Workshop on Atiyah Classes and Related Topics

January 6 - 9, 2020, KIAS, Seoul

Cup Product and Deformations of A_{∞} -algebras

Alexey A. Sharapov

Tomsk State University

based on arXiv: 1901.07872, 1809.03386, 1003.0542, 0906.0466

イロト イポト イヨト イヨト

Outline

- 1 Where A_{∞} -algebras come from in higher-energy physics?
- **2** Reminder on A_{∞} -algebras
- \bigcirc Braces and \cup -product on A_∞ -cohomology
- 4 Families of A_∞ -algebras and their inner deformations
- 5 Examples of inner deformations
- 6 Cup-product on L_{∞} -cohomology and the Atiyah class

< □ > < □ > < □ > < □ > < □ > < □ >

Physical Motivations: Higher-Spin Interaction Problem

What is a mathematical structure underlying fundamental interactions?

Massless particles are classified by spin:

- s = 0 scalar field (too simple, no gauge symmetry)
- s = 1 YM fields (geometry of connections in vector bundles)
- s = 2 Einstein's gravity (Riemannian geometry)

● *s* > 2 − ???

There are good relativistic wave equations for free fields of all spins on the Minkowski or (anti-)de Sitter spaces!

イロト イポト イヨト イヨト

Strong Homotopy Algebras are Coming to the Stage

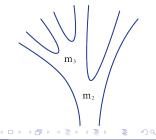
'Quantum Gravity' seems to require higher-spin particles (UV compleation).

Supergravity with $\mathcal{N} > 8$?

String Field Theory:

$$Q\Phi=m_2(\Phi,\Phi)+m_3(\Phi,\Phi,\Phi)+m_4(\Phi,\Phi,\Phi,\Phi)+\cdots,$$

- Φ string field (Grassmann odd)
- Q BRST operator ($Q^2 = 0$)
- m_k tree level string's amplitudes



A_{∞} - and L_{∞} -algebras from String Field Theory

Integrability condition for SFT equations ($Q^2 = 0$) leads to

$$\sum_{k+l=n} \pm m_k(\ldots,m_l(\ldots),\ldots) = 0, \quad n = 3,4,\ldots,$$

i.e., defining conditions of a (minimal) A_∞ -algebra constituted by

$$m_k(a_1, a_2, \ldots, a_k), \qquad k=2,3,\ldots$$

If all m_k are skew-symmetric, then we get a (minimal) L_{∞} -algebra.

$$A_{\infty} \quad \Leftrightarrow \quad (ext{open strings}) \,, \qquad L_{\infty} \quad \Leftrightarrow \quad (ext{closed strings})$$

[E. Witten, B. Zwiebach, M. Gaberdiel, H. Kajiura & J. Stasheff, ...]

イロト イポト イヨト イヨト

Higher Spin Gravities

- Φ differential forms with values in algebra
- Q = d exterior differential on forms

Field equations [M. Vasiliev, 1988]:

$$d\Phi = m_2(\Phi, \Phi) + m_3(\Phi, \Phi, \Phi) + \cdots$$

 $m_2(a, b)$ defines an associative algebra structure, the Higher Spin Algebra. Problem: given m_2 , find all higher interaction vertices m_k 's. Deformation interpretation:

$$m=m_2+\lambda m_3+\lambda^2 m_4+\cdots,$$

 λ being formal deformation parameter (coupling constant).

< ロ > < 同 > < 回 > < 回 > < 回 > <

Graded Vector Spaces and o-product

•
$$V = \bigoplus_{I} V^{I} - \mathbb{Z}$$
-graded vector space over k .

•
$$T(V) = \bigoplus_{n \ge 1} V^{\otimes n}$$
 – tensor algebra of V .

$$\operatorname{Hom}(T(V), V) = \bigoplus_{l \in \mathbb{Z}} \operatorname{Hom}^{l}(T(V), V)$$

Non-associative o-product:

$$(f \circ g)(v_1 \otimes v_2 \otimes \cdots \otimes v_{m+n-1})$$

$$=\sum_{i=0}^{n-1}(-1)^{|g|\sum_{j=1}^{i}|v_{j}|}f(v_{1}\otimes\cdots\otimes v_{i}\otimes g(v_{i+1}\otimes\cdots\otimes v_{i+m})\otimes\cdots\otimes v_{m+n-1})$$

|g| is the degree of g as a linear map.

< □ > < □ > < □ > < □ > < □ > < □ >

Gerstenhaber Bracket and A_{∞} -algebras

The Gerstenhaber bracket

$$[f,g] = f \circ g - (-1)^{|f||g|} g \circ f$$

makes Hom(T(V), V) into the graded Lie superalgebra $\mathcal{L} = \bigoplus_n \mathcal{L}^n$.

- Super skew-symmetry: $[f,g] = -(-1)^{|f||g|}[g,f]$,
- The super Jicobi identity:

$$[[f,g],h] = [f,[g,h]] - (-1)^{|f||g|}[g,[f,h]].$$

An A_{∞} -structure on V is given by a MC element $m \in \mathcal{L}^1$, i.e.

$$[m,m]=2m\circ m=0.$$

(V, m) is called A_{∞} -algebra [Jim Stasheff, 1963].

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Special cases of A_{∞} -algebras

Stasheff's identities for component maps:

$$m = m_1 + m_2 + m_3 + \cdots, \qquad m_n \in \mathrm{Hom}^1(T^n(V), V)$$

$$m \circ m = 0 \quad \Leftrightarrow \quad \sum_{k+l=n-1} m_k \circ m_l = 0, \quad n = 1, 2, \dots$$

• $m = m_1 \Rightarrow (V, d)$ is a complex with differential $d = m_1$; $d^2 = 0$ • $m = m_2 \Rightarrow (V, \cdot)$ is an associative algebra with

$$u \cdot v = (-1)^{|u|-1} m_2(u, v)$$

• $m=m_1+m_2\Rightarrow (V,d,\cdot)$ is a DGA algebra,

$$d(u \cdot v) = du \cdot v + (-1)^{|u|-1}u \cdot dv$$

• $m = m_2 + m_3 + \cdots$ is a minimal A_{∞} -structure; $m_2 \circ m_2 = 0$.

<ロト <部ト <注入 < 注入 = 二 =

Minimal Deformations of Associative Algebras

The ideal $\overline{\mathcal{L}} = \prod_{n \geq 2} \operatorname{Hom}^0(\mathcal{T}^n(V), V) \subset \mathcal{L}$ generates the subgroup of internal automorphisms $G \subset \operatorname{Aut}(\mathcal{L})$:

$$f \mapsto f' = e^{[h,\cdot]}f = \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{[h, [h, \dots [h], f] \dots]}_{n}, \quad \forall h \in \overline{\mathcal{L}}, \quad \forall f \in \mathcal{L}$$

Two minimal A_{∞} -structures m and m' are equivalent $(m \sim m')$, if

$$m' = e^{[h, \cdot]}m$$
 for some $h \in \overline{\mathcal{L}}$.

 $\mathcal{M}_V = (\text{Minimal } A_\infty \text{-structures on } V)/G$

Clearly, $m \sim m' \Rightarrow m_2 = m'_2$.

 \mathcal{M}_V may be regarded as the space of all nontrivial deformations of associative algebras $A = (V, m_2)$ in the category of minimal A_∞ -algebras.

A D F A B F A B F A B

Braces

Let
$$W = \operatorname{Hom}(T(V), V)$$
 and $A_0, A_1, \ldots, A_m \in W$.

Following [Kadeishvili, 1988], define *m*-brace $\{\}: W^{m+1} \to W$ by

$$A_0\{A_1, \dots, A_m\}(v_1, \dots, v_n)$$

$$= \sum_{Av-\text{shuffles}} \pm A_0(v_1, \dots, v_{k_1}, A_1(v_{k_1+1}, \dots) \dots, v_{k_m}, A_m(v_{k_m+1}, \dots) \dots, v_n)$$

By definition, $A\{\varnothing\} = A$. Clearly, $A_0\{A_1\} = A_0 \circ A_1$.

Higher pre-Jacobi identities [Gerstenhaber & Voronov, 1995]:

$$A\{A_1,\ldots,A_m\}\{B_1,\ldots,B_n\}$$

$$= \sum_{AB-\text{shuffles}} \pm A\{B_1, ..., B_{k_1}, A_1\{B_{k_1+1}, ...\}, ..., B_{k_m}, A_m\{B_{k_m+1}, ...\}, ..., B_n\}$$

イロト イポト イヨト イヨト 二日

Derived A_∞ -structure and A_∞ -cohomology

Any A_{∞} -structure *m* on *V* can be lifted to an A_{∞} -structure *M* on *W*:

$$M_1(A) = m \circ A - (-1)^{|A|} A \circ m,$$

$$M_k(A_1,\ldots,A_k)=m\{A_1,\ldots,A_k\}\,,\quad k>1\,;\qquad M\circ M=0$$

[E. Getzler, 1993]. In particular, $M_1 \circ M_1 = M_1 M_1 = 0$.

Let $H^{ullet}(W)$ denote the cohomology of the complex $M_1: W^p \to W^{p+1}$.

It follows from $[M_1, M_2] = 0$ that $M_2 : W \otimes W \to W$ induces a product in A_∞ -cohomology:

$$\cup : H^n(W) \otimes H^m(W) \to H^{n+m+1}(W) ,$$

$$a \cup b = (-1)^{|A|-1} M_2(A, B) , \qquad a = [A] , \quad b = [B] .$$

For $A = (V, m_2)$ this yields the usual groups of Hochschild cohomology $HH^{\bullet+1}(A, A)$ endowed with the Gerstenhaber \cup -product.

Further Properties of Cup-product

Theorem. The cup-product and the Gerstenhaber bracket endow the space $H^{\bullet}(W)$ of A_{∞} -cohomology with a structure of the Gerstenhaber algebra.

- Associativity: $(a \cup b) \cup c = a \cup (b \cup c)$.
- Graded commutativity: $a \cup b = (-1)^{(|a|-1)(|b|-1)}b \cup a$.
- Poisson relation: $[a, b \cup c] = [a, b] \cup c + (-1)^{|a|(|b|+1)} b \cup [a, c]$. [Sh. & Skvortsov, 2019]

The formal deformations of A_{∞} -structures are controlled by the groups $H^1(W)$ and $H^2(W)$.

[Penkava & Schwarz, 1995; Fialowski & Penkava, 2002]

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inner A_{∞} -cohomology of Families

Let (V, m_t) be an *n*-parameter family of A_∞ -algebras, i.e.,

 $m \in W[[t_1,\ldots,t_n]], \qquad m \circ m = 0, \qquad |m| = 1,$

where $|t_i| \in 2\mathbb{Z}.$ Denote $m_{_{(i)}} = \partial m/\partial t_i$, then

$$\frac{\partial}{\partial t^{i}}(m \circ m) = [m_{(i)}, m] = M_{1}(m_{(i)}) = 0 \quad \Rightarrow \quad [m_{(i)}] \in H^{\bullet}(W).$$

The cocycles $m_{(i)}$ generate a commutative algebra D_m w.r.t. the cup-product:

$$D_m \ni \Delta = \sum_{l=0}^{L} c^{i_1...i_l} m_{(i_1)} \cup m_{(i_2)} \cup \cdots \cup m_{(i_l)}, \qquad c^{i_1...i_l} \in k[[t_1,...,t_n]].$$

 $[\Delta] \in H^{\bullet}(W)$ is an inner cohomology class of the family (V, m_t) .

Inner Deformations of Families

Proposition. Any inner cocycle $\Delta[m_t]$ associated to an n-parameter family $m_t \in W[[t_1, \ldots, t_n]]$ of A_∞ -structures gives rise to an (n + 1)-parameter family of A_∞ -structures $\tilde{m}_t \in W[[t_0, t_1, \ldots, t_n]]$. The latter is defined as a unique formal solution to

$$ilde{m}_{_{(0)}}=\Delta[ilde{m}]\,,\qquad ilde{m}|_{t_0=0}=m_t\,.$$

Here t_0 is a new formal parameter with $|t_0| = 1 - |\Delta|$.

The A_{∞} -structure \tilde{m}_t is called an inner deformation of the family m_t .

Geometrically, $\Delta[m]$ defines a flow in the space $W[[t_1, \ldots, t_n]]$ which is tangent to the quadratic surface Σ of A_{∞} -structures:

$$\Sigma: m \circ m = 0, \qquad L_{\Delta}(m \circ m) = [\Delta[m], m] = 0, \qquad \forall m \in \Sigma.$$

イロト イポト イヨト イヨト 二日

Example: Minimal Deformations of DGA's

Let $A_t = (V, \partial, \mu)$ be a 1-parameter family of DGA's, i.e.,

$$V = \oplus_l V^l$$
, $\partial: V^l \to V^{l-1}$, $\mu: V^n \otimes V^m \to V^{n+m}$

Both the product and the differential may depend on t with |t| = 0. Define the 2-parameter family of DGA's $A_t \otimes k[[u]]$ with the differential

$$d = u\partial$$
, $|u| = 2 \Rightarrow |d| = 1$.

Then $m = d + \mu$ gives rise to a sequence of inner cocycles of degree 1

$$\Delta_n[m] = m_{(t)} \cup \underbrace{m_{(u)} \cup m_{(u)} \cup \cdots \cup m_{(u)}}_n, \quad n = 1, 2, \dots, \quad (| \cup | = -1)$$

generating the flows

$$\tilde{m}_{(s)} = \Delta_n[\tilde{m}], \qquad \tilde{m}|_{s=0} = m.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Minimal Deformations of DGA's

The parameter u plays an auxiliary role. Let

$$\bar{m}=\tilde{m}|_{u=0}=m+s\varphi+O(s^2)\,,$$

where

$$\Phi(v_1,\ldots,v_{n+2})=\mu'(v_1,v_2)\cdot\partial v_3\cdot\partial v_4\cdots\partial v_{n+2}$$

and the prime stands for the derivative w.r.t. t.

 Φ is a Hochschild cocycle defining an element of $HH^{n+2}(A_t, A_t)$.

Setting s = 1, we get a minimal deformation of the graded associative algebra A_t .

If ∂ is independent of t, then ∂ differentiates \bar{m} , i.e., $[\partial, \bar{m}] = 0$.

< □ > < □ > < □ > < □ > < □ > < □ >

Application: Higher Spin Gravity in D=4

A 2-parameter family of Higher Spin Algebras is $\mathfrak{A} = S \otimes S$, where S is a symplectic reflection algebra [P. Etingof & V. Ginzburg, 2001]:

$$[q,p]=1+t\kappa\,,\qquad \{\kappa,q\}=\{\kappa,p\}=0\,,\qquad \kappa^2=1\,,\qquad t\in\mathbb{R}\,.$$

[E. Wigner, 1950]. For t = 0, all quadratic monomials in q's and p's generate $sp(2, \mathbb{R}) \simeq so(3, 2)$, the Lie algebra of isometry group of AdS_4 .

Regarding ${\mathfrak A}$ as a bimodule over itself, define the family of DGA's:

$$A = A_{-1} \oplus A_0, \quad A_{-1} = \mathfrak{A} = \mathcal{A}_0, \quad \partial = id : A_0 \to A_{-1}, \quad \partial^2 = 0.$$

A minimal deformation of the family A gives rise to a 4D HS gravity.

Deformation of Maurer-Cartan Space

Given an A_∞ -algebra (V,m), the Maurer–Cartan equation reads

$$m(a) := \sum_{n=1}^{\infty} m_n(a, \ldots, a) = 0, \qquad |a| = 0.$$

A solution $a \subset V^0$ is called a Maurer–Cartan element of (V, m).

Proposition. If \tilde{m} is an inner deformation of a family of A_{∞} -structures m, then each MC element for m can be deformed to that for \tilde{m} .

Proof: Let $\tilde{m} \in W[[t_0, t_1, \dots, t_l]]$ be a solution to

 $\tilde{m}_{(0)} = \Delta[\tilde{m}_{(i_1)}, \tilde{m}_{(i_2)}, \dots, \tilde{m}_{(i_l)}], \qquad \Delta[\tilde{m}] = \tilde{m}_{(i_1)} \cup \tilde{m}_{(i_2)} \cup \dots \cup \tilde{m}_{(i_l)}.$ Then, any solution to

$$D_0 a = (-1)^l \Delta(D_{i_1}, \tilde{m}_{(i_5)}, \dots, \tilde{m}_{(i_l)})(a), \qquad D_l a := \partial a / \partial t^l.$$

satisfies $\tilde{m}(a) = 0$ provided that $a_0 = a|_{t_0=0}$ obeys $m(a_0) = 0$,

Cup-product on L_{∞} -cohomology

 L_{∞} -structure \Leftrightarrow homological vector field Q on a \mathbb{Z} -graded manifold M:

$$|Q| = 1$$
, $Q^2 = \frac{1}{2}[Q, Q] = 0$.

The Lie derivative L_Q makes the tensor algebra $T^{\bullet,\bullet}(M)$ into a complex. For any symmetric connection ∇ on M with curvature $R \in T^{3,1}(M)$, the tensor $B_1 \in T^{2,1}(M)$ defined by

$$B_1(X,Y) = \nabla_X \nabla_Y Q - \nabla_{\nabla_X Y} Q - R_{XQ} Y$$

is *Q*-invariant. (Actually, $B_1 = L_Q \nabla$, and hence $L_Q B_1 = 0$.) [S. Lyakhovich, E. Mosmann & A. Sh, 2004]

The space $H^{0,1}(M, Q)$, generated by Q-invariant vector fields on M, is endowed with the grad. commutative product $X \cup Y = B_1(X, Y)$, which is compatible with the commutator [X, Y] of Q-invariant vector fields.

The Atiyah class of tangent bundles

The Dolbeualt model of the Atiyah class:

- M a complex analytic manifold with holomorphic coordinates z^A
- ∇ a C^{∞} affine connection on M of type (1,0)
- $\bar{\partial}$ the Dolbeault operator defining holomorphic structure on M $\operatorname{At}_{M} = [\bar{\partial}, \nabla] \in \Omega^{1,1} \otimes \operatorname{End}(TM), \qquad \bar{\partial}\operatorname{At}_{M} = 0.$

[M. Kapranov, 1997; R. Mehta, M. Stiénon, P. Xu, 2015]

The complex supermanifold $\mathcal{M} = \Pi TM$ with holomorphic coordinates $(z^A, \theta^A = dz^A)$ is endowed with the canonical homological vector field

$$Q = \bar{ heta}^A rac{\partial}{\partial \bar{z}^A} \qquad \Leftrightarrow \qquad \bar{\partial}$$

 ∇ lifts canonically to an affine connection $\hat{\nabla}$ on $\mathcal M$ and we define

$$B_1 = L_Q \hat{\nabla} \in T^{2,1}(\mathcal{M}), \qquad B_1 \sim \operatorname{At}_M.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >