathcal{S}_k} \operatorname{sign}(\sigma) X_{\sigma(1)} \otimes \dots \otimes X_{\sigma(k)}, \quad \forall X_i \in \mathfrak{X}(M)$$

Kontsevich formality theorem

Theorem (Kontsevich, Tamarkin)

- \exists an L_{∞} quasi-isomorphism $\Phi : \mathcal{T}^{\bullet}_{poly}(M) \rightsquigarrow \mathcal{D}^{\bullet}_{poly}(M)$ such that its first Taylor coefficient $\Phi_1 = hkr$;
- hkr induces an isomorphism of Gerstenhaber algebras

$$\mathsf{hkr}:\mathcal{T}^{\bullet}_{\mathsf{poly}}(M)\xrightarrow{\cong} H^{\bullet}\big(\mathcal{D}^{\bullet}_{\mathsf{poly}}(M),d_{\mathcal{H}}\big).$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Application: Duflo type theorems

Theorem (Poincaré-Birkhoff-Witt)

Let ${\mathfrak g}$ be a finite-dimensional Lie algebra. The map

 $\mathsf{pbw}:S(\mathfrak{g})\to\mathcal{U}(\mathfrak{g})$

defined by the formula

$$\mathsf{pbw}(X_1 \odot \cdots \odot X_n) = \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)} \cdots X_{\sigma(n)}$$

is an isomorphism of vector spaces.

NOTE: pbw does **NOT** preserve the algebra structures.

• In 1970, Duflo modified pbw by Duflo element

$$J:= \det\left(rac{1-e^{-\mathsf{ad}}}{\mathsf{ad}}
ight)\in \widehat{\mathcal{S}}\mathfrak{g}^ee,$$

where $ad \in Hom(\mathfrak{g}, End(\mathfrak{g})) \cong \mathfrak{g}^{\vee} \otimes End(\mathfrak{g})$, and proved the compatibility with product by techniques of representation theory including Kirillov's orbit method.

- In 1997, Kontsevich proposed a completely different proof by Kontsevich formality theorem.
- Following Kontsevich's idea, Pevzner and Torossian gave a new proof of Duflo. (2004)

Theorem (Duflo)

Let \mathfrak{g} be a Lie algebra. The map

$$\mathsf{pbw} \circ J^{rac{1}{2}} : S(\mathfrak{g})^{\mathfrak{g}} o \mathcal{U}(\mathfrak{g})^{\mathfrak{g}}$$

is an isomorphism of algebras.

Kontsevich's approach can be applied to different situations including complex manifolds:

Kontsevich-Duflo theorem (Kontsevich, Calaque & Van den Bergh)

hkr \circ $(Td_X)^{\frac{1}{2}}$: $H^{\bullet}(X, \Lambda^{\bullet}T_X) \rightarrow HH^{\bullet}(X)$ is an isomorphism of Gerstenhaber algebras.

Today: Unify these theorems by dg manifolds and Atiyah classes.

3 Kontsevich–Duflo theorem for dg manifolds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 ∽へぐ

Kontsevich-Duflo theorem for dg manifolds

Differential graded manifolds

A Z-graded manifold \mathcal{M} with support M is a sheaf \mathcal{R} of commutative Z-graded algebras over a smooth manifold M such that $\mathcal{R}(U) \cong C^{\infty}(U) \otimes S(V^{\vee})$ for sufficiently small open subsets Uof M and some Z-graded vector space V.

We say \mathcal{M} is finite-dimensional if dim $M + \dim V < \infty$.

 $\mathcal{C}^\infty(\mathcal{M}) := \mathcal{R}(\mathcal{M})$

Definition

A dg manifold is a \mathbb{Z} -graded manifold \mathcal{M} endowed with a vector field $Q \in \mathfrak{X}(\mathcal{M}) = \text{Der}(C^{\infty}(\mathcal{M}))$ of degree +1 such that $[Q, Q] = 2 \ Q \circ Q = 0.$

Kontsevich-Duflo theorem for dg manifolds

Example

If \mathfrak{g} is a Lie algebra, then $(\mathcal{M} = \mathfrak{g}[1], Q = d_{\mathsf{CE}})$ is a dg manifold:

- function algebra: $\mathcal{C}^\infty(\mathcal{M})\cong \Lambda^ullet \mathfrak{g}^ee$
- cohomological vector field: $Q = d_{\mathsf{CE}} : \Lambda^{\bullet} \mathfrak{g}^{\vee} \to \Lambda^{\bullet+1} \mathfrak{g}^{\vee}$

Example

If X is a complex manifold, then $(\mathcal{M} = \mathcal{T}_X^{0,1}[1], Q = \overline{\partial})$ is a dg manifold:

- function algebra: $C^{\infty}(T_X^{0,1}[1]) \cong \Omega^{0,\bullet}(X)$
- cohomological vector field: $Q = ar{\partial}$ (Dolbeault operator)

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why dg manifolds?

- A physical motivation: AKSZ.
- Many interesting examples: Lie algebras, foliations, Lie algebroids, Courant aglebroids, etc.
- Derived Differential Geometry: negatively graded dg manifolds.

Kontsevich-Duflo theorem for dg manifolds

Example

Let *E* be a vector bundle over *M* and $s \in \Gamma(M, E)$. Then $(\mathcal{M} = E[-1], Q = \iota_s)$ is a dg manifold: derived zero locus of *s*.

• function algebra:

$$\cdots \xrightarrow{\iota_{s}} \Gamma(\Lambda^{2}E^{\vee}) \xrightarrow{\iota_{s}} \Gamma(\Lambda^{1}E^{\vee}) \xrightarrow{\iota_{s}} C^{\infty}(M) \longrightarrow 0$$

which is quasi-isomorphic to $C^{\infty}(Z(s))$ (as cdgas) if s is a regular section.

Theorem (Behrend, L, Xu)

The category of finite-dimensional negatively graded dg manifolds is a category of fibrant objects.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Atiyah class for dg manifold

Atiyah (1957): obstruction to the existence of holomorphic connections on a holomorphic vector bundle

For dg manifold:

- $(\mathcal{M}, \mathcal{Q}) = \mathsf{dg}$ manifold, $abla = \mathsf{affine}$ connection on \mathcal{M}
- Atiyah cocycle: $\operatorname{at}_{(\mathcal{M},Q)}^{\nabla} \in \Gamma(\mathcal{T}_{\mathcal{M}}^{\vee} \otimes \operatorname{End} \mathcal{T}_{\mathcal{M}})$ given by

 $\operatorname{at}_{(\mathcal{M},Q)}^{\nabla}(X,Y) = L_Q(\nabla_X Y) - \nabla_{(L_Q X)} Y - (-1)^{|X|} \nabla_X (L_Q Y)$

where $X, Y \in \mathfrak{X}(\mathcal{M})$. $\operatorname{at}_{(\mathcal{M},Q)}^{\nabla} = L_Q(\nabla)$

Atiyah class:

 $\alpha_{(\mathcal{M},Q)} = [\operatorname{at}_{(\mathcal{M},Q)}^{\nabla}] \in H^1(\Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End} T_{\mathcal{M}}), L_Q)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

A connection abla on $\mathcal M$ is called a $\mathit{Q} ext{-invariant connection}$ if

$$[Q, \nabla_X Y] = \nabla_{[Q,X]} Y + \nabla_X [Q,Y] \qquad \forall X, Y \in \mathfrak{X}(\mathcal{M})$$

Proposition

- The Atiyah class α_(M,Q) ∈ H¹_{CE}(Γ(T[∨]_M ⊗ End T_M), L_Q) does not depend on the choice of connection ∇.
- $\alpha_{(\mathcal{M},Q)} = 0 \quad \Leftrightarrow \quad \exists \ Q$ -invariant connection on \mathcal{M}

Dg manifolds and Atiyah classes 0000000● Kontsevich-Duflo theorem for dg manifolds

Todd class for dg manifold

• Todd cocycle of (\mathcal{M}, Q) associated to ∇ is the L_Q -cocycle

$$\mathsf{td}_{(\mathcal{M},Q)}^{\nabla} = \mathsf{Ber}\left(\frac{\mathrm{at}_{(\mathcal{M},Q)}^{\nabla}}{1 - e^{-\mathrm{at}_{(\mathcal{M},Q)}^{\nabla}}}\right) \in \prod_{k \ge 0} \left(\Gamma(\Lambda^k \, T_{\mathcal{M}}^{\vee}) \right)^k$$

ullet Todd class of a (\mathcal{M}, Q) is the class

$$\mathsf{Td}_{(\mathcal{M},Q)} = \mathsf{Ber}\left(\frac{\alpha_{(\mathcal{M},Q)}}{1 - e^{-\alpha_{(\mathcal{M},Q)}}}\right) \in \prod_{k \ge 0} H^k\big(\mathsf{\Gamma}(\Lambda^k \, \mathcal{T}_{\mathcal{M}}^{\vee})^{\bullet}, L_Q\big).$$

3 Kontsevich-Duflo theorem for dg manifolds

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds •••••••••

HKR theorem for dg manifolds

Let (\mathcal{M}, Q) be a dg manifold.

Twisted dgla of polydifferential operators:

 $\left({}_{\oplus}\mathcal{D}^{ullet}_{\mathsf{poly}}(\mathcal{M})\right)_Q := \left({}_{\oplus}\mathcal{D}^{ullet}_{\mathsf{poly}}(\mathcal{M}), d_{\mathcal{H}} + \llbracket Q, - \rrbracket, \llbracket -, - \rrbracket\right)$

Proposition

The map hkr : $(\mathcal{T}^{\bullet}_{\text{poly}}(\mathcal{M})^{\bullet}, 0, [Q, -]) \rightarrow (\mathcal{D}^{\bullet}_{\text{poly}}(\mathcal{M})^{\bullet}, d_{\mathcal{H}}, \llbracket Q, - \rrbracket)$ is a morphism of double complexes. Moreover, the induced map

 $\mathsf{hkr}: \mathbb{H}^{\bullet}({}_{\oplus}\mathcal{T}^{\bullet}_{\mathsf{poly}}(\mathcal{M}), [Q, -]) \to \mathbb{H}^{\bullet}({}_{\oplus}\mathcal{D}^{\bullet}_{\mathsf{poly}}(\mathcal{M}), \textit{d}_{\mathcal{H}} + [\![Q, -]\!])$

is an isomorphism of vector spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

NOTE:

hkr does NOT preserve the algebra structures.

REMEDY:

Modify hkr by Todd class.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Formality theorem for dg manifold

Theorem (L, Stiénon, Xu)

Given a finite-dimensional dg manifold (\mathcal{M}, Q) and an affine torsion-free connection ∇ on \mathcal{M} , there exists an L_{∞} quasi-isomorphism

$\Phi: \left({}_{\oplus}\mathcal{T}^{\bullet}_{\mathsf{poly}}(\mathcal{M})\right)_{Q} \rightsquigarrow \left({}_{\oplus}\mathcal{D}^{\bullet}_{\mathsf{poly}}(\mathcal{M})\right)_{Q}$

whose first 'Taylor coefficient' Φ_1 satisfies the following two properties:

- Φ₁ induces an isomorphism of associate algebras of the cohomologies;
- Φ_1 is given by the formula

$$\Phi_1 = \mathsf{hkr} \circ (\mathsf{td}_{(\mathcal{M},Q)}^{\nabla})^{\frac{1}{2}}.$$

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Kontsevich–Duflo theorem for dg manifolds

Corollary

Given a finite-dimensional dg manifold (\mathcal{M}, Q) , the map

 $\begin{aligned} \mathsf{hkr} \circ (\mathsf{Td}_{(\mathcal{M},Q)})^{\frac{1}{2}} : \mathbb{H}^{\bullet}(_{\oplus}\mathcal{T}^{\bullet}_{\mathsf{poly}}(\mathcal{M}), [Q,]) \\ \to \mathbb{H}^{\bullet}(_{\oplus}\mathcal{D}^{\bullet}_{\mathsf{poly}}(\mathcal{M}), d_{\mathcal{H}} + \llbracket Q, \rrbracket) \end{aligned}$

is an isomorphism of Gerstenhaber algebras. The square root $(\mathrm{Td}_{(\mathcal{M},Q)})^{\frac{1}{2}} \in \prod_{k\geq 0} H^{k}((\Gamma(\Lambda^{k}T_{\mathcal{M}}^{\vee}))^{\bullet}, L_{Q})$ acts on $\mathbb{H}^{\bullet}(\oplus \mathcal{T}^{\bullet}_{\mathrm{poly}}(\mathcal{M}), [Q,])$ by contraction.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Application: Lie algebra

•
$$\operatorname{td}_{(\mathcal{M},Q)}^{\nabla} = \operatorname{Ber}\left(\frac{\operatorname{ad}}{1-e^{-\operatorname{ad}}}\right) = \operatorname{det}\left(\frac{1-e^{-\operatorname{ad}}}{\operatorname{ad}}\right) = J \in \hat{S}\mathfrak{g}^{\vee}$$

Theorem

The map $\mathsf{pbw} \circ J^{\frac{1}{2}} : H^{\bullet}_{\mathsf{CE}}(\mathfrak{g}, S(\mathfrak{g})) \to H^{\bullet}_{\mathsf{CE}}(\mathfrak{g}, \mathcal{U}(\mathfrak{g}))$ is an isomorphism of algebras.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Application: complex manifold

$$X={\sf complex}$$
 manifold, $(\mathcal{M},Q)=(\mathcal{T}_X^{0,1}[1],ar\partial)$

Theorem (Chen, Xiang, Xu)

The following diagram is commutative:

Kontsevich–Duflo theorem (Kontsevich, Calaque & Van den Bergh) hkr $\circ(Td_X)^{\frac{1}{2}}$: $H^{\bullet}(X, \Lambda^{\bullet}T_X) \to HH^{\bullet}(X)$ is an isomorphism of Gerstenhaber algebras.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Sketch of proof of Kontsevich-Duflo Thm

We are interested in the isomorphism of Gertenhaber algebras:

$$\mathsf{hkr} \circ (\mathsf{Td}_{(\mathcal{M},Q)})^{\frac{1}{2}} : \mathbb{H}^{\bullet} \big(_{\oplus} \mathcal{T}^{\bullet}_{\mathsf{poly}}(\mathcal{M})_Q \big) \to \mathbb{H}^{\bullet} \big(_{\oplus} \mathcal{D}^{\bullet}_{\mathsf{poly}}(\mathcal{M})_Q \big)$$

It factors in the following way

where I and III are from *Fedosov contractions*, and II is induced by a twisted (fiberwise, local) Kontsevich formality morphism. Atiyah classes appear because of the twisting II. D^{∇} is a bridge between local formulas and global formulas.

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Classical construction of D^{∇}

- \mathcal{M} is a graded manifold of dimension n
- $(x_k)_{k\in\{1,...,n\}}$ local coordinates on $\mathcal M$
- (y_k)_{k∈{1,...,n}} induced local frame of T[∨]_M, regarded as fiberwise linear functions on T_M
- Koszul vector field:

$$\delta = \sum_{k=1}^n dx_k \frac{\partial}{\partial y_k} \in \Omega^1(\mathcal{M}, \widehat{S}T_{\mathcal{M}}^{\vee} \otimes T_{\mathcal{M}})$$

regarded as a formal vector field acting on $\Omega(\mathcal{M}, \widehat{S}T_{\mathcal{M}}^{\vee})$.

• Homotopy operator: $h: \Omega^p(\mathcal{M}, S^q T^{\vee}_{\mathcal{M}}) \to \Omega^{p-1}(\mathcal{M}, S^{q+1}T^{\vee}_{\mathcal{M}})$

$$h(\omega \otimes f) = \frac{1}{p+q} \sum_{k=1}^{n} (-1)^{|y_k||\omega|} \iota_{\frac{\partial}{\partial x_k}} \omega \otimes y_k \cdot f$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Twist
$$\delta$$
 by d^{∇} , but $(-\delta + d^{\nabla})^2 \neq 0$.

• Consider operators of the form

$$D^{\nabla} = -\delta + d^{\nabla} + X$$

where the correction

$$X \in \Omega^1(\mathcal{M}, \widehat{S}^{\geqslant 2}(T^{\vee}_{\mathcal{M}}) \otimes T_{\mathcal{M}}).$$

• Solve X by the equation $(D^{\nabla})^2 = 0$.

Theorem

Let ∇ be a torsion-free connection. There exists a unique degree one element $X \in \Omega^1(\mathcal{M}, \widehat{S}^{\geq 2}(T^{\vee}_{\mathcal{M}}) \otimes T_{\mathcal{M}})$ such that

•
$$(h \otimes \operatorname{id})(X) = 0$$
,

•
$$(D^{\nabla})^2 = 0.$$

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Our construction of D^{∇}

Definition

Let \mathcal{M} be a graded manifold. The formal exponential map associated to a connection ∇ on $\mathcal{T}_{\mathcal{M}}$ is the morphism of left $\mathcal{C}^{\infty}(\mathcal{M})$ -modules

$$\mathsf{pbw} = \mathsf{pbw}^{\nabla} : \Gamma(\mathcal{S}(\mathcal{T}_{\mathcal{M}})) \to \mathcal{D}(\mathcal{M}),$$

inductively defined by the recursive relations

$$pbw(f) = f, \qquad pbw(X) = X,$$

$$pbw(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \pm \left\{ X_k \cdot pbw(X^{\{k\}}) - pbw(\nabla_{X_k} X^{\{k\}}) \right\}$$

$$X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n.$$

- $pbw = pbw^{\nabla}$ is the ∞ -jet of the geodesic exponential map if $\mathcal{M} = \mathcal{M}$.
- pbw : Γ(S(T_M)) → D(M) is an isomorphism of coalgebras over C[∞](M).

Dg manifolds and Atiyah classes

Kontsevich-Duflo theorem for dg manifolds

Back to construction of D^{∇}

• Pick a connection ∇ on ${\mathcal T}_{\mathcal M},$ and we have a coalgebra isomorphism

$$\mathsf{pbw} = \mathsf{pbw}^{\nabla} : \Gamma(S(T_{\mathcal{M}})) \to \mathcal{D}(\mathcal{M}).$$

• Consider the connection $abla^{\sharp}$ on $S(\mathcal{T}_{\mathcal{M}})$ defined by

$$abla^{lay 2}_X S := \mathsf{pbw}^{-1} \left(X \cdot \mathsf{pbw}(S)
ight)$$

for all $X \in \Gamma(T_{\mathcal{M}})$ and $S \in \Gamma(S(T_{\mathcal{M}}))$.

 The connection ∇[‡] induces a connection on the dual bundle *G*T[∨]_M. By abusing notations, we use the same symbol ∇[‡] for this induced connection.

The covariant derivative

$$d^{\nabla^{\sharp}}:\Omega^{p}\big(\mathcal{M},\widehat{S}(\mathcal{T}_{\mathcal{M}}^{\vee})\big)\to\Omega^{p+1}\big(\mathcal{M},\widehat{S}(\mathcal{T}_{\mathcal{M}}^{\vee})\big)$$

Theorem (L, Stiénon)

• The connection ∇^{\sharp} is flat. Namely

$$(d^{\nabla^{\sharp}})^2 = 0$$

• If ∇ is a torsion-free connection, then $d^{\nabla^{\sharp}} = -\delta + d^{\nabla} + X$ with

$$X \in \Omega^1(\mathcal{M}, \widehat{S}^{\geqslant 2}(T^{\vee}_{\mathcal{M}}) \otimes T_{\mathcal{M}}),$$

degree(X) = +1, and ($h \otimes id$)(X) = 0.

Thus,

$$d^{\nabla^{\sharp}} = D^{\nabla}$$

Kontsevich-Duflo theorem for dg manifolds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Thank you!