Atiyah class of a dg vector bundle relative to a dg Lie algebroid

Mathieu Stiénon

Workshop on Atiyah classes and related topics Korea Institute for Advanced Study January 6-9, 2020 1 Infinite jet of exponential map

2 Generalization to graded manifolds

3 If \mathcal{M} is a dg mfd, then $\mathfrak{X}(\mathcal{M})$ is an L_{∞} algebra.

4 Atiyah class of a dg vector bundle relative to a dg Lie algebroid

1 Infinite jet of exponential map

2 Generalization to graded manifolds

3 If \mathcal{M} is a dg mfd, then $\mathfrak{X}(\mathcal{M})$ is an L_{∞} algebra.

4 Atiyah class of a dg vector bundle relative to a dg Lie algebroid

Exponential maps arise naturally in relation with linearization problems:

- 1 Lie theory
- 2 smooth manifolds

- g, a finite dimensional Lie algebra
- $\exp: \mathfrak{g} \to G$
- lacksquare exp is a local diffeomorphism from nbhd of 0 to nbhd of 1
- induced map on distributions $(exp)_* : \mathcal{D}'(0) \xrightarrow{\cong} \mathcal{D}'(1)$
- canonical identifications: $\mathcal{D}'(0)\cong\mathcal{Sg}$ and $\mathcal{D}'(1)\cong\mathcal{Ug}$
- $\mathrm{pbw}: S\mathfrak{g} \xrightarrow{\cong} U\mathfrak{g}$, Poincaré–Birkhoff–Witt isomorphism

- g, a finite dimensional Lie algebra
- Poincaré–Birkhoff–Witt map:

$$S\mathfrak{g} \xrightarrow{\mathrm{pbw}} U\mathfrak{g}$$

is the symmetrization map

$$X_1 \odot \cdots \odot X_n \longmapsto \frac{1}{n!} \sum_{\sigma \in S_n} X_{\sigma(1)} \cdots X_{\sigma(n)}$$

• Fact: $S\mathfrak{g} \xrightarrow{\text{pbw}} U\mathfrak{g}$ is an isomorphism of coalgebras.

Geodesic exponential map and PBW isomorphism

- torsionfree connection ∇ on smooth manifold M
- $\exp^{\nabla} : T_M \to M \times M$ (bundle map) defined by $\exp^{\nabla}(X_m) = (m, \gamma(1))$ where γ is the smooth path in Msatisfying $\dot{\gamma}(0) = X_m$ and $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$
- $\Gamma(S(T_M))$ seen as space of differential operators on T_M , all derivatives in the direction of the fibers, evaluated along the zero section of T_M
- $\mathcal{D}(M)$ seen as space of differential operators on $M \times M$, all derivatives in the direction of the fibers, evaluated along the diagonal section $M \to M \times M$
- map induced by \exp^{∇} on fiberwise differential operators: $pbw^{\nabla} := \exp^{\nabla}_{*} : \Gamma(S(T_M)) \xrightarrow{\cong} \mathcal{D}(M)$ is an isomorphism of left modules over $C^{\infty}(M)$ called Poincaré–Birkhoff–Witt isomorphism

pbw as infinite jet of \exp

The Taylor series of the composition

$$T_m M \xrightarrow{\exp^{\nabla}} \{m\} \times M \xrightarrow{f} \mathbb{R}$$

at the point $0_m \in T_m M$ is

$$\sum_{J\in\mathbb{N}_0^n} \frac{1}{J!} \big(\operatorname{pbw}^{\nabla}(\partial_x^J) f \big)(m) \cdot y^J \quad \in \hat{S}(T_m^{\vee} M),$$

where

• $(x_i)_{i \in \{1,...,n\}}$ are local coordinates on M

■ $(y_j)_{j \in \{1,...,n\}}$ induced local frame of T_M^{\vee} regarded as fiberwise linear functions on T_M

Hence pbw^{∇} is the fiberwise infinite jet of the bundle map $\exp^{\nabla} : T_M \to M \times M$ along the zero section of $T_M \to M$.

Algebraic characterization of pbw^{∇}

Theorem (Laurent-Gengoux, S, Xu, 2014): The map pbw^{∇} is the isomorphism of left $C^{\infty}(M)$ -modules $\Gamma(ST_M) \to \mathcal{D}(M)$ satisfying

$$\begin{split} \mathrm{pbw}^{\nabla}(f) &= f, \quad \forall f \in C^{\infty}(M); \\ \mathrm{pbw}^{\nabla}(X) &= X, \quad \forall X \in \mathfrak{X}(M); \\ \mathrm{pbw}^{\nabla}(X^{n+1}) &= X \cdot \mathrm{pbw}^{\nabla}(X^n) - \mathrm{pbw}^{\nabla}(\nabla_X X^n), \quad \forall n \in \mathbb{N}. \end{split}$$

Therefore, for all $n \in \mathbb{N}$ and $X_0, \ldots, X_n \in \mathfrak{X}(M)$,

$$\operatorname{pbw}^{\nabla}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \left\{ X_k \cdot \operatorname{pbw}^{\nabla}(X^{\{k\}}) - \operatorname{pbw}^{\nabla}\left(\nabla_{X_k}(X^{\{k\}})\right) \right\}$$

where $X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n$.

Both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$ are left coalgebras over $R := C^{\infty}(M)$. The comultiplication $\Delta : \mathcal{D}(M) \to \mathcal{D}(M) \otimes_R \mathcal{D}(M)$ is defined by

$$\Delta(D)(f,g) = D(f \cdot g), \quad \forall f,g \in R.$$

Comultiplication in both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$ by deconcatenation:

$$\Delta(X_1 \cdots X_n) = 1 \otimes (X_1 \cdots X_n) + \sum_{\substack{p+q=n \\ p,q \in \mathbb{N}}} \sum_{\sigma \in \mathfrak{S}_p^q} (X_{\sigma(1)} \cdots X_{\sigma(p)}) \otimes (X_{\sigma(p+1)} \cdots X_{\sigma(n)}) + (X_1 \cdots X_n) \otimes 1$$

for all $X_1, \ldots, X_n \in \mathfrak{X}(\mathcal{M})$.

Proposition: $\operatorname{pbw}^{\nabla} : \Gamma(S(T_M)) \to \mathcal{D}(M)$ is an isomorphism of coalgebras over $C^{\infty}(M)$.

- $(\operatorname{pbw}^{\nabla})^{-1} : \mathcal{D}(M) \to \Gamma(S(T_M))$ takes a differential operator to its complete symbol
- both $\Gamma(S(T_M))$ and $\mathcal{D}(M)$ are bi-algebroids
- \blacksquare but pbw^{∇} does not respect the algebra structures

What about replacing the smooth manifold M by a differential graded manifold \mathcal{M} ?

Infinite jet of exponential map

2 Generalization to graded manifolds

3 If \mathcal{M} is a dg mfd, then $\mathfrak{X}(\mathcal{M})$ is an L_{∞} algebra.

4 Atiyah class of a dg vector bundle relative to a dg Lie algebroid

Mathieu Stiénon (Penn State)

Atiyah class of a dg Lie algebroid

KIAS 2020-01-06 13/39

Definition: A \mathbb{Z} -graded manifold \mathcal{M} with base manifold M is a sheaf \mathcal{R} (over M) of \mathbb{Z} -graded commutative algebras such that $\mathcal{R}(U) \cong C^{\infty}(U) \otimes S(V^{\vee})$ for sufficiently small open subsets U of M and some \mathbb{Z} -graded vector space V. Here $S(V^{\vee})$ denotes the graded algebra of polynomials on V.

$\mathcal{C}^{\infty}(\mathcal{M}) := \mathcal{R}(\mathcal{M})$

Theorem (Batchelor): There exists a (noncanonical) \mathbb{Z} -graded vector bundle $E \to M$ such that $\mathcal{R}(U) = \Gamma(U; S(E^{\vee}))$.

Definition: A dg manifold is a \mathbb{Z} -graded manifold \mathcal{M} endowed with a vector field $Q \in \mathfrak{X}(\mathcal{M})$ of degree +1 such that $[Q, Q] = 2 \ Q \circ Q = 0.$

Example: If \mathfrak{g} is a Lie algebra, then $\mathcal{M} = \mathfrak{g}[1]$ is a dg manifold.

- Its algebra of functions: $C^{\infty}(\mathfrak{g}[1]) \cong \Lambda^{\bullet}(\mathfrak{g}^{\vee}).$
- Its homological vector field: $Q = d_{CE}$.

Example: If M is a smooth manifold, then $\mathcal{M} = \mathcal{T}_{M}[1]$ is a dg manifold.

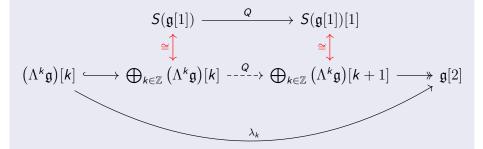
- Its algebra of functions: $C^{\infty}(T_M[1]) \cong \Omega^{\bullet}(M)$.
- Its homological vector field: $Q = d_{dR}$.

Example: If X is a complex manifold, then $\mathcal{M} = \mathcal{T}_X^{0,1}[1]$ is a dg manifold.

- Its algebra of functions: $C^{\infty}(T_X^{0,1}[1]) \cong \Omega^{0,\bullet}(X)$.
- Its homological vector field: $Q = \bar{\partial}$.

Example (Vaĭntrob): For a vector bundle $A \to M$, (A[1], Q) is a dg-manifold $\iff A$ is a Lie algebroid, $d_{CE} = Q$.

Example: A curved L_{∞} algebra structure on a \mathbb{Z} -graded vector space $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$ is a coderivation Q of degree +1 of the symmetric tensor **co**algebra $S(\mathfrak{g}[1])$ satisfying $Q \circ Q = 0$.



The maps $\lambda_k : \Lambda^k \mathfrak{g} \to \mathfrak{g}[2-k]$ (k = 0, 1, 2, ...) satisfy some axioms. Ignoring technicalities, dualizing the coalgebra $S(\mathfrak{g}[1])$ and the coderivation Q, we obtain the algebra of functions on the graded mfd $\mathfrak{g}[1]$ and a homological v. f. on it. **Example:** Given a regular foliation F, the tangent bundle of F is a subbundle of T_M , denoted T_F , whose sections are closed under the Lie bracket of vector fields, i.e. an integrable distribution of the manifold M.

Then $(\mathcal{M} = \mathcal{T}_{\mathcal{F}}[1], \mathcal{Q} = \mathcal{d}_{dR})$ is a dg manifold:

- its algebra of functions: C[∞](T_F[1]) = Ω[•]_F, the space of leafwise differential forms;
- its homological vector field: the de Rham differential $Q = d_{dR}$.

Example: Let s be a smooth section of a vector bundle $E \to M$. Then $(\mathcal{M} = E[-1], Q = i_s)$ is a dg manifold: the derived intersection of s with the zero section. Its algebra of functions: $C^{\infty}(E[-1]) \cong \bigoplus_{k=0}^{\infty} \Gamma(\Lambda^k(E^{\vee}))[k]$.

For instance, if $f \in C^{\infty}(M)$, then $(T_{M}^{\vee}[-1], i_{df})$ is a dg manifold called derived critical locus of f.

Formal exponential map

Definition: A connection on a graded mfd \mathcal{M} is a \Bbbk -linear map

$$\nabla:\mathfrak{X}(\mathcal{M})\otimes\mathfrak{X}(\mathcal{M})\to\mathfrak{X}(\mathcal{M})$$

of degree $0\ {\rm satisfying}$

$$\nabla_{fX} Y = f \nabla_X Y,$$

$$\nabla_X (fY) = X(f) Y + (-1)^{|X||f|} f \nabla_X Y,$$

for all $f \in C^{\infty}(\mathcal{M})$ and all homogeneous $X, Y \in \mathfrak{X}(\mathcal{M})$.

- Geodesics? Not so easy.
- Shortcut: The algebraic relations satisfied by pbw serve as an alternative definition.
- The isomorphism pbw is a sort of formal exponential map defined inductively.

Definition: Let \mathcal{M} be a graded manifold. The formal exponential map associated to a connection ∇ on $\mathcal{T}_{\mathcal{M}}$ is the morphism of left $\mathcal{C}^{\infty}(\mathcal{M})$ -modules

$$\operatorname{pbw}^{\nabla}: \Gamma(\mathcal{S}(\mathcal{T}_{\mathcal{M}})) \to \mathcal{D}(\mathcal{M}),$$

inductively defined by the relations

$$pbw^{\nabla}(f) = f \qquad \forall f \in C^{\infty}(\mathcal{M}), \\ pbw^{\nabla}(X) = X \qquad \forall X \in \Gamma(\mathcal{T}_{\mathcal{M}}),$$

and, for all $n \in \mathbb{N}$ and homogeneous $X_0, \ldots, X_n \in \Gamma(\mathcal{T}_{\mathcal{M}})$,

$$\operatorname{pbw}^{\nabla}(X_0 \odot \cdots \odot X_n) = \frac{1}{n+1} \sum_{k=0}^n \epsilon_k \left\{ X_k \cdot \operatorname{pbw}^{\nabla}(X^{\{k\}}) - \operatorname{pbw}^{\nabla}\left(\nabla_{X_k} X^{\{k\}}\right) \right\}$$

•
$$\epsilon_k = (-1)^{|X_k|(|X_0|+\cdots+|X_{k-1}|)}$$

• $X^{\{k\}} = X_0 \odot \cdots \odot X_{k-1} \odot X_{k+1} \odot \cdots \odot X_n$

Proposition (Liao, S, 2015): The formal exponential map $\operatorname{pbw}^{\nabla} : \Gamma(S^{\leqslant k}(\mathcal{T}_{\mathcal{M}})) \to \mathcal{D}^{\leqslant k}(\mathcal{M})$

is a well defined isomorphism of filtered coalgebras over $C^{\infty}(\mathcal{M})$.

1 Infinite jet of exponential map

2 Generalization to graded manifolds

3 If \mathcal{M} is a dg mfd, then $\mathfrak{X}(\mathcal{M})$ is an L_{∞} algebra.

4 Atiyah class of a dg vector bundle relative to a dg Lie algebroid

If \mathcal{M} is a dg mfd, then $\mathfrak{X}(\mathcal{M})$ is an L_{∞} algebra.

1 Given a dg manifold (\mathcal{M}, Q) .

2 \mathcal{L}_Q is a coderivation of $\mathcal{D}(\mathcal{M})$ of degree +1:

$$\mathcal{L}_Q(X_1\cdots X_n) = \sum_{k=1}^n (-1)^{|X_1|+\cdots+|X_{k-1}|} X_1\cdots X_{k-1}[Q,X_k] X_{k+1}\cdots X_n.$$

3 Choose torsionfree connection ∇ on \mathcal{M} . Get isomorphism of coalgebras $\operatorname{pbw} : \Gamma(\mathcal{S}(\mathcal{T}_{\mathcal{M}})) \to \mathcal{D}(\mathcal{M}).$

4
$$\delta^{\nabla} := (pbw^{\nabla})^{-1} \circ \mathcal{L}_{Q} \circ pbw^{\nabla}$$

 δ^{∇} is a coderivation of $\Gamma(S(\mathcal{T}_{\mathcal{M}}))$ of degree +1

5 Dualizing δ^{∇} , we obtain $D^{\nabla} : \Gamma(\widehat{S}(T_{\mathcal{M}}^{\vee})) \to \Gamma(\widehat{S}(T_{\mathcal{M}}^{\vee}))$. D^{∇} is a derivation of $\Gamma(\widehat{S}(T_{\mathcal{M}}^{\vee}))$ of degree +1 Given torsionfree connection ∇ on dg mfd (\mathcal{M}, Q) .

Theorem (Mehta, S, Xu, 2015):

- The operator D^{∇} is a derivation of degree +1 of the graded algebra $\Gamma(\widehat{S}(T^{\vee}_{\mathcal{M}}))$ satisfying $(D^{\nabla})^2 = 0$.
- There exist $R_k \in \text{Hom}\left(S^k \mathcal{T}_{\mathcal{M}}, \mathcal{T}_{\mathcal{M}}[1]\right)$ for $k = 2, 3, 4, \ldots$ such that $D^{\nabla} = \mathcal{L}_Q + \sum_{k=2}^{\infty} R_k^{\top}$.
- $R_2 \in \text{Hom}\left(S^2(T_{\mathcal{M}}), T_{\mathcal{M}}[1]\right)$ is given by $R_2(X, Y) = \mathcal{L}_Q(\nabla_X Y) - \nabla_{\mathcal{L}_Q X} Y - (-1)^{|X|} \nabla_X(\mathcal{L}_Q Y)$

Corollary (Mehta, S, Xu, 2015): The sequence of operations $(R_k)_{k=1,2,3,...}$ where

- $\blacksquare R_1 := \mathcal{L}_Q : \mathfrak{X}(\mathcal{M}) \to \mathfrak{X}(\mathcal{M})$
- $R_2 := \mathcal{L}_Q \nabla \in \operatorname{Hom} \left(S^2(T_{\mathcal{M}}), T_{\mathcal{M}}[1] \right)$
- $R_k \in \operatorname{Hom}\left(S^k T_{\mathcal{M}}, T_{\mathcal{M}}[1]\right)$ for $k \ge 3$

turn the space of vector fields $\mathfrak{X}(\mathcal{M})$ into an $L_{\infty}[1]$ algebra.

- The above result is analogous to a theorem of Kapranov about the Atiyah class of Kähler manifolds.
- A theorem of Kapranov states that for a complex manifold X, the complex of sheaves T_X[-1] is a Lie algebra object in the derived category D(X) of coherent sheaves on X with the Atiyah class α_{T_X} playing the role of the Lie bracket.
- If the complex manifold X is Kähler, Kapranov proved an even stronger result by describing explicitly an $L_{\infty}[1]$ algebra structure on the Dolbeault complex $\Omega^{0,\bullet}(\mathcal{T}_X^{1,0})$.

If X is a Kähler manifold, the Levi-Civita connection ∇^{LC} induces a $T_X^{1,0}$ -connection $\nabla^{1,0}$ on $T_X^{1,0}$ as follows. First, extend the Levi-Civita connection \mathbb{C} -linearly to a $T_X^{\mathbb{C}}$ -connection ∇ on $T_X^{\mathbb{C}}$. Since X is Kähler, the almost complex structure J on X is parallel and ∇ restricts to a $T_X^{\mathbb{C}}$ -connection on $T_X^{1,0}$. It is easy to check that the induced $T_X^{0,1}$ -connection on $T_X^{1,0}$ is the canonical flat connection $\nabla^{\overline{\partial}}$ encoding the holomorphic vector bundle structure on T_X while the induced $T_X^{1,0}$ -connection $\nabla^{1,0}$ on $T_X^{1,0}$ is flat and torsion-free. Thus $\nabla = \nabla^{\overline{\partial}} + \nabla^{1,0}$.

The element $R^{\nabla} \in \Omega^{0,1} ((T_X^{1,0})^{\vee} \otimes \operatorname{End}(T_X^{1,0}))$ defined by the equation

$$R^{\nabla}(Z,V)W = \nabla_{Z}\nabla_{V}W - \nabla_{V}\nabla_{Z}W - \nabla_{[Z,V]}W,$$

for all $Z \in \Gamma(T_X^{0,1})$ and $V, W \in \Gamma(T_X^{1,0})$, is a Dolbeault 1-cocycle representative of the Atiyah class of the holomorphic tangent bundle T_X .

Since $\nabla^{1,0}$ is torsion-free, R^{∇} belongs to $\Omega^{0,1}(S^2(T_X^{1,0})^{\vee} \otimes T_X^{1,0})$.

Theorem (Kapranov): Given a Kähler manifold X, the Dolbeault complex $\Omega^{0,\bullet}(T_X^{1,0})$ admits a structure of $L_{\infty}[1]$ algebra whose unary bracket λ_1 is the Dolbeault operator $\overline{\partial} : \Omega^{0,j}(T_X^{1,0}) \to \Omega^{0,j+1}(T_X^{1,0})$ and whose k-th multibracket λ_k for $k \ge 2$ is the composition of the wedge product

$$\Omega^{0,j_1}(\mathcal{T}^{1,0}_X) \otimes \cdots \otimes \Omega^{0,j_n}(\mathcal{T}^{1,0}_X) \to \Omega^{0,j_1+\cdots+j_k}\big((\mathcal{T}^{1,0}_X)^{\otimes k}\big)$$

with the map

$$\Omega^{0,j_1+\cdots+j_k}\big((T_X^{1,0})^{\otimes k}\big)\to\Omega^{0,j_1+\cdots+j_n+1}(T_X^{1,0})$$

induced by

$$R_k \in \Omega^{0,1} \left(S^k (T_X^{1,0})^{\vee} \otimes T_X^{1,0} \right) \subset \Omega^{0,1} \left(\operatorname{Hom} \left((T_X^{1,0})^{\otimes k}, T_X^{1,0} \right) \right)$$

with $R_2 = R^{\nabla}$ and $R_{k+1} = d^{\nabla^{1,0}} R_k$ for $k \ge 2$.

Theorem (Laurent, S, Xu): Given a complex manifold X, each torsion-free $T_X^{1,0}$ -connection $\nabla^{1,0}$ on $T_X^{1,0}$ determines an $L_{\infty}[1]$ algebra structure on the Dolbeault complex $\Omega^{0,\bullet}(T_X^{1,0})$ such that

• the unary bracket λ_1 is the Dolbeault operator $\overline{\partial}: \Omega^{0,j}(\mathcal{T}_X^{1,0}) \to \Omega^{0,j+1}(\mathcal{T}_X^{1,0});$

• the binary bracket λ_2 is the map

$$\lambda_2: \Omega^{0,j_1}(T_X^{1,0}) \otimes \Omega^{0,j_2}(T_X^{1,0}) \to \Omega^{0,j_1+j_2+1}(T_X^{1,0})$$

induced by the Dolbeault representative R_2 of the Atiyah class;

• for every $k \ge 3$, the *k*-th multibracket λ_k is the composition of the wedge product $\Omega^{0,j_1}(T_X^{1,0}) \otimes \cdots \otimes \Omega^{0,j_n}(T_X^{1,0}) \to \Omega^{0,j_1+\cdots+j_k}((T_X^{1,0})^{\otimes k})$ with the map $\Omega^{0,j_1+\cdots+j_k}((T_X^{1,0})^{\otimes k}) \to \Omega^{0,j_1+\cdots+j_n+1}(T_X^{1,0})$ induced by an element R_k of $\Omega^{0,1}(S^k(T_X^{1,0})^{\vee} \otimes T_X^{1,0})$ arising as an algebraic function of R_2 , the curvature of $\nabla^{1,0}$, and their higher covariant derivatives.

Atiyah class of a dg manifold

Lemma:

•
$$\mathcal{L}_Q R_2 = \mathcal{L}_Q(\mathcal{L}_Q \nabla) = 0$$

• $[R_2] = [\mathcal{L}_Q \nabla] \in H^1(\Gamma(\operatorname{Hom}(S^2(T_M), T_M)), \mathcal{L}_Q)$

is independent of the connection $\boldsymbol{\nabla}$

Definition: The Atiyah class of the dg manifold (\mathcal{M}, Q) is

$$\alpha_{\mathcal{M}} := [R_2] \in H^1\big(\Gamma(\operatorname{Hom}(S^2(T_{\mathcal{M}}), T_{\mathcal{M}})), \mathcal{L}_Q\big).$$

It is the obstruction to existence of an affine connection ∇ on \mathcal{M} compatible with the homological vector field Q in the sense that

$$\mathcal{L}_{\mathcal{Q}}(\nabla_X Y) = \nabla_{\mathcal{L}_{\mathcal{Q}} X} Y + (-1)^{|X|} \nabla_X (\mathcal{L}_{\mathcal{Q}} Y) \quad \text{for all } X, Y \in \mathfrak{X}(\mathcal{M}).$$

Lyakhovich, Mosman, Sharapov

Mehta, S, Xu

Mathieu Stiénon (Penn State)

Example: dg manifold
$$(\mathbb{R}^{m|n}, Q)$$

a $(x_1, \dots, x_m; x_{m+1} \dots x_{m+n})$ are coordinate functions on $\mathbb{R}^{m|n}$
b $Q = \sum_k Q_k(x) \frac{\partial}{\partial x_k}$
b trivial connection $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j} = 0$
c $\alpha_{\mathbb{R}^{m|n}} \left(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}\right) = (-1)^{|x_i| + |x_j|} \sum_k \frac{\partial^2 Q_k}{\partial x_i \partial x_j} \frac{\partial}{\partial x_k}$

Example: g is a finite-dimensional Lie algebra

(M, Q) = (g[1], d_{CE}) is corresponding dg manifold
 T_M ≃ g[1] × g[1] implies

 $H^1\big(\Gamma(S^2(\mathcal{T}^{\vee}_{\mathcal{M}})\otimes\mathcal{T}_{\mathcal{M}}),\mathcal{L}_{Q}\big)\cong H^0_{\mathrm{CE}}(\mathfrak{g};\Lambda^2\mathfrak{g}^{\vee}\otimes\mathfrak{g})\cong(\Lambda^2\mathfrak{g}^{\vee}\otimes\mathfrak{g})^{\mathfrak{g}}$

• $\alpha_{\mathfrak{g}[1]} \in (\Lambda^2 \mathfrak{g}^{\vee} \otimes \mathfrak{g})^{\mathfrak{g}}$ is precisely the Lie bracket of \mathfrak{g}

$$\mathrm{Td}_{\mathcal{M}} := \mathrm{Ber}\left(\frac{1-e^{-\alpha_{\mathcal{M}}}}{\alpha_{\mathcal{M}}}\right) \in \prod_{k \ge 0} H^{k}(\Omega^{k}(\mathcal{M}), \mathcal{L}_{Q})$$

Example: Every Lie algebra \mathfrak{g} determines a dg manifold

$$(\mathcal{M}, \mathcal{Q}) = (\mathfrak{g}[1], d_{\mathrm{CE}}).$$

Theorem: If the Atiyah class α_M vanishes, then there exists a torsionfree connection such that

$$\Gamma(\mathcal{S}(\mathcal{T}_{\mathcal{M}})) \xrightarrow{\mathrm{pbw}} \mathcal{D}(\mathcal{M})$$

is an isomorphism of dg coalgebras over $C^{\infty}(\mathcal{M})$, i.e. $\mathcal{L}_Q \circ pbw = pbw \circ \mathcal{L}_Q$

1 Infinite jet of exponential map

2 Generalization to graded manifolds

3 If \mathcal{M} is a dg mfd, then $\mathfrak{X}(\mathcal{M})$ is an L_{∞} algebra.

4 Atiyah class of a dg vector bundle relative to a dg Lie algebroid

Definition: A dg vector bundle is a vector bundle object in the category of dg manifolds.

Suppose $\mathcal{E} \to \mathcal{M}$ is a vector bundle object in the category of \mathbb{Z} -graded manifolds and \mathcal{M} admits a homological vector field Q. Then \mathcal{E} admits a dg manifold structure making $\mathcal{E} \to \mathcal{M}$ into a dg vector bundle if and only if $\Gamma(\mathcal{E})$ admits a structure of dg module over the dg algebra $(\mathcal{C}^{\infty}(\mathcal{M}), Q)$.

Indeed, the category of dg vector bundles over the dg manifold (\mathcal{M}, Q) is equivalent to the category of locally free dg modules over the dg Lie algebra $(C^{\infty}(\mathcal{M}), Q)$.

Example: Let \mathfrak{g} be a f.d. Lie algebra and let V be a f.d. vector space. A structure of \mathfrak{g} -module on V is equivalent to a structure of dg vector bundle on $\mathfrak{g}[1] \times V \to \mathfrak{g}[1]$.

Example: Given an L_{∞} algebra $\mathfrak{g} = \bigoplus_{i \in \mathbb{Z}} \mathfrak{g}_i$, saying that a \mathbb{Z} -graded vector space $V = \bigoplus_{i \in \mathbb{Z}} V_i$ is an L_{∞} module over \mathfrak{g} is equivalent to saying that $\mathfrak{g}[1] \times V \to \mathfrak{g}[1]$ is a dg vector bundle.

Example:

- Let X be a complex manifold.
- Let $E \to X$ be a complex vector bundle.
- Let $\pi^* E$ denote the pullback of the complex vector bundle $E \to X$ through the canonical projection $\pi : T_X^{0,1}[1] \to X$.

Then $E \to X$ is a holomorphic vector bundle iff $\pi^* E \to T_X^{0,1}[1]$ is a dg vector bundle.

Dg Lie algebroids

Definition: A dg Lie algebroid is a Lie algebroid object in the category of dg manifolds.

More precisely, a dg Lie algebroid consists of

- a dg vector bundle $\mathcal{A} \to \mathcal{M}$
- together with a vector bundle map $\rho : \mathcal{A} \to \mathcal{T}_{\mathcal{M}}$ of degree 0 called anchor and a graded Lie algebra structure on $\Gamma(\mathcal{A})$ with Lie bracket satisfying

$$[X, fY] = \rho_X(f)Y + (-1)^{|X||f|}f[X, Y]$$

for all homogeneous $X, Y \in \Gamma(\mathcal{A})$ and $f \in C^{\infty}(\mathcal{M})$

The dg and Lie structures must be compatible: $\left[\mathcal{Q}, d_{\mathcal{A}}\right] = 0$, where

- $Q \in \mathfrak{X}(\mathcal{A}[1])$ is the homological v.f. on $\mathcal{A}[1]$ induced by the homological v.f. on total space \mathcal{A} of dg v.b. structure
- and d_A ∈ 𝔅(A[1]) is the Chevalley–Eilenberg differential arising from the Lie algebroid structure.

Proposition (S, Xu):

- Let $\mathcal{A} \to \mathcal{M}$ be a Lie algebroid object in the category of \mathbb{Z} -graded manifolds with anchor map $\rho : \mathcal{A} \to T_{\mathcal{M}}$
- and let $s \in \Gamma(\mathcal{A})$ be a section of degree +1 satisfying [s, s] = 0.
- Then $\mathcal{A} \to \mathcal{M}$ admits a structure of dg Lie algebroid:
 - the homological v.f. on \mathcal{M} is $\rho(s)$
 - while the operator of degree +1 on $\Gamma(\mathcal{A})$ is [s, -].

Example (S, Vitagliano, Xu):

- Let $\phi : A \to L$ be a morphism of Lie algebroids (with base M).
- Pulling back (in the Lie algebroid sense) the Lie algebroid $L \to M$ through $A[1] \to M$ yields the Lie algebroid (object in the category \mathbb{Z} -graded manifolds) $T_{A[1]} \times_{T_M} L \to A[1]$.
- \blacksquare Together, the vector field $\textit{d}_{\mathcal{A}} \in \mathfrak{X}(\mathcal{A}[1])$ and the map

 $A[1] \rightarrow A \xrightarrow{\phi} L$ determine a section s_{ϕ} of $T_{A[1]} \times_{T_M} L \rightarrow A[1]$ of degree +1 and satisfying $[s_{\phi}, s_{\phi}] = 0$.

• Proposition above $\implies T_{A[1]} \times_{T_M} L \rightarrow A[1]$ is a <u>dg Lie algebroid</u>.

Atiyah class of a dg v.b. relative to a dg Lie alg'oid

- dg vector bundle $\mathcal{E} \to \mathcal{M}$ special case: $\mathcal{E} = \mathcal{A} = \mathcal{T}_{\mathcal{M}}$
- dg Lie algebroid $\mathcal{A} \to \mathcal{M}$ special case: $\mathcal{E} = \mathcal{A} \neq \mathcal{T}_{\mathcal{M}}$
- Choose an \mathcal{A} -connection on \mathcal{E} , i.e. a map of degree 0

$$\nabla: \Gamma(\mathcal{A}) \times \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E})$$

satisfying $\nabla_{fX}s = f\nabla_X s$ and $\nabla_X(fs) = \rho_X(f)s + (-1)^{|X||f|}\nabla_X s$.

• Consider bundle map $\operatorname{At}^{\nabla}: \mathcal{A}\otimes \mathcal{E} \to \mathcal{E}$ of degree +1 defined by

$$\operatorname{At}^{\nabla}(X,s) = \mathcal{Q}(\nabla_X s) - \nabla_{\mathcal{Q}(X)} s - (-1)^{|X|} \nabla_X \big(\mathcal{Q}(s) \big).$$

• Fact: $\operatorname{At}^{\nabla} \in \Gamma(\mathcal{A}^{\vee} \otimes \operatorname{End} \mathcal{E})$ is a 1-cocycle: $\mathcal{Q}(\operatorname{At}^{\nabla}) = 0$.

- Its cohomology class $\alpha = [At^{\nabla}] \in H^1(\Gamma(\mathcal{A}^{\vee} \otimes End \mathcal{E})^{\bullet}, \mathcal{Q})$ is independent of the choice of ∇ .
- This class α is called Atiyah class of the dg v.b. E relative to the dg Lie algebroid A.

THANK YOU

- Mikhail Kapranov. "Rozansky-Witten invariants via Atiyah classes".
 In: Compositio Math. 115.1 (1999), pp. 71–113.
- Camille Laurent-Gengoux, Mathieu Stiénon, and Ping Xu. Poincaré-Birkhoff-Witt isomorphisms and Kapranov dg-manifolds. 2014. arXiv: 1408.2903 [math.DG].
- Hsuan-Yi Liao and Mathieu Stiénon. "Formal exponential map for graded manifolds". In: Int. Math. Res. Not. IMRN 3 (2019), pp. 700–730.
 - S. L. Lyakhovich, E. A. Mosman, and A. A. Sharapov. "Characteristic classes of *Q*-manifolds: classification and applications". In: *J. Geom. Phys.* 60.5 (2010), pp. 729–759.
- Rajan A. Mehta, Mathieu Stiénon, and Ping Xu. "The Atiyah class of a dg-vector bundle". In: C. R. Math. Acad. Sci. Paris 353.4 (2015), pp. 357–362.
 - Arkady Yu. Vaĭntrob. "Lie algebroids and homological vector fields". In: *Uspekhi Mat. Nauk* 52.2(314) (1997), pp. 161–162.