Weak Lensing Mass Map Reconstruction of Merging Clusters with Convolutional Neural Network

Sungwook E. Hong (UOS)

w/M. James Jee (Yonsei), Sangnam Park & Dongsu Bak (UOS)

The 9th Survey Science Group Workshop @ Jeongseon, Feb. 11th, 2020

Weak Gravitational Lensing

- Shape of background galaxies is observed as distorted by massive objects (e.g., dark matter in galaxy clusters)
- Shape distortion contains information on the projected dark matter distribution
- Can be used to
 - Understand the evolution of merging clusters (*Jee+2014, ...*)
 - Constrain cosmological parameters (Yoon+2018, ...)
- We don't know the original shape of a single background galaxy
 → need statistics of background galaxies to measure the shape distortion

Mass Map Reconstruction

- Identify background galaxies
- Calculate ellipticity & rotational angle
- Average them
 over given area

El Gordo Cluster (Jee+2014)

Mass Map Reconstruction

Shear vectors

$$\vec{\gamma}(\vec{\theta}) = {\gamma_1 \choose \gamma_2} = {e \cos 2\phi \choose e \sin 2\phi}$$

e: ellipticity
$$\phi$$
: rotational angle

El Gordo Cluster (Jee+2014)

Mass Map Reconstruction

Mass map (Kaiser & Squires 1993)

$$\kappa(\vec{\theta}) = \frac{1}{\pi} \int d\vec{\theta}' D_1(\vec{\theta} - \vec{\theta'}) \gamma_1(\vec{\theta'}) + \frac{1}{\pi} \int d\vec{\theta}' D_2(\vec{\theta} - \vec{\theta'}) \gamma_2(\vec{\theta'})$$

El Gordo Cluster (Jee+2014)

Limitation of Classical Method

Mass-sheet Degeneracy $\kappa(\vec{\theta})$ and $\lambda \kappa(\vec{\theta}) + (1 - \lambda)$ could give the same shear vectors. (Bradač, Lombardi & Schneider 2004)

Overfitting & Edge Effect

 $\kappa(\vec{\theta})$ can significantly vary for different levels of data averaging.

Small-scale smoothing

Large-scale smoothing

New Method: CNN

Train & test: ~2,000 Subaru HSC-like WL map simulations

- Field of View: 32' x 32'
- Number of background sources: 25,000

Input Data Augmentation

Crop sub-map with

Truth: y

Reconstructed Mass Map

166x166

Superposition of many sub-maps of size 128x128

Values of pixels in overlapped region are divided by the number of superpositions.

128x128

Result: Visual Inspection

Good overall shape & pixel-to-pixel value w/ low dependence on the smoothing scale

Result: Analysis Summary

	CNN	Classical
$\kappa_{\rm pred}/\kappa_{\rm true}$	1.06 ± 0.49	0.30 ± 0.13
$M_{\rm pred}^{\rm cl}/M_{\rm true}^{\rm cl}$	0.95 ± 0.42	0.28 ± 0.15
$\left \frac{\kappa_{\rm pred} - \kappa_{\rm true}}{\kappa_{\rm true}}\right _{\rm cl}$	0.028 ± 0.0045	0.036 ± 0.0070
Peak Position Difference	$0.44^\prime\pm0.56^\prime$	$2.96' \pm 5.07'$

Result: Mass Comparison

Better cluster mass estimation with less bias

Train w/ Bright Star Masking

"Toothbrush" relic ACS.pomting	Truth	Smoothed Truth + Masking	CNN
1~2 bright stars are expected in 20'x20' Subaru HSC field		No BS	BS + Masking
	$\kappa_{\rm pred}/\kappa_{\rm true}$	1.06 ± 0.49	0.97 ± 0.43
	$M_{\rm pred}^{\rm cl}/M_{ m true}^{\rm cl}$	0.95 ± 0.42	0.89 ± 0.39
	$\left \frac{\kappa_{\rm pred} - \kappa_{\rm true}}{\kappa_{\rm true}}\right _{\rm cl}$	0.028 ± 0.0045	0.029 ± 0.0049
	Peak Position Difference	$0.44^{\prime}\pm0.56^{\prime}$	$0.61^{\prime} \pm 1.23^{\prime}$

Application: El Gordo Cluster

- Overall mass distribution: similar to *Jee+2014*
- Possibility of reconstructing smaller-scale (need more check)
- Cluster mass comparison: work in progress

WARNING: The current CNN is not optimized for the HST

Conclusion

- Deep learning can reconstruct the projected mass map from weak lensing well!
- (Can be) better than classical method (Kaiser & Squire 1993):
 - Better pixel-to-pixel value match
 - Better cluster mass estimation
 - Better cluster center position identification
- Future works:
 - Add more observational effect (error in sheer map, ...)
 - Apply it to real observations of merging clusters

Mass vs. Peak Position Accuracy

