L-matrices of quiver mutations

Kyu-Hwan Lee

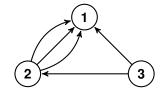
joint work with

Kyungyong Lee and Matthew R. Mills

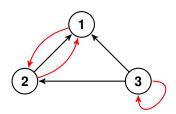
July 14, 2020

- Let *Q* be a quiver (= directed graph).
- Assume that Q has no loops or 2-cycles.

Example:

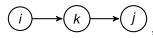


Non-example:



• Quiver mutation at vertex k:

Step 1) For each subquiver

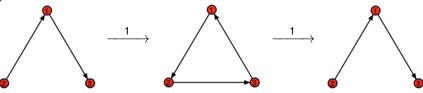


add a new arrow

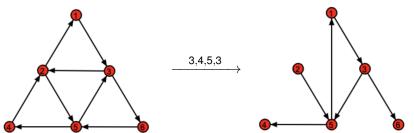
Step 2) Reverse the directions of any arrows touching k.

Step 3) Remove both arrows of any 2-cycles.

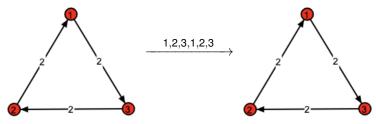
1) Mutation at vertex 1



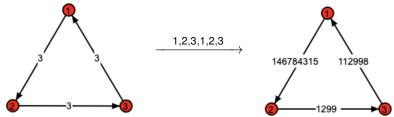
2) Consecutive mutations at vertices 3, 4, 5, 3



3) Consecutive mutations at 1, 2, 3, 1, 2, 3

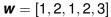


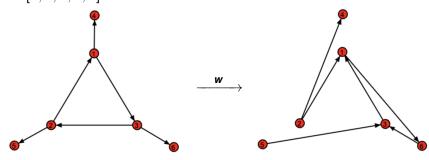
4) Consecutive mutations at 1, 2, 3, 1, 2, 3



c-vectors and C-matrix

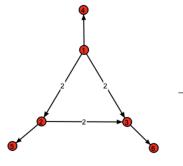
- For each vertex k of a quiver Q, introduce a new vertex \tilde{k} and an arrow from k to \tilde{k} .
- The vertices \tilde{k} are frozen in the sense that we do not perform mutations at these vertices.
- After any consecutive mutation sequence $\mathbf{w} = [i_1, i_2, \dots, i_r]$, record the numbers of arrows from k to all the frozen vertices. The resulting row-vectors $\mathbf{c}_k^{\mathbf{w}}$ are called \mathbf{c} -vectors.
- The matrix $C^{\mathbf{w}} = \begin{bmatrix} c_1^{\mathbf{w}} \\ \vdots \\ c_n^{\mathbf{w}} \end{bmatrix}$ is called the C-matrix.

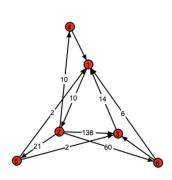




$$c_1^{\mathbf{w}} = (0,0,1), \quad c_2^{\mathbf{w}} = (1,0,0), \quad c_3^{\mathbf{w}} = (0,-1,-1)$$

$$C^{\mathbf{w}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & -1 & -1 \end{bmatrix}$$





$$C^{\mathbf{w}} = \begin{bmatrix} -1 & -2 & -6 \\ 10 & 21 & 60 \\ 0 & -2 & -1 \end{bmatrix}$$

Sign coherence of *c*-vectors

Theorem (DWZ,GHKK)

The c-vectors are non-zero, and the entries of a c-vector are either all non-negative or all non-positive.

This theorem is proven by [Derksen-Weyman-Zelevinsky (2010)] and [Gross-Hacking-Keel-Kontsevich (2018)].

- For a nonzero vector v, write v > 0 if all the entries are non-negative and v < 0 if all the entries are non-positive.
- The above theorem says that we have

either $c_i^{\mathbf{w}} > 0$ or $c_i^{\mathbf{w}} < 0$.

A quiver is acyclic if it does not have an oriented cycle. For example,

Assume that Q is acyclic. Then we have an ordering \prec on the set of vertices $\{1, 2, ..., n\}$ such that

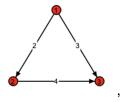
$$i \succ j \Leftrightarrow i \rightarrow j$$
.

Define a quadratic form

$$q(x_1,\ldots,x_n)=\sum_{i=1}^n x_i^2-\sum_{i\succ j}b_{ij}x_ix_j,$$

where b_{ii} is the number of arrows from i to j. (Set $b_{ii} = -b_{ij}$.)

For example, when Q is given by



$$q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 - 3x_1x_3 - 4x_2x_3.$$

For w = [2, 1, 3, 2], the *c*-vectors are

$$c_1^{\mathbf{w}} = (3, 4, 25), \quad c_2^{\mathbf{w}} = (-2, -3, 0), \quad c_3^{\mathbf{w}} = (0, 0, -1).$$

They satisfy

$$q(3,4,25) = 1$$
, $q(-2,-3,0) = 1$, $q(0,0,-1) = 1$.

This is always true with an acyclic quiver.

Theorem (Kac, 1980; Caldero-Keller, 2006)

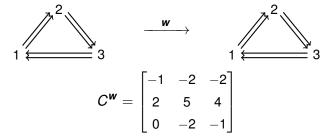
Assume that Q is acyclic. Then, for any c-vector $c_i^{\mathbf{w}}$, we have

$$q(c_i^{\mathbf{w}})=1.$$

Q: Is this true for non-acyclic quivers?

A: No, but not completely false.

• $\mathbf{w} = [2, 3, 2, 1]$



- There is no natural ordering for this quiver.
- Fix 1 > 2 > 3. Then

$$q(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 2x_1x_2 + 2x_1x_3 - 2x_2x_3$$

and we have

$$q(-1,-2,-2)=1$$
, $q(2,5,4)=1$, $q(0,-2,-1)=1$.

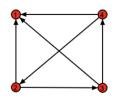
13/31

It is natural to formulate a conjecture:

For any quiver Q, there exists an ordering \prec such that c-vectors are roots of the equation

$$q(x_1,\ldots,x_n)=1.$$

However, there is a counterexample.



$$\mathbf{w} = [1, 2, 3, 4, 2]$$

The *c*-vector $c_1^{\mathbf{w}} = (5, 2, 2, 2)$ is not a root for any ordering.

Idea: When *Q* is acyclic, *c*-vectors are closely related to reflections.

Let $\alpha_1 = (1, 0, ..., 0), ..., \alpha_n = (0, ..., 0, 1)$ be the standard basis.

Define

$$s_i(\alpha_j) = \begin{cases} \alpha_j + b_{ji}\alpha_i & \text{if } i \prec j, \\ -\alpha_j & \text{if } i = j, \\ \alpha_j - b_{ji}\alpha_i & \text{if } i \succ j. \end{cases}$$

[Caldero–Keller, 2006] says that, when *Q* is acyclic, the *c*-vectors are real Schur roots, i.e.

$$c_i^{\mathbf{w}} = s_{i_1} s_{i_2} \cdots s_{i_r} \alpha_i$$

for "special" sequences (i_1, i_2, \dots, i_r) of indices.

4 D > 4 D > 4 D > 4 D > 3 P 9 Q P

Since s_i 's are isometries, we have, for an acyclic quiver Q,

$$q(c_i^{\mathbf{w}})=1.$$

When *Q* is non-acyclic, there is a counterexample. Hence, in general,

$$c_i^{\mathbf{w}} \neq s_{i_1} s_{i_2} \cdots s_{i_r} \alpha_i.$$

However, the vectors $s_{i_1} s_{i_2} \cdots s_{i_r} \alpha_i$ would still make sense if we can characterize the sequence (i_1, \ldots, i_r) for each mutation \boldsymbol{w} .

For each \mathbf{w} , inductively define $r_i^{\mathbf{w}}$ with the initial element s_i by

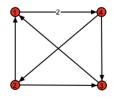
$$r_i^{\mathbf{w}[k]} = \begin{cases} r_k^{\mathbf{w}} r_i^{\mathbf{w}} r_k^{\mathbf{w}} & \text{if } b_{ik}^{\mathbf{w}} c_k^{\mathbf{w}} > 0, \\ r_i^{\mathbf{w}} & \text{otherwise,} \end{cases}$$

where $b_{ik}^{\mathbf{w}}$ are defined by the numbers of arrows in the quiver $Q^{\mathbf{w}}$. Write $r_i^{\mathbf{w}} = g_i^{\mathbf{w}} s_i (g_i^{\mathbf{w}})^{-1}$.

Definition

Fix an ordering \prec . Then the I-vectors $I_i^{\mathbf{w}}$ and the L-matrix $\mathbf{L}^{\mathbf{w}}$ are defined by

$$I_i^{\mathbf{w}} = g_i^{\mathbf{w}}(\alpha_i)$$
 and $L^{\mathbf{w}} = \begin{bmatrix} I_1^{\mathbf{w}} \\ \vdots \\ I_n^{\mathbf{w}} \end{bmatrix}$.



$$\mathbf{w} = [3, 4, 1, 3, 4, 3]$$

Take $1 \prec 2 \prec 3 \prec 4$.

$$r_1^{\mathbf{w}} = s_3 s_4 s_3 s_1 s_3 s_4 s_3,$$

$$r_2^{\mathbf{w}} = s_3 s_4 s_3 s_1 s_3 s_4 s_2 s_4 s_3 s_1 s_3 s_4 s_3,$$

$$r_3^{W} = s_3 s_4 s_1 s_3 s_4 s_3 s_1 s_3 s_1 s_3 s_4 s_3 s_1 s_4 s_3$$

$$r_4^{\mathbf{w}} = s_3 s_4 s_1 s_3 s_4 (s_3 s_1)^2 s_3 s_4 s_3 (s_1 s_3)^2 s_4 s_3 s_1 s_4 s_3.$$

The I-vectors are

$$\begin{split} & l_1^{\textit{W}} = s_3 s_4 s_3(\alpha_1) = (1, 0, -1, -1), \\ & l_2^{\textit{W}} = s_3 s_4 s_3 s_1 s_3 s_4(\alpha_2) = (-1, 1, 0, 1), \\ & l_3^{\textit{W}} = s_3 s_4 s_1 s_3 s_4 s_3 s_1(\alpha_3) = (2, 0, 0, -3), \\ & l_4^{\textit{W}} = s_3 s_4 s_1 s_3 s_4 (s_3 s_1)^2 s_3(\alpha_4) = (-3, 0, 0, 4), \end{split}$$

and the L-matrix is given by

$$L^{\mathbf{w}} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & 1 \\ 2 & 0 & 0 & -3 \\ -3 & 0 & 0 & 4 \end{bmatrix}.$$

• From the construction, the *I*-vectors are roots of the equation

$$q(x_1,\ldots,x_n)=1.$$

Since we do not yet have an interpretation of *I*-vectors as real roots of a "root system", we call them real Lösungen.

(A Lösung means a solution in German.)

- Q1: How much information do the *I*-vectors carry?
 In particular, if C^v = C^w, is it true that L^v = L^w?
- Q2: Can we characterize the sequences (i_1, \ldots, i_r) for

$$I_i^{\mathbf{w}} = \mathbf{s}_{i_1} \cdots \mathbf{s}_{i_r} \alpha_i$$
?

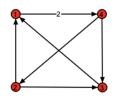
<ロ > < 回 > < 回 > < 巨 > < 巨 > 豆 りへの

Conjecture

For any quiver Q, there exists an ordering \prec such that, whenever $C^{\mathbf{v}} = C^{\mathbf{w}}$, we have

$$r_i^{\mathbf{v}} = r_i^{\mathbf{w}}$$
 and $l^{\mathbf{v}} = \pm l^{\mathbf{w}}$, $i = 1, \ldots, n$.

- We can show that *I*-vectors are leading terms in a certain sense when *c*-vectors are written as linear combinations of real Lösungen.
- This conjecture claims that these leading terms carry essential information about the *c*-vectors and quiver mutations.



$$\mathbf{w} = [3, 4, 1, 3, 4, 3], \quad \mathbf{v} = [4, 1, 3, 4, 1, 3]$$

One can check

$$C^{\mathbf{w}} = C^{\mathbf{v}}$$
.

Take $1 \prec 2 \prec 3 \prec 4$.

$$r_1^{\mathbf{w}} = s_3 s_4 s_3 s_1 s_3 s_4 s_3,$$

$$r_2^{\mathbf{w}} = s_3 s_4 s_3 s_1 s_3 s_4 s_2 s_4 s_3 s_1 s_3 s_4 s_3,$$

$$r_3^{\mathbf{w}} = s_3 s_4 s_1 s_3 s_4 s_3 s_1 s_3 s_1 s_3 s_4 s_3 s_1 s_4 s_3,$$

$$r_4^{\mathbf{w}} = s_3 s_4 s_1 s_3 s_4 (s_3 s_1)^2 s_3 s_4 s_3 (s_1 s_3)^2 s_4 s_3 s_1 s_4 s_3,$$

$$r_1^{\mathbf{v}} = s_3(s_4s_1)^2 s_4 s_3 s_4 s_1 s_4 s_3 s_4 (s_1s_4)^2 s_3,$$

$$r_2^{\mathbf{v}} = s_3(s_4s_1)^2 s_4 s_3 s_4 s_1 s_4 s_3 (s_4s_1)^2 s_4 s_2 s_4 (s_1s_4)^2 s_3 s_4 s_1 s_4 s_3 s_4 (s_1s_4)^2 s_3,$$

$$r_3^{\mathbf{v}} = s_3(s_4s_1)^2 s_4 s_3 s_4 (s_1s_4)^2 s_3,$$

One can check

 $r_4^{\mathbf{v}} = (s_3 s_4 s_1)^2 s_4 (s_1 s_4 s_3)^2$.

$$r_i^{\mathbf{w}} = r_i^{\mathbf{v}}, \quad i = 1, 2, 3, 4.$$

4 D > 4 전 > 4 문 > 로 *) Q(i

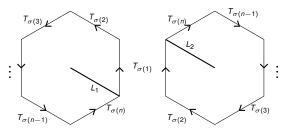
Recall Q2:

How can we describe the special sequences (i_1, \ldots, i_r) for

$$I_i^{\mathbf{w}} = \mathbf{s}_{i_1} \cdots \mathbf{s}_{i_r} \alpha_i$$
?

We will use curves on a Riemann surface.

• For $\sigma \in S_n$, consider



- Let Σ_{σ} be the compact Riemann surface of genus $\lfloor \frac{n-1}{2} \rfloor$ obtained by gluing together the two n-gons with all the edges of the same label identified according to their orientations.
- $\mathcal{T}:=T_1\cup\cdots T_n\subset \Sigma_\sigma$ V: the set of the vertex (or vertices) on \mathcal{T}
- \mathfrak{W} : the set of words $i_1 i_2 \cdots i_r$ from the alphabet $\{1,2,\ldots,n\}$ such that $i_p \neq i_{p+1}$,

 $\mathfrak{R} \subset \mathfrak{W}$: the set of words in \mathfrak{W} such that r is odd and $i_p = i_{r-p+1}$.

Definition

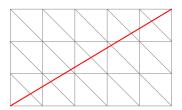
An admissible curve $\eta:[0,1]\longrightarrow \Sigma_{\sigma}$ is a curve such that

- 1) $\eta(x) \in V$ if and only if $x \in \{0, 1\}$;
- 2) there exists $\epsilon > 0$ such that $\eta([0, \epsilon]) \subset L_1$ and $\eta([1 \epsilon, 1]) \subset L_2$;
- 3) if $\eta(x) \in \mathcal{T} \setminus V$ then $\eta([x \epsilon, x + \epsilon])$ meets \mathcal{T} transversally for sufficiently small $\epsilon > 0$;
- 4) $v(\eta) \in \mathfrak{R}$, where $v(\eta) := i_1 \cdots i_k \in \mathfrak{W}$ is given by

$$\{x \in [0,1] : \eta(x) \in \mathcal{T}\} = \{x_1 < \dots < x_k\}$$
 and $\eta(x_\ell) \in \mathcal{T}_{i_\ell} \text{ for } \ell \in \{1,\dots,k\}.$

For example, let n=3 and $\sigma=(2,3,1)$. Then Σ_{σ} is a triangulated torus with edges indexed by 1, 2, 3 as follows:

Consider the universal cover of Σ_{σ} and a curve η



We get $v(\eta) = 2321232321232$ for η .

Since $v(\eta) \in \mathfrak{R}$, the curve η is admissible.

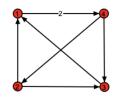
For an admissible curve η with $v(\eta) = i_1 i_2 \cdots i_r$, define

$$s(\eta) = s_{i_1} s_{i_2} \cdots s_{i_r}$$

Conjecture

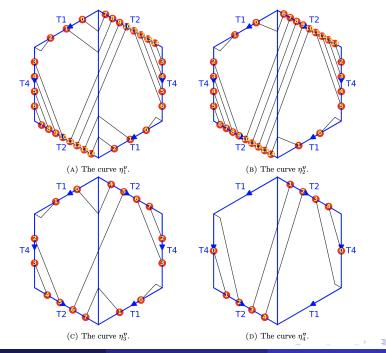
Fix an ordering \prec for a quiver Q. Then there exist non-self-crossing admissible curves $\eta_i^{\mathbf{w}}$, $i=1,2,\ldots,n$, on the Riemann surface Σ_{σ} for some $\sigma \in S_n$ such that

$$r_i^{\mathbf{w}} = s(\eta_i^{\mathbf{w}}), \quad i = 1, 2, \ldots, n.$$



$$\pmb{v} = [2, 3, 4, 2, 1, 3]$$

Take 1
$$\prec$$
 3 \prec 2 \prec 4 and σ = (3, 1, 4, 2).



Thank You