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Where A∞-algebras come from in higher-energy physics?

Physical Motivations:
Higher-Spin Interaction Problem

What is a mathematical structure underlying fundamental interactions?

Massless particles are classified by spin:

s = 0 – scalar field (too simple, no gauge symmetry)

s = 1 – YM fields (geometry of connections in vector bundles)

s = 2 – Einstein’s gravity (Riemannian geometry)

s > 2 – ???

There are good relativistic wave equations for free fields of all spins on the
Minkowski or (anti-)de Sitter spaces!
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Where A∞-algebras come from in higher-energy physics? SFT & SUGRA

Strong Homotopy Algebras are Coming to the Stage

‘Quantum Gravity’ seems to require higher-spin particles
(UV compleation).

Supergravity with N > 8?

String Field Theory:

QΦ = m2(Φ,Φ) + m3(Φ,Φ,Φ) + m4(Φ,Φ,Φ,Φ) + · · · ,

Φ – string field (Grassmann odd)

Q – BRST operator (Q2 = 0)

mk – tree level string’s amplitudes

Alexey Sharapov (TSU) Deformations of A∞-algebras 01/06/2020 4 / 21



Where A∞-algebras come from in higher-energy physics? SFT & SUGRA

A∞- and L∞-algebras from String Field Theory

Integrability condition for SFT equations (Q2 = 0) leads to∑
k+l=n

±mk(. . . ,ml(. . .), . . .) = 0 , n = 3, 4, . . . ,

i.e., defining conditions of a (minimal) A∞-algebra constituted by

mk(a1, a2, . . . , ak) , k = 2, 3, . . .

If all mk are skew-symmetric, then we get a (minimal) L∞-algebra.

A∞ ⇔ (open strings) , L∞ ⇔ (closed strings)

[E. Witten, B. Zwiebach, M. Gaberdiel, H. Kajiura & J. Stasheff, ... ]
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Where A∞-algebras come from in higher-energy physics? HS gravity and algebraic deformation problem

Higher Spin Gravities

Φ – differential forms with values in algebra

Q = d – exterior differential on forms

Field equations [M. Vasiliev, 1988]:

dΦ = m2(Φ,Φ) + m3(Φ,Φ,Φ) + · · ·

m2(a, b) defines an associative algebra structure, the Higher Spin Algebra.

Problem: given m2, find all higher interaction vertices mk ’s.

Deformation interpretation:

m = m2 + λm3 + λ2m4 + · · · ,

λ being formal deformation parameter (coupling constant).
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Reminder on A∞-algebras Basics on Gerstenhaber’s algebra

Graded Vector Spaces and ◦-product

V =
⊕

l V
l – Z-graded vector space over k .

T (V ) =
⊕

n≥1 V
⊗n – tensor algebra of V .

Hom(T (V ),V ) =
⊕
l∈Z

Homl(T (V ),V )

Non-associative ◦-product:

(f ◦ g)(v1 ⊗ v2 ⊗ · · · ⊗ vm+n−1)

=
n−1∑
i=0

(−1)|g |
∑i

j=1 |vj |f (v1⊗ · · · ⊗ vi ⊗ g(vi+1⊗ · · · ⊗ vi+m)⊗ · · · ⊗ vm+n−1)

|g | is the degree of g as a linear map.
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Reminder on A∞-algebras Basics on Gerstenhaber’s algebra

Gerstenhaber Bracket and A∞-algebras

The Gerstenhaber bracket

[f , g ] = f ◦ g − (−1)|f ||g |g ◦ f

makes Hom(T (V ),V ) into the graded Lie superalgebra L =
⊕

n Ln.

Super skew-symmetry: [f , g ] = −(−1)|f ||g |[g , f ],

The super Jicobi identity:

[[f , g ], h] = [f , [g , h]]− (−1)|f ||g |[g , [f , h]] .

An A∞-structure on V is given by a MC element m ∈ L1, i.e.

[m,m] = 2m ◦m = 0 .

(V ,m) is called A∞-algebra [Jim Stasheff, 1963].
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Reminder on A∞-algebras A∞-algebras

Special cases of A∞-algebras

Stasheff’s identities for component maps:

m = m1 + m2 + m3 + · · · , mn ∈ Hom1(T n(V ),V ) ,

m ◦m = 0 ⇔
∑

k+l=n−1

mk ◦ml = 0 , n = 1, 2, . . .

m = m1 ⇒ (V , d) is a complex with differential d = m1; d2 = 0

m = m2 ⇒ (V , · ) is an associative algebra with

u · v = (−1)|u|−1m2(u, v)

m = m1 + m2 ⇒ (V , d , · ) is a DGA algebra,

d(u · v) = du · v + (−1)|u|−1u · dv

m = m2 + m3 + · · · is a minimal A∞-structure; m2 ◦m2 = 0.
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Reminder on A∞-algebras Minimal A∞-algebras

Minimal Deformations of Associative Algebras

The ideal L̄ =
∏

n≥2 Hom
0(T n(V ),V ) ⊂ L generates the subgroup of

internal automorphisms G ⊂ Aut(L):

f 7→ f ′ = e [h, · ]f =
∞∑
n=0

1

n!
[h, [h, . . . [h︸ ︷︷ ︸

n

, f ] . . .] , ∀h ∈ L̄ , ∀f ∈ L

Two minimal A∞-structures m and m′ are equivalent (m ∼ m′), if

m′ = e [h, · ]m for some h ∈ L̄ .

MV = (Minimal A∞-structures on V )/G

Clearly, m ∼ m′ ⇒ m2 = m′2.

MV may be regarded as the space of all nontrivial deformations of
associative algebras A = (V ,m2) in the category of minimal A∞-algebras.
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Braces and ∪-product on A∞-cohomology Brace operations

Braces

Let W = Hom(T (V ),V ) and A0,A1, . . . ,Am ∈W .

Following [Kadeishvili, 1988], define m-brace { } : Wm+1 →W by

A0{A1, . . . ,Am}(v1, . . . , vn)

=
∑

Av -shuffles

±A0(v1 , ..., vk1
,A1(v

k1+1
, ...)..., v

km
,Am(v

km+1
, ...)..., vn)

By definition, A{∅} = A. Clearly, A0{A1} = A0 ◦ A1.

Higher pre-Jacobi identities [Gerstenhaber & Voronov, 1995]:

A{A1, . . . ,Am}{B1, . . . ,Bn}

=
∑

AB-shuffles

±A{B1 , ...,Bk1
,A1{Bk1+1

, ...}, ...,B
km
,Am{Bkm+1

, ...}, ...,Bn}
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Braces and ∪-product on A∞-cohomology A∞-cohomology

Derived A∞-structure and A∞-cohomology

Any A∞-structure m on V can be lifted to an A∞-structure M on W :

M1(A) = m ◦ A− (−1)|A|A ◦m ,

Mk(A1, . . . ,Ak) = m{A1, . . . ,Ak} , k > 1 ; M ◦M = 0

[E. Getzler, 1993]. In particular, M1 ◦M1 = M1M1 = 0.

Let H•(W ) denote the cohomology of the complex M1 : W p →W p+1.

It follows from [M1,M2] = 0 that M2 : W ⊗W →W induces a product in
A∞-cohomology:

∪ : Hn(W )⊗ Hm(W )→ Hn+m+1(W ) ,

a ∪ b = (−1)|A|−1M2(A,B) , a = [A] , b = [B] .

For A = (V ,m2) this yields the usual groups of Hochschild cohomology
HH•+1(A,A) endowed with the Gerstenhaber ∪-product.
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Braces and ∪-product on A∞-cohomology A∞-cohomology

Further Properties of Cup-product

Theorem. The cup-product and the Gerstenhaber bracket endow the space
H•(W ) of A∞-cohomology with a structure of the Gerstenhaber algebra.

Associativity: (a ∪ b) ∪ c = a ∪ (b ∪ c).

Graded commutativity: a ∪ b = (−1)(|a|−1)(|b|−1)b ∪ a.

Poisson relation: [a, b ∪ c] = [a, b] ∪ c + (−1)|a|(|b|+1)b ∪ [a, c].

[Sh. & Skvortsov, 2019]

The formal deformations of A∞-structures are controlled by the groups
H1(W ) and H2(W ).

[Penkava & Schwarz, 1995; Fialowski & Penkava, 2002]
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Families of A∞-algebras and their inner deformations Inner A-cohomology

Inner A∞-cohomology of Families

Let (V ,mt) be an n-parameter family of A∞-algebras, i.e.,

m ∈W [[t1, . . . , tn]] , m ◦m = 0 , |m| = 1 ,

where |ti | ∈ 2Z. Denote m
(i)

= ∂m/∂ti , then

∂

∂t i
(m ◦m) = [m

(i)
,m] = M1(m

(i)
) = 0 ⇒ [m

(i)
] ∈ H•(W ).

The cocycles m
(i)

generate a commutative algebra Dm w.r.t. the
cup-product:

Dm 3 ∆ =
L∑

l=0

c i1...ilm
(i1)
∪m

(i2)
∪ · · · ∪m

(il )
, c i1...il ∈ k[[t1, ..., tn]].

[∆] ∈ H•(W ) is an inner cohomology class of the family (V ,mt).
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Families of A∞-algebras and their inner deformations Inner deformations

Inner Deformations of Families

Proposition. Any inner cocycle ∆[mt ] associated to an n-parameter family
mt ∈W [[t1, . . . , tn]] of A∞-structures gives rise to an (n + 1)-parameter
family of A∞-structures m̃t ∈W [[t0, t1, . . . , tn]]. The latter is defined as a
unique formal solution to

m̃
(0)

= ∆[m̃] , m̃|t0=0 = mt .

Here t0 is a new formal parameter with |t0| = 1− |∆|.

The A∞-structure m̃t is called an inner deformation of the family mt .

Geometrically, ∆[m] defines a flow in the space W [[t1, . . . , tn]] which is
tangent to the quadratic surface Σ of A∞-structures:

Σ : m ◦m = 0 , L∆(m ◦m) = [∆[m],m] = 0 , ∀m ∈ Σ .

Alexey Sharapov (TSU) Deformations of A∞-algebras 01/06/2020 15 / 21



Families of A∞-algebras and their inner deformations Inner deformations

Example: Minimal Deformations of DGA’s

Let At = (V , ∂, µ ) be a 1-parameter family of DGA’s, i.e.,

V = ⊕lV
l , ∂ : V l → V l−1 , µ : V n ⊗ Vm → V n+m .

Both the product and the differential may depend on t with |t| = 0.

Define the 2-parameter family of DGA’s At ⊗ k[[u]] with the differential

d = u∂ , |u| = 2 ⇒ |d | = 1 .

Then m = d + µ gives rise to a sequence of inner cocycles of degree 1

∆n[m] = m
(t)
∪m

(u)
∪m

(u)
∪ · · · ∪m

(u)︸ ︷︷ ︸
n

, n = 1, 2, . . . , (| ∪ | = −1)

generating the flows

m̃
(s)

= ∆n[m̃] , m̃|s=0 = m .
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Examples of inner deformations Deformations of DGA’s

Minimal Deformations of DGA’s

The parameter u plays an auxiliary role. Let

m̄ = m̃|u=0 = m + sϕ+ O(s2) ,

where
Φ(v1, . . . , vn+2) = µ′(v1, v2) · ∂v3 · ∂v4 · · · ∂vn+2

and the prime stands for the derivative w.r.t. t.

Φ is a Hochschild cocycle defining an element of HHn+2(At ,At).

Setting s = 1, we get a minimal deformation of the graded associative
algebra At .

If ∂ is independent of t, then ∂ differentiates m̄, i.e., [∂, m̄] = 0.
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Examples of inner deformations Deformations of Higher Spin Algebras

Application: Higher Spin Gravity in D=4

A 2-parameter family of Higher Spin Algebras is A = S ⊗ S , where
S is a symplectic reflection algebra [P. Etingof & V. Ginzburg, 2001]:

[q, p] = 1 + tκ , {κ, q} = {κ, p} = 0 , κ2 = 1 , t ∈ R

[E. Wigner, 1950]. For t = 0, all quadratic monomials in q’s and p’s
generate sp(2,R) ' so(3, 2), the Lie algebra of isometry group of AdS4.

Regarding A as a bimodule over itself, define the family of DGA’s:

A = A−1 ⊕ A0, A−1 = A = A0, ∂ = id : A0 → A−1, ∂2 = 0.

A minimal deformation of the family A gives rise to a 4D HS gravity.
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Examples of inner deformations Deformations of Higher Spin Algebras

Deformation of Maurer–Cartan Space

Given an A∞-algebra (V ,m), the Maurer–Cartan equation reads

m(a) :=
∞∑
n=1

mn(a, . . . , a) = 0 , |a| = 0 .

A solution a ⊂ V 0 is called a Maurer–Cartan element of (V ,m).

Proposition. If m̃ is an inner deformation of a family of A∞-structures m,
then each MC element for m can be deformed to that for m̃.

Proof: Let m̃ ∈W [[t0, t1, . . . , tl ]] be a solution to

m̃
(0)

= ∆[m̃
(i1)
, m̃

(i2)
, . . . , m̃

(il )
] , ∆[m̃] = m̃

(i1)
∪ m̃

(i2)
∪ · · · ∪ m̃

(il )
.

Then, any solution to

D0a = (−1)l∆(Di1 , m̃(is )
, . . . , m̃

(il )
)(a) , Dia := ∂a/∂t i .

satisfies m̃(a) = 0 provided that a0 = a|t0=0 obeys m(a0) = 0.
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L∞-algebras as formal Q-manifolds Characteristic classes of Q-manifolds

Cup-product on L∞-cohomology

L∞-structure ⇔ homological vector field Q on a Z-graded manifold M:

|Q| = 1 , Q2 =
1

2
[Q,Q] = 0 .

The Lie derivative LQ makes the tensor algebra T •,•(M) into a complex.
For any symmetric connection ∇ on M with curvature R ∈ T 3,1(M), the
tensor B1 ∈ T 2,1(M) defined by

B1(X ,Y ) = ∇X∇YQ −∇∇XYQ − RXQY

is Q-invariant. (Actually, B1 = LQ∇, and hence LQB1 = 0.)

[S. Lyakhovich, E. Mosmann & A. Sh, 2004]

The space H0,1(M,Q), generated by Q-invariant vector fields on M, is
endowed with the grad. commutative product X ∪ Y = B1(X ,Y ), which
is compatible with the commutator [X ,Y ] of Q-invariant vector fields.
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Cup-product on L∞-cohomology and the Atiyah class Complex analytic varieties as Q-manifolds

The Atiyah class of tangent bundles

The Dolbeualt model of the Atiyah class:

M – a complex analytic manifold with holomorphic coordinates zA

∇ – a C∞ affine connection on M of type (1, 0)

∂̄ – the Dolbeault operator defining holomorphic structure on M

AtM = [∂̄,∇] ∈ Ω1,1 ⊗ End(TM) , ∂̄AtM = 0 .

[M. Kapranov, 1997; R. Mehta, M. Stiénon, P. Xu, 2015]

The complex supermanifold M = ΠTM with holomorphic coordinates
(zA, θA = dzA) is endowed with the canonical homological vector field

Q = θ̄A
∂

∂z̄A
⇔ ∂̄

∇ lifts canonically to an affine connection ∇̂ on M and we define

B1 = LQ∇̂ ∈ T 2,1(M) , B1 ∼ AtM .

Alexey Sharapov (TSU) Deformations of A∞-algebras 01/06/2020 21 / 21


	Where A-algebras come from in higher-energy physics?
	SFT & SUGRA
	HS gravity and algebraic deformation problem 

	Reminder on A-algebras
	Basics on Gerstenhaber's algebra
	A-algebras
	Minimal A-algebras

	Braces and -product on A-cohomology
	Brace operations
	A-cohomology

	Families of A-algebras and their inner deformations
	Inner A-cohomology
	Inner deformations

	Examples of inner deformations
	Deformations of DGA's
	Deformations of Higher Spin Algebras

	L-algebras as formal Q-manifolds
	Characteristic classes of Q-manifolds

	Cup-product on L-cohomology and the Atiyah class
	Complex analytic varieties as Q-manifolds


