Atiyah classes and Hochschild cohomology of integrable distributions

Maosong Xiang

Huazhong University of Science and Technology.

January 8, 2020

Joint work with Z.Chen and P.Xu. Workshop on Atiyah classes and related topics, KIAS.

Maosong Xiang1 / 20

A motivating theorem

Theorem (Kontsevich, Calaque-Van den Bergh, Liao-Stiénon-Xu)

Let X be a complex manifold. The composition

$$\operatorname{hkr} \circ \operatorname{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}}^{1/2} : H(X, \wedge^{\bullet} T_X) \xrightarrow{\cong} HH^{\bullet}(X)$$

is an isomorphism of Gerstenhaber algebras, where

- hkr : H[•](X, ∧[•]T_X) → HH[•](X) is the Hochschild-Konstant-Rosenberg isomorphism of graded vector spaces derived by Gerstenhaber and Schack (also cf. Căldăraru's work);
- $\operatorname{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}}$ is the Todd class of the Lie algebroid pair $(T_X^{\mathbb{C}}, T_X^{0,1})$ introduced by Chen, Stiénon and Xu, which is isomorphic to the Todd class Td_X of X when the Hodge decomposition holds.

A motivating theorem

Theorem (Kontsevich, Calaque-Van den Bergh, Liao-Stiénon-Xu)

Let X be a complex manifold. The composition

$$\operatorname{hkr} \circ \operatorname{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}}^{1/2} : H(X, \wedge^{\bullet} T_X) \xrightarrow{\cong} HH^{\bullet}(X)$$

is an isomorphism of Gerstenhaber algebras, where

- hkr : H[•](X, ∧[•]T_X) → HH[•](X) is the Hochschild-Konstant-Rosenberg isomorphism of graded vector spaces derived by Gerstenhaber and Schack (also cf. Căldăraru's work);
- $\operatorname{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}}$ is the Todd class of the Lie algebroid pair $(T_X^{\mathbb{C}}, T_X^{0,1})$ introduced by Chen, Stiénon and Xu, which is isomorphic to the Todd class Td_X of X when the Hodge decomposition holds.
- Kontsevich proved the above isomorphism only as associative algebras;
- Calaque-Van den Bergh proved the above theorem for any smooth algebraic variety.
- Liao-Stiénon-Xu proved the above theorem for any complex manifold.

Goal of this talk

The goal of this talk is to explain the previous theorem in the text of dg geometry via the following commutative diagram in our poster

$$H^{\bullet}(\operatorname{tot}_{\oplus}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M}))[-1], \mathcal{Q}) \xrightarrow{\operatorname{hkr} \circ \operatorname{Td}_{(\mathcal{M}, Q)}^{1/2}} H^{\bullet}(\operatorname{tot}_{\oplus}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M}))[-1], \mathcal{Q} + d_{\mathscr{H}})$$

$$\xrightarrow{\Phi^{\bullet, 0}} \stackrel{\cong}{\underset{H^{\bullet}(X, \wedge^{\bullet}T_{X})}{\cong}} \xrightarrow{\operatorname{hkr} \circ \operatorname{Td}_{T_{X}^{\mathbb{C}}/T_{X}^{0, 1}}^{1/2}} H^{\bullet}(\operatorname{tot}_{\oplus}(\mathcal{M}), \mathcal{M}) \xrightarrow{\cong} HH^{\bullet}(X),$$

where $(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial})$ is the dg manifold from the complex manifold X.

Outline

2 Atiyah and Todd classes arising from complex manifolds

Hochschild cohomology of complex manifolds

Polyvector fields on dg manifolds

 $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}})$: a smooth \mathbb{Z} -graded manifold; $\mathcal{R} = \mathcal{O}_{\mathcal{M}}(M)$. $(\mathcal{T}_{\text{poly}}^p(\mathcal{M}))^q = (\Gamma(\wedge^{p+1}T_{\mathcal{M}}))^q$: the space of (p+1)-vector fields of degree q on \mathcal{M} .

Consider the graded left \mathcal{R} -module $\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{T}_{\mathrm{poly}}(\mathcal{M})) = \oplus_n \mathrm{tot}_{\oplus}^n(\mathcal{T}_{\mathrm{poly}}(\mathcal{M}))$ defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p \ge -1, p+q=n} \left(\mathcal{T}_{\operatorname{poly}}^{p}(\mathcal{M}) \right)^{q} = \bigoplus_{p \ge -1, p+q=n} \left(\Gamma(\wedge^{p+1}T_{\mathcal{M}}) \right)^{q}.$$

Polyvector fields on dg manifolds

 $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}})$: a smooth \mathbb{Z} -graded manifold; $\mathcal{R} = \mathcal{O}_{\mathcal{M}}(M)$. $(\mathcal{T}_{\text{poly}}^p(\mathcal{M}))^q = (\Gamma(\wedge^{p+1}T_{\mathcal{M}}))^q$: the space of (p+1)-vector fields of degree q on \mathcal{M} .

Consider the graded left \mathcal{R} -module $\operatorname{tot}_{\oplus}^{\bullet}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) = \oplus_n \operatorname{tot}_{\oplus}^n(\mathcal{T}_{\operatorname{poly}}(\mathcal{M}))$ defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p \ge -1, p+q=n} \left(\mathcal{T}_{\operatorname{poly}}^{p}(\mathcal{M}) \right)^{q} = \bigoplus_{p \ge -1, p+q=n} \left(\Gamma(\wedge^{p+1}T_{\mathcal{M}}) \right)^{q}.$$

• $tot_{\oplus}^{\bullet}(\mathcal{T}_{poly}(\mathcal{M}))[-1]$, together with the wedge product \wedge and the Schouten bracket [-, -], is a Gerstenhaber algebra.

Polyvector fields on dg manifolds

 $\mathcal{M} = (M, \mathcal{O}_{\mathcal{M}})$: a smooth \mathbb{Z} -graded manifold; $\mathcal{R} = \mathcal{O}_{\mathcal{M}}(M)$. $(\mathcal{T}_{\text{poly}}^p(\mathcal{M}))^q = (\Gamma(\wedge^{p+1}T_{\mathcal{M}}))^q$: the space of (p+1)-vector fields of degree q on \mathcal{M} .

Consider the graded left \mathcal{R} -module $\operatorname{tot}_{\oplus}^{\bullet}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) = \oplus_n \operatorname{tot}_{\oplus}^n(\mathcal{T}_{\operatorname{poly}}(\mathcal{M}))$ defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p \ge -1, p+q=n} \left(\mathcal{T}_{\operatorname{poly}}^{p}(\mathcal{M}) \right)^{q} = \bigoplus_{p \ge -1, p+q=n} \left(\Gamma(\wedge^{p+1}T_{\mathcal{M}}) \right)^{q}.$$

- $tot_{\oplus}^{\bullet}(\mathcal{T}_{poly}(\mathcal{M}))[-1]$, together with the wedge product \wedge and the Schouten bracket [-, -], is a Gerstenhaber algebra.
- Given each homological vector field $Q \in (\mathcal{T}^0_{poly}(\mathcal{M}))^1$ on \mathcal{M} , being a Maurer-Cartan element of the dg Lie algebra $(tot^{\bullet}_{\oplus}(\mathcal{T}_{poly}(\mathcal{M})), [-, -])$, we have the tangent dg Lie algebra at Q $(tot^{\bullet}_{\oplus}(\mathcal{T}_{poly}(\mathcal{M})), [Q, -], [-, -])$, and a Gerstenhaber algebra on the cohomology

$$(H^{\bullet}(\operatorname{tot}_{\oplus}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M}))[-1], [Q, -]), \land, [-, -]).$$

Polydifferential operators on dg manifolds

A differential operator $D \in \mathcal{D}(\mathcal{M})^q$ of degree q on a graded manifold \mathcal{M} has the form of a finite sum $D = \sum X_1 \circ \cdots \circ X_k$ of compositions of graded derivations X_1, \cdots, X_k of \mathcal{R} with $\sum_{i=1}^k |X_i| = q$.

Polydifferential operators on dg manifolds

A differential operator $D \in \mathcal{D}(\mathcal{M})^q$ of degree q on a graded manifold \mathcal{M} has the form of a finite sum $D = \sum X_1 \circ \cdots \circ X_k$ of compositions of graded derivations X_1, \cdots, X_k of \mathcal{R} with $\sum_{i=1}^k |X_i| = q$. The space $\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})) = \bigoplus_n \mathrm{tot}_{\oplus}^n(\mathcal{D}_{\mathrm{poly}}(\mathcal{M}))$ of polydifferential operators on \mathcal{M} is defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p+q=n} (\mathcal{D}_{\operatorname{poly}}^{p}(\mathcal{M}))^{q},$$

where

$$(\mathcal{D}^p_{\mathrm{poly}}(\mathcal{M}))^q := \bigoplus_{q_0 + \dots + q_p = q} (\mathcal{D}(\mathcal{M}))^{q_0} \otimes \dots \otimes (\mathcal{D}(\mathcal{M}))^{q_p}$$

is the space of (p+1)-differential operators on \mathcal{M} of degree q.

Polydifferential operators on dg manifolds

A differential operator $D \in \mathcal{D}(\mathcal{M})^q$ of degree q on a graded manifold \mathcal{M} has the form of a finite sum $D = \sum X_1 \circ \cdots \circ X_k$ of compositions of graded derivations X_1, \cdots, X_k of \mathcal{R} with $\sum_{i=1}^k |X_i| = q$. The space $\mathrm{tot}_{\oplus}^{\oplus}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})) = \bigoplus_n \mathrm{tot}_{\oplus}^n(\mathcal{D}_{\mathrm{poly}}(\mathcal{M}))$ of polydifferential operators on \mathcal{M} is defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p+q=n} (\mathcal{D}_{\operatorname{poly}}^{p}(\mathcal{M}))^{q},$$

where

$$(\mathcal{D}^p_{\mathrm{poly}}(\mathcal{M}))^q := \bigoplus_{q_0 + \dots + q_p = q} (\mathcal{D}(\mathcal{M}))^{q_0} \otimes \dots \otimes (\mathcal{D}(\mathcal{M}))^{q_p}$$

is the space of (p+1)-differential operators on \mathcal{M} of degree q.

• $(tot_{\oplus}^{\bullet}(\mathcal{D}_{poly}(\mathcal{M})), d_{\mathscr{H}}, [-, -]_G)$ is a dg Lie algebra.

Polydifferential operators on dg manifolds

A differential operator $D \in \mathcal{D}(\mathcal{M})^q$ of degree q on a graded manifold \mathcal{M} has the form of a finite sum $D = \sum X_1 \circ \cdots \circ X_k$ of compositions of graded derivations X_1, \cdots, X_k of \mathcal{R} with $\sum_{i=1}^k |X_i| = q$. The space $\operatorname{tot}_{\oplus}^{\oplus}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_n \operatorname{tot}_{\oplus}^n(\mathcal{D}_{\operatorname{poly}}(\mathcal{M}))$ of polydifferential operators on \mathcal{M} is defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p+q=n} (\mathcal{D}_{\operatorname{poly}}^{p}(\mathcal{M}))^{q},$$

where

$$(\mathcal{D}^p_{\mathrm{poly}}(\mathcal{M}))^q := \bigoplus_{q_0 + \dots + q_p = q} (\mathcal{D}(\mathcal{M}))^{q_0} \otimes \dots \otimes (\mathcal{D}(\mathcal{M}))^{q_p}$$

is the space of (p+1)-differential operators on \mathcal{M} of degree q.

- $(tot_{\oplus}^{\bullet}(\mathcal{D}_{poly}(\mathcal{M})), d_{\mathscr{H}}, [-, -]_G)$ is a dg Lie algebra.
- Each homological vector field $Q \in \mathcal{D}(\mathcal{M})^1 = (\mathcal{D}^0_{\text{poly}}(\mathcal{M}))^1$ is a Maurer-Cartan element of this dg Lie algebra.

$$(\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})))_Q = (\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})), [Q, -]_G + d_{\mathscr{H}}, [-, -]_G).$$

Polydifferential operators on dg manifolds

A differential operator $D \in \mathcal{D}(\mathcal{M})^q$ of degree q on a graded manifold \mathcal{M} has the form of a finite sum $D = \sum X_1 \circ \cdots \circ X_k$ of compositions of graded derivations X_1, \cdots, X_k of \mathcal{R} with $\sum_{i=1}^k |X_i| = q$. The space $\mathrm{tot}_{\oplus}^{\oplus}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})) = \bigoplus_n \mathrm{tot}_{\oplus}^n(\mathcal{D}_{\mathrm{poly}}(\mathcal{M}))$ of polydifferential operators on \mathcal{M} is defined by

$$\operatorname{tot}_{\oplus}^{n}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})) = \bigoplus_{p+q=n} (\mathcal{D}_{\operatorname{poly}}^{p}(\mathcal{M}))^{q},$$

where

$$(\mathcal{D}^p_{\mathrm{poly}}(\mathcal{M}))^q := \bigoplus_{q_0 + \dots + q_p = q} (\mathcal{D}(\mathcal{M}))^{q_0} \otimes \dots \otimes (\mathcal{D}(\mathcal{M}))^{q_p}$$

is the space of (p+1)-differential operators on \mathcal{M} of degree q.

- $(tot_{\oplus}^{\bullet}(\mathcal{D}_{poly}(\mathcal{M})), d_{\mathscr{H}}, [-, -]_G)$ is a dg Lie algebra.
- Each homological vector field $Q \in \mathcal{D}(\mathcal{M})^1 = (\mathcal{D}^0_{\text{poly}}(\mathcal{M}))^1$ is a Maurer-Cartan element of this dg Lie algebra.

$$(\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})))_Q = (\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})), [Q, -]_G + d_{\mathscr{H}}, [-, -]_G).$$

• We have a Gerstenhaber algebra on the cohomology level $(H^{\bullet}(tot_{\oplus}(\mathcal{D}_{poly}(\mathcal{M}))[-1], [Q, -]_G + d_{\mathscr{H}}), [-, -]_G, \cup = \otimes_{\mathcal{R}}).$ ł

Hochschild-Konstant-Rosenberg isomorphism for dg manifolds

For any graded manifold \mathcal{M} , the Hochschild-Konstant-Rosenberg map is defined, as usual, to be the natural inclusion by skew-symmetrization

$$\operatorname{hkr} : \operatorname{tot}_{\oplus}^{\bullet}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) \hookrightarrow \operatorname{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M}))$$
$$\operatorname{hkr}(X_{0} \wedge \dots \wedge X_{p}) = \frac{1}{(p+1)!} \sum_{\sigma \in S_{p+1}} \kappa(\sigma) X_{\sigma(0)} \otimes \dots \otimes X_{\sigma(p)},$$

for all homogeneous vector fields $X_0, \cdots, X_p \in (\mathcal{T}^0_{\text{poly}}(\mathcal{M}))^{\bullet}$, where the skew-Koszul sign $\kappa(\sigma)$ is the scalar defined by the relation

$$X_0 \wedge \dots \wedge X_p = \kappa(\sigma) X_{\sigma(0)} \wedge \dots \wedge X_{\sigma(p)}.$$

Hochschild-Konstant-Rosenberg isomorphism for dg manifolds

For any graded manifold \mathcal{M} , the Hochschild-Konstant-Rosenberg map is defined, as usual, to be the natural inclusion by skew-symmetrization

$$\operatorname{hkr} : \operatorname{tot}_{\oplus}^{\bullet}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})) \hookrightarrow \operatorname{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M}))$$
$$\operatorname{hkr}(X_{0} \wedge \dots \wedge X_{p}) = \frac{1}{(p+1)!} \sum_{\sigma \in S_{p+1}} \kappa(\sigma) X_{\sigma(0)} \otimes \dots \otimes X_{\sigma(p)},$$

for all homogeneous vector fields $X_0, \cdots, X_p \in (\mathcal{T}^0_{poly}(\mathcal{M}))^{\bullet}$, where the skew-Koszul sign $\kappa(\sigma)$ is the scalar defined by the relation

$$X_0 \wedge \cdots \wedge X_p = \kappa(\sigma) X_{\sigma(0)} \wedge \cdots \wedge X_{\sigma(p)}.$$

Proposition (Liao-Stiénon-Xu)

ł

For any finite dimensional dg manifold (\mathcal{M}, Q) , the map hkr induces an isomorphism of graded vector spaces on the cohomology level

 $\operatorname{hkr}: H^{\bullet}(\operatorname{tot}_{\oplus}^{\bullet}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})), [Q, -]) \xrightarrow{\cong} H^{\bullet}(\operatorname{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})), [Q, -]_{G} + d_{\mathscr{H}}).$

Atiyah classes of dg manifolds

Let (\mathcal{M}, Q) be a dg manifold. Given an affine connection ∇ on \mathcal{M} , there are two equivalent ways to characterize the Atiyah class of (\mathcal{M}, Q) :

Atiyah classes of dg manifolds

Let (\mathcal{M}, Q) be a dg manifold. Given an affine connection ∇ on \mathcal{M} , there are two equivalent ways to characterize the Atiyah class of (\mathcal{M}, Q) :

• (Mehta, Stiénon and Xu) Consider the degree +1 (1,2)-tensor field $\alpha_{\mathcal{M}}^{\nabla} \in \Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End}(T_{\mathcal{M}}))$ by

$$\alpha_{\mathcal{M}}^{\nabla}(X,Y) = L_Q(\nabla_X Y) - \nabla_{L_Q(X)} Y - (-1)^{|X|} \nabla_X L_Q(Y),$$

for all $X, Y \in \Gamma(T_{\mathcal{M}})$, which is L_Q -closed. Its cohomology class

$$\alpha_{\mathcal{M}} = [\alpha_{\mathcal{M}}^{\nabla}] \in H^1(\Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End}(T_{\mathcal{M}})), L_Q)$$

is called the Atiyah class of the dg manifold (\mathcal{M}, Q) .

Atiyah classes of dg manifolds

Let (\mathcal{M}, Q) be a dg manifold. Given an affine connection ∇ on \mathcal{M} , there are two equivalent ways to characterize the Atiyah class of (\mathcal{M}, Q) :

• (Mehta, Stiénon and Xu) Consider the degree +1 (1,2)-tensor field $\alpha_{\mathcal{M}}^{\nabla} \in \Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End}(T_{\mathcal{M}}))$ by

$$\alpha_{\mathcal{M}}^{\nabla}(X,Y) = L_Q(\nabla_X Y) - \nabla_{L_Q(X)} Y - (-1)^{|X|} \nabla_X L_Q(Y),$$

for all $X, Y \in \Gamma(T_{\mathcal{M}})$, which is L_Q -closed. Its cohomology class

$$\alpha_{\mathcal{M}} = [\alpha_{\mathcal{M}}^{\nabla}] \in H^1(\Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End}(T_{\mathcal{M}})), L_Q)$$

is called the Atiyah class of the dg manifold (\mathcal{M}, Q) .

• (Lyakhovich, Mosman and Sharapov) The covariant derivative $\Lambda := \nabla(Q) \in \Gamma(\operatorname{End}(T_{\mathcal{M}}))$ of Q determines also determines a (1, 2)-tensor $B_1 \in \Gamma(\operatorname{Hom}(T_{\mathcal{M}}, \operatorname{End}(T_{\mathcal{M}})))$ by

$$B_1(X) = (-1)^{|X|} (\nabla_X \Lambda - R^{\nabla}(X, Q)),$$

where $R^{\nabla}(X,Q) = [\nabla_X, \nabla_Q] - \nabla_{[X,Q]}$ is the curvature tensor of ∇ . Its cohomology class $[B_1]$ is, in fact, the first type B stable characteristic class of (\mathcal{M}, Q) .

Todd class and Kontsevich-Duflo type isomorphism for dg manifolds

The Todd class of a dg manifold (\mathcal{M}, Q) is defined by

$$\mathrm{Td}_{(\mathcal{M},Q)} := \mathrm{Ber}\left(\frac{\alpha_{\mathcal{M}}}{1 - e^{-\alpha_{\mathcal{M}}}}\right) \in \prod_{k \ge 0} H^k\left((\Omega^k(\mathcal{M}))^{\bullet}, L_Q\right),$$

where Ber is the Berezinian (or the superdeterminant) map.

Todd class and Kontsevich-Duflo type isomorphism for dg manifolds

The Todd class of a dg manifold (\mathcal{M}, Q) is defined by

$$\mathrm{Td}_{(\mathcal{M},Q)} := \mathrm{Ber}\left(\frac{\alpha_{\mathcal{M}}}{1 - e^{-\alpha_{\mathcal{M}}}}\right) \in \prod_{k \ge 0} H^k\left((\Omega^k(\mathcal{M}))^{\bullet}, L_Q\right),$$

where Ber is the Berezinian (or the superdeterminant) map.

Theorem (Liao-Stiénon-Xu)

For any finite dimensional dg manifold (\mathcal{M}, Q) , the composition

$$\operatorname{hkr} \circ \operatorname{Td}_{(\mathcal{M},Q)}^{1/2} : H^{\bullet} \left((\operatorname{tot}_{\oplus}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M})))_Q[-1] \right) \xrightarrow{\cong} H^{\bullet} \left((\operatorname{tot}_{\oplus}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})))_Q[-1] \right)$$

of the action of the square root $\operatorname{Td}_{(\mathcal{M},Q)}^{1/2} \in \prod_k H^k((\Omega^k(\mathcal{M}))^{\bullet}, \mathcal{Q})$ of the Todd class of (\mathcal{M}, Q) , by contraction, with the Hochschild-Konstant-Rosenberg map hkr is an isomorphism of Gerstenhaber algebras.

The Atiyah and Todd classes in complex geometry

X: a complex manifold, T_X : its tangent sheaf, and $T_X^{\mathbb{C}}$ its the complexified tangent bundle with the decomposition $T_X^{\mathbb{C}} = T_X^{1,0} \oplus T_X^{0,1}$.

• The Atiyah class

 $\alpha_X \in H^1_{\mathrm{Dol}}(X, (T^{1,0}_X)^{\vee} \otimes \mathrm{End}(T^{1,0}_X)) \cong H^1(X, T^{\vee}_X \otimes \mathrm{End}(T_X))$

is the obstruction to existence of holomorphic connections on $T_X^{1,0}$.

The Atiyah and Todd classes in complex geometry

X: a complex manifold, T_X : its tangent sheaf, and $T_X^{\mathbb{C}}$ its the complexified tangent bundle with the decomposition $T_X^{\mathbb{C}} = T_X^{1,0} \oplus T_X^{0,1}$.

• The Atiyah class

 $\alpha_X \in H^1_{\mathrm{Dol}}(X, (T^{1,0}_X)^{\vee} \otimes \mathrm{End}(T^{1,0}_X)) \cong H^1(X, T^{\vee}_X \otimes \mathrm{End}(T_X))$

is the obstruction to existence of holomorphic connections on $T_{\rm x}^{1,0}$.

• The Todd class of X is

$$\operatorname{Td}_X = \prod_i \frac{\alpha_i}{1 - e^{-\alpha_i}} \in \bigoplus_{k \ge 0} H^{2k}(X, \mathbb{C}),$$

where α_i are Chern roots of $T_X^{1,0}$.

The Atiyah and Todd classes in complex geometry

X: a complex manifold, T_X : its tangent sheaf, and $T_X^{\mathbb{C}}$ its the complexified tangent bundle with the decomposition $T_X^{\mathbb{C}} = T_X^{1,0} \oplus T_X^{0,1}$.

• The Atiyah class

 $\alpha_X \in H^1_{\mathrm{Dol}}(X, (T^{1,0}_X)^{\vee} \otimes \mathrm{End}(T^{1,0}_X)) \cong H^1(X, T^{\vee}_X \otimes \mathrm{End}(T_X))$

is the obstruction to existence of holomorphic connections on $T_X^{1,0}$.

• The Todd class of X is

$$\operatorname{Td}_X = \prod_i \frac{\alpha_i}{1 - e^{-\alpha_i}} \in \bigoplus_{k \ge 0} H^{2k}(X, \mathbb{C}),$$

where α_i are Chern roots of $T_X^{1,0}$.

• In particular, when the Hodge decomposition holds for X, one has $\operatorname{tr}(\alpha_X) = c_1(X) \in H^{1,1}(X) \subset H^2(X,\mathbb{C})$, and the Todd class Td_X may be recovered by the Atiyah class α_X via

$$\mathrm{Td}_X = \mathrm{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}} = \det\left(\frac{\alpha_X}{1 - e^{-\alpha_X}}\right) \in \bigoplus_{k \ge 0} H^{k,k}(X,\mathbb{C}) \subset \bigoplus_{k \ge 0} H^{2k}(X,\mathbb{C}),$$

where $\operatorname{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}}$ is the Todd class of the Lie algebroid pair $(T_X^{\mathbb{C}}, T_X^{0,1})$ introduced by Chen, Stiénon and Xu.

Atiyah and Todd classes of associated dg manifolds

Note that each complex manifold gives rise to a dg manifold

$$(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial}).$$

We have the Atiyah class and Todd class of the associated dg manifold

$$\alpha_{(\mathcal{M},Q)} \in H^{1}(\Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End}(T_{\mathcal{M}})), L_{Q}),$$

$$\operatorname{Td}_{(\mathcal{M},Q)} \in \prod_{k \ge 0} H^{k}\left((\Omega^{k}(\mathcal{M}))^{\bullet}, L_{Q}\right).$$

Atiyah and Todd classes of associated dg manifolds

Note that each complex manifold gives rise to a dg manifold

$$(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial}).$$

We have the Atiyah class and Todd class of the associated dg manifold

$$\alpha_{(\mathcal{M},Q)} \in H^{1}(\Gamma(T_{\mathcal{M}}^{\vee} \otimes \operatorname{End}(T_{\mathcal{M}})), L_{Q}),$$

$$\operatorname{Td}_{(\mathcal{M},Q)} \in \prod_{k \ge 0} H^{k}\left((\Omega^{k}(\mathcal{M}))^{\bullet}, L_{Q}\right).$$

Question

What is the relation between the two types of Atiyah and Todd classes?

Cohomology of dg manifolds from complex manifolds

Let $(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial})$ be the dg manifold from a complex manifold X.

Proposition

There is a contraction of the space $\Gamma(T_{\mathcal{M}})$ of vector fields on \mathcal{M}

$$h \overset{\phi}{\longrightarrow} (\Gamma(T_{\mathcal{M}}), [\bar{\partial}, -]) \overset{\phi}{\longleftrightarrow} (\Omega^{0, \bullet}_X(T^{1, 0}_X), \bar{\partial}),$$

where ϕ, ψ, h are all $\Omega_X^{0, \bullet}$ -linear.

Cohomology of dg manifolds from complex manifolds

Let $(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial})$ be the dg manifold from a complex manifold X.

Proposition

There is a contraction of the space $\Gamma(T_{\mathcal{M}})$ of vector fields on \mathcal{M}

$$h \overset{\phi}{\longrightarrow} (\Gamma(T_{\mathcal{M}}), [\bar{\partial}, -]) \xrightarrow{\phi}_{\psi} (\Omega^{0, \bullet}_X(T^{1, 0}_X), \bar{\partial}),$$

where ϕ, ψ, h are all $\Omega_X^{0, \bullet}$ -linear.

Their dual maps give rise to a contraction on the space $\Omega^1(\mathcal{M})$ of 1-forms on \mathcal{M}

$${}_{h^{\vee}} \overset{}{\overset{}{\longrightarrow}} (\Omega^{1}(\mathcal{M}), L_{\bar{\partial}}) \xrightarrow[]{\psi^{\vee}} {}_{\psi^{\vee}} (\Omega^{0, \bullet}_{X}((T^{1, 0}_{X})^{\vee}), \bar{\partial}).$$

Isomorphisms between two types of Atiyah and Todd classes

Applying the tensor trick on contractions, we obtain a contraction for all $(p,q)\text{-tensor fields on }(\mathcal{M},Q)$

$${}^{H^{p,q}} \overset{\longrightarrow}{\longrightarrow} (\Gamma((T_{\mathcal{M}})^{\otimes p} \otimes (T_{\mathcal{M}}^{\vee})^{\otimes q}), L_{\bar{\partial}}) \xrightarrow{\Phi^{p,q}} (\Omega^{0,\bullet}_X((T^{1,0}_X)^{\otimes p} \otimes ((T^{1,0}_X)^{\vee})^{\otimes q}), \bar{\partial}).$$

Isomorphisms between two types of Atiyah and Todd classes

Applying the tensor trick on contractions, we obtain a contraction for all (p,q)-tensor fields on (\mathcal{M},Q)

$${}^{H^{p,q}} \overset{\frown}{\longrightarrow} (\Gamma((T_{\mathcal{M}})^{\otimes p} \otimes (T_{\mathcal{M}}^{\vee})^{\otimes q}), L_{\bar{\partial}}) \xrightarrow[]{\Phi^{p,q}}{\overset{\Phi^{p,q}}{\longleftarrow}} (\Omega^{0,\bullet}_X((T^{1,0}_X)^{\otimes p} \otimes ((T^{1,0}_X)^{\vee})^{\otimes q}), \bar{\partial}).$$

Theorem (Chen-Xiang-Xu)

Let $(\mathcal{M}, Q) = (T_X^{0,1}[1], \overline{\partial})$ be the dg manifold from a complex manifold X, there exist canonical isomorphisms

 $\Phi^{m,n}: H^{\bullet}(\Gamma((T_{\mathcal{M}})^{\otimes m} \otimes (T_{\mathcal{M}}^{\vee})^{\otimes n}), L_Q) \xrightarrow{\cong} H^{\bullet}(X, (T_X)^{\otimes m} \otimes (T_X^{\vee})^{\otimes n})$

from the cohomology of (m,n)-tensor fields on the dg manifold (\mathcal{M},Q) to the sheaf cohomology of X such that

- $\Phi^{1,2}(\alpha_{\mathcal{M}}) = \alpha_X;$
- $\Phi^{0,\bullet}(\mathrm{Td}_{\mathcal{M}}) = \mathrm{Td}_{T_X^{\mathbb{C}}/T_X^{0,1}}$, which is further isomorphic to the Todd class Td_X of X when the Hodge decomposition holds for X (e.g., compact Kähler or smooth algebraic).

Polyvector fields on complex manifolds

- X: complex manifold, T_X its tangent sheaf.
 - The sheaf cohomology $H^{\bullet}(X, \wedge^{\bullet}T_X)$, together with the wedge product \wedge and the Schouten bracket [-, -], is a Gerstenhaber algebra.

Polyvector fields on complex manifolds

- X: complex manifold, T_X its tangent sheaf.
 - The sheaf cohomology $H^{\bullet}(X, \wedge^{\bullet}T_X)$, together with the wedge product \wedge and the Schouten bracket [-, -], is a Gerstenhaber algebra.
 - The cohomology of the space of polyvector fields on $(\mathcal{M},Q) = (T_X^{0,1}[1],\bar{\partial})$

$$(H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{T}_{\mathrm{poly}}(\mathcal{M}))[-1], [Q, -]), \wedge, [-, -])$$

is also a Gerstenhaber algebra.

Polyvector fields on complex manifolds

- X: complex manifold, T_X its tangent sheaf.
 - The sheaf cohomology H[●](X, ∧[●]T_X), together with the wedge product ∧ and the Schouten bracket [-, -], is a Gerstenhaber algebra.
 - The cohomology of the space of polyvector fields on $(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial})$

$$(H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{T}_{\mathrm{poly}}(\mathcal{M}))[-1], [Q, -]), \wedge, [-, -])$$

is also a Gerstenhaber algebra.

Proposition (Chen-Xiang-Xu)

There exists a canonical isomorphism of Gerstenhaber algebras

$$\Phi^{\bullet,0}: H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{T}_{\mathrm{poly}}(\mathcal{M}))[-1], [Q, -]), \xrightarrow{\cong} H^{\bullet}(X, \wedge^{\bullet}T_X).$$

Polyvector fields on complex manifolds

- X: complex manifold, T_X its tangent sheaf.
 - The sheaf cohomology H[●](X, ∧[●]T_X), together with the wedge product ∧ and the Schouten bracket [-, -], is a Gerstenhaber algebra.
 - The cohomology of the space of polyvector fields on $(\mathcal{M},Q) = (T_X^{0,1}[1],\bar{\partial})$

$$(H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{T}_{\mathrm{poly}}(\mathcal{M}))[-1], [Q, -]), \wedge, [-, -])$$

is also a Gerstenhaber algebra.

Proposition (Chen-Xiang-Xu)

There exists a canonical isomorphism of Gerstenhaber algebras

$$\Phi^{\bullet,0}: H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{T}_{\mathrm{poly}}(\mathcal{M}))[-1], [Q, -]), \xrightarrow{\cong} H^{\bullet}(X, \wedge^{\bullet}T_X).$$

As a consequence, we have the following commutative diagram

Hochschild cohomology of complex manifolds

X: a complex manifold. Its Hochschild cohomology is

$$HH^{\bullet}(X) := \operatorname{Ext}_{\mathcal{O}_{X \times X}}^{\bullet}(\mathcal{O}_{\Delta}, \mathcal{O}_{\Delta}).$$

When equipped with the Yoneda product and Gerstenhaber bracket, $HH^{\bullet}(X)$ is a Gerstenhaber algebra.

Hochschild cohomology of complex manifolds

X: a complex manifold. Its Hochschild cohomology is

$$HH^{\bullet}(X) := \operatorname{Ext}_{\mathcal{O}_{X \times X}}^{\bullet}(\mathcal{O}_{\Delta}, \mathcal{O}_{\Delta}).$$

When equipped with the Yoneda product and Gerstenhaber bracket, $HH^{\bullet}(X)$ is a Gerstenhaber algebra.

Let $\mathcal{D}^{\bullet}_{\text{poly}}(X) \cong (\mathcal{U}(T^{1,0}_X))^{\otimes \bullet +1}$ be left module of holomorphic differential operators on X. The hypercohomology

$$H^{\bullet}(\Omega^{0,\bullet}_X(\mathcal{D}^{\bullet}_{\mathrm{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}),$$

with the tensor product and Gerstenhaber bracket is a Gerstenhaber algebra, which, according to Yekutieli, is isomorphic to the Hochschild cohomology $HH^{\bullet}(X)$ of X as Gerstenhaber algebras.

Hochschild cohomology of complex manifolds

X: a complex manifold. Its Hochschild cohomology is

$$HH^{\bullet}(X) := \operatorname{Ext}_{\mathcal{O}_{X \times X}}^{\bullet}(\mathcal{O}_{\Delta}, \mathcal{O}_{\Delta}).$$

When equipped with the Yoneda product and Gerstenhaber bracket, $HH^{\bullet}(X)$ is a Gerstenhaber algebra.

Let $\mathcal{D}^{\bullet}_{\text{poly}}(X) \cong (\mathcal{U}(T^{1,0}_X))^{\otimes \bullet +1}$ be left module of holomorphic differential operators on X. The hypercohomology

$$H^{\bullet}(\Omega^{0,\bullet}_X(\mathcal{D}^{\bullet}_{\mathrm{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}),$$

with the tensor product and Gerstenhaber bracket is a Gerstenhaber algebra, which, according to Yekutieli, is isomorphic to the Hochschild cohomology $HH^{\bullet}(X)$ of X as Gerstenhaber algebras.

The cohomology of polydifferential operators on $(\mathcal{M}, Q) = (T_X^{0,1}[1], \bar{\partial})$

$$(H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M}))[-1], [Q, -]_G + d_{\mathscr{H}}), [-, -]_G, \cup)$$

is also a Gerstenhaber algebra.

Coalgebra contraction for the polydifferential operators

Proposition (Chen-Xiang-Xu)

There is an $\Omega^{0,\bullet}_X$ -coalgebra contraction

$$\check{H}_{\natural} \overset{\bullet}{\longrightarrow} (\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})), [Q, -]_G + d_{\mathscr{H}}) \xrightarrow{\Phi_{\natural}^{\bullet}} (\Omega^{0, \bullet}_X(\mathcal{D}^{\bullet}_{\mathrm{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}).$$

Coalgebra contraction for the polydifferential operators

Proposition (Chen-Xiang-Xu)

There is an $\Omega_X^{0,\bullet}$ -coalgebra contraction

$$\check{H}_{\natural} \overset{\bullet}{\longrightarrow} (\mathrm{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M})), [Q, -]_{G} + d_{\mathscr{H}}) \xrightarrow{\Phi_{\natural}^{\bullet}} (\Omega^{0, \bullet}_{X}(\mathcal{D}^{\bullet}_{\mathrm{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}).$$

The construction of this contraction needs the following two results:

Proposition (Liao-Stiénon)

Any affine connection ∇ on \mathcal{M} determines an isomorphism of coalgebras

$$\operatorname{pbw} = \operatorname{pbw}^{\nabla} : \Gamma(ST_{\mathcal{M}}) \to \mathcal{D}(\mathcal{M}).$$

Proposition (Laurent-Gengoux-Stiénon-Xu)

For each (1,0)-connection $\overline{\nabla}$ on $T_X^{1,0}$, there is an isomorphism of coalgebras

$$\overline{\mathrm{pbw}} = \mathrm{pbw}^{\bar{\nabla}} : \Gamma(ST_X^{1,0}) \to \mathcal{U}(T_X^{1,0}),$$

which generalizes exp from the holomorphic exponential map when X is Kähler. Massing Xing16/20

A coalgebra contraction for the space of differential operators

Recall that the symmetric tensor product of the contraction for $\Gamma(T_{\mathcal{M}})$ over $\Omega^{0,\bullet}_X(T^{1,0}_X)$ gives the following $\Omega^{0,\bullet}_X$ -coalgebra contraction

$$H \overset{\Phi^{\bullet}}{\longrightarrow} (\Gamma(ST_{\mathcal{M}}), L_Q) \xrightarrow{\Phi^{\bullet}}_{\Psi^{\bullet}} (\Omega^{0, \bullet}_X(ST^{1, 0}_X), \bar{\partial}).$$

A coalgebra contraction for the space of differential operators

Recall that the symmetric tensor product of the contraction for $\Gamma(T_{\mathcal{M}})$ over $\Omega^{0,\bullet}_X(T^{1,0}_X)$ gives the following $\Omega^{0,\bullet}_X$ -coalgebra contraction

$$H \overset{\Phi^{\bullet}}{\longrightarrow} (\Gamma(ST_{\mathcal{M}}), L_Q) \xrightarrow{\Phi^{\bullet}}_{\Psi^{\bullet}} (\Omega^{0, \bullet}_X(ST^{1, 0}_X), \bar{\partial}).$$

The formal exponential map pbw induces a new differential on $\Gamma(ST_{\mathcal{M}})$

$$D = \operatorname{pbw}^{-1} \circ [Q, -]_G \circ \operatorname{pbw} = L_Q + \Theta,$$

where Θ , being a perturbation of L_Q , is a coderivation on $\Gamma(ST_M)$. Using perturbation lemma, we get a new coalgebra contraction

$${}^{H_{\flat}} \overset{\frown}{\longrightarrow} (\Gamma(ST_{\mathcal{M}}), D) \xrightarrow[]{\Phi_{\flat}}{\longleftarrow} (\Omega^{0, \bullet}_{X}(ST^{1, 0}_{X}), \bar{D} = \bar{\partial} + \overline{\Theta}),$$

where $\overline{D} = \overline{pbw}^{-1} \circ \overline{\partial} \circ \overline{pbw}$ is the exactly the differential induced from the isomorphism \overline{pbw} .

A coalgebra contraction for the space of differential operators

Recall that the symmetric tensor product of the contraction for $\Gamma(T_{\mathcal{M}})$ over $\Omega^{0,\bullet}_X(T^{1,0}_X)$ gives the following $\Omega^{0,\bullet}_X$ -coalgebra contraction

$$H \overset{\Phi^{\bullet}}{\longrightarrow} (\Gamma(ST_{\mathcal{M}}), L_Q) \xrightarrow{\Phi^{\bullet}}_{\Psi^{\bullet}} (\Omega^{0, \bullet}_X(ST^{1, 0}_X), \bar{\partial}).$$

The formal exponential map pbw induces a new differential on $\Gamma(ST_{\mathcal{M}})$

$$D = \operatorname{pbw}^{-1} \circ [Q, -]_G \circ \operatorname{pbw} = L_Q + \Theta,$$

where Θ , being a perturbation of L_Q , is a coderivation on $\Gamma(ST_M)$. Using perturbation lemma, we get a new coalgebra contraction

$${}^{H_{\flat}} \overset{\frown}{\longrightarrow} (\Gamma(ST_{\mathcal{M}}), D) \xrightarrow[]{\Phi_{\flat}}{\longleftarrow} (\Omega^{0, \bullet}_{X}(ST^{1, 0}_{X}), \bar{D} = \bar{\partial} + \overline{\Theta}),$$

where $\overline{D} = \overline{pbw}^{-1} \circ \overline{\partial} \circ \overline{pbw}$ is the exactly the differential induced from the isomorphism \overline{pbw} . Hence, we get an coalgebra contraction on the differential operators

$${}^{H_{\natural}} \overset{}{\longrightarrow} (\mathcal{D}(\mathcal{M}), [Q, -]_G) \xrightarrow{\Phi_{\natural}} (\Omega^{0, \bullet}_X(\mathcal{D}^0_{\mathrm{poly}}(X)), \bar{\partial}).$$

Isomorphism of Gerstenhaber algebras on the cohomology level

Applying the tensor trick of contractions and the perturbation lemma, we obtain the desired $\Omega_X^{0,\bullet}$ -coalgebra contraction

$$\check{}^{\check{}}_{\sharp} \subset (\operatorname{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})), \mathcal{Q} + d_{\mathscr{H}}) \xrightarrow{\Phi_{\sharp}^{\bullet}} (\Omega^{0,\bullet}_{X}(\mathcal{D}^{\bullet}_{\operatorname{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}).$$

Isomorphism of Gerstenhaber algebras on the cohomology level

Applying the tensor trick of contractions and the perturbation lemma, we obtain the desired $\Omega^{0,\bullet}_{,\bullet}$ -coalgebra contraction

$$\check{}^{\check{}}_{\sharp} \subset (\operatorname{tot}_{\oplus}^{\bullet}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M})), \mathcal{Q} + d_{\mathscr{H}}) \xrightarrow{\Phi_{\sharp}^{\bullet}} (\Omega^{0,\bullet}_{X}(\mathcal{D}^{\bullet}_{\operatorname{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}).$$

Passing to the cohomology level, we have

Proposition (Chen-Xiang-Xu)

There is an isomorphism of Gerstenhaber algebras

$$\Phi^{\bullet}_{\natural}: H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M}))[-1], \mathcal{Q} + d_{\mathscr{H}}) \xrightarrow{\cong} H^{\bullet}(\Omega^{0,\bullet}_X(\mathcal{D}^{\bullet}_{\mathrm{poly}}(X)), \bar{\partial} + d_{\mathscr{H}}).$$

As a consequence, we have an isomorphism of Gerstenhaber algebras

$$\Phi^{\bullet}_{\natural}: H^{\bullet}(\mathrm{tot}_{\oplus}(\mathcal{D}_{\mathrm{poly}}(\mathcal{M}))[-1], \mathcal{Q} + d_{\mathscr{H}}) \cong HH^{\bullet}(X).$$

Application

Note that $\Phi_{\natural} \mid_{D^{\leq 1}(\mathcal{M})} = \Phi$. By the definitions of hkr on dg manifolds and on the complex manifold, we have the following

Application

Note that $\Phi_{\sharp} \mid_{D^{\leq 1}(\mathcal{M})} = \Phi$. By the definitions of hkr on dg manifolds and on the complex manifold, we have the following

$$\begin{array}{c} \oplus_{p,q}(\mathcal{T}^p_{\mathrm{poly}}(\mathcal{M}))^q & \xrightarrow{\mathrm{hkr}} \oplus_{p,q}(\mathcal{D}^p_{\mathrm{poly}}(\mathcal{M}))^q \\ & \downarrow^{\Phi^{p+1,0}} & \downarrow^{\Phi^{p+1}_{\natural}} \\ \oplus_{p,q}\Omega^{0,q}_X(\wedge^{p+1}T_X) & \xrightarrow{\mathrm{hkr}} \oplus_{p,q}\Omega^{0,q}_X(\mathcal{D}^p_{\mathrm{poly}}(X)). \end{array}$$

Combining with the commutative diagram on the compatibility between projection $\Phi^{\bullet,0}$ and contraction with square root of Todd classes, we have the following commutative diagram in the poster

$$H^{\bullet}(\operatorname{tot}_{\oplus}(\mathcal{T}_{\operatorname{poly}}(\mathcal{M}))[-1], \mathcal{Q}) \xrightarrow{\operatorname{hkr} \circ \operatorname{Td}_{(\mathcal{M}, \mathcal{Q})}^{1/2}} H^{\bullet}(\operatorname{tot}_{\oplus}(\mathcal{D}_{\operatorname{poly}}(\mathcal{M}))[-1], \mathcal{Q} + d_{\mathscr{H}})$$

$$\xrightarrow{\Phi^{\bullet, 0}} \cong \operatorname{hkr} \circ \operatorname{Td}_{T^{\mathbb{C}}_{X/T^{0, 1}_{X}}}^{1/2} \cong \operatorname{fr}^{\bullet}_{\natural}$$

$$H^{\bullet}(X, \wedge^{\bullet}T_{X}) \xrightarrow{\cong} HH^{\bullet}(X).$$

Thank you.

Maosong Xiang20 / 20