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Outline
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• Traditional approach vs ML approach
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Higgs discovered 2012

Photons
Not as clear bump

Small signal/background
0.2% of Higgs decays

4 leptons = Golden Channel
Clear bump

Large signal/background
0.01% of Higgs decays

WW
No bump

Need backgrounds
0.8% of Higgs decays

h ! e�e+µ�µ+ h ! e�µ+⌫̄⌫h ! ��, 0.01% , 0.1% , 1%
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Higgs
Decays to

Higgs boson decay modes

Jets
98%

Photons (0.2%)

e, µ (1.8%)

• Higgs discovery involved just these special decays
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Jets from come from 
chomoelectromagnetic radiation
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Not all jets are created equal

B-jets
Light quark

jets

Gluon jets

60%23%

9%

Tau jets 

6%

How can we tell all these different jet types apart?

Background is
• 80 billion gluon jets 
• 10 billion light quark jets

Jets
98%

e, µ (1.8%)

Photons (0.2%)

=
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Modern Machine Learning for Particle Physics

Apply to data

Combine best observables
• Boosted Decision Trees
• Neural Networks

Simulations

Observables

Physical insight

Traditional approach Modern machine learning
Innovative algorithm

Validate physics Validate algorithm
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Game is about Hammers and Nails:

• Convolutional Neural Networks
• Recurrent Neural Networks
• Variational Auto-encorders
• Latent Dirichlet Allocation
• Reinforcement learning
• Point cloud networks
• Cluster networks

• Top tagging
• W tagging
• Quark/gluon discrimination
• Pileup removal
• b/c/s-tagging
• Jet-energy scale calibration
• Missing energy measurement
• Jets in heavy ion collisions
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Physics domain is distributions
Is this event
• two quark jets
• two gluon jets
• two Higgs bosons? 

• Any individual event has no “truth” identity 
• All that exists are the probability distributions for different truths

• data is a combination

1000-dimensional phase space
(from 108 dimensional measurements!)

dPg(x) =
dn�g

dp1 · · · dpn
<latexit sha1_base64="+11db8igEvEHvdab1RHjUujSXlk=">AAACG3icdVDLSsNAFJ34rPUVdelmsAh1U5Iq6EYounFZwT6gqWEymaRDJ5MwMxFLyH+48VfcuFDEleDCv3HSVqivAxfOnHMvd+7xEkalsqwPY25+YXFpubRSXl1b39g0t7bbMk4FJi0cs1h0PSQJo5y0FFWMdBNBUOQx0vGG54XfuSFC0phfqVFC+hEKOQ0oRkpLrln3m25YvT2Ap9AJBMKZf53x3JE0jJAb5pkPE9eGDvZjJWHx4LlrVuyaNQa0fpEvqwKmaLrmm+PHOI0IV5ghKXu2lah+hoSimJG87KSSJAgPUUh6mnIUEdnPxrflcF8rPgxioYsrOFZnJzIUSTmKPN0ZITWQP71C/MvrpSo46WeUJ6kiHE8WBSmDKoZFUNCngmDFRpogLKj+K8QDpCNSOs7ybAj/k3a9Zh/W7MujSuNsGkcJ7II9UAU2OAYNcAGaoAUwuAMP4Ak8G/fGo/FivE5a54zpzA74BuP9E8PUoKQ=</latexit>

dPq(x) =
dn�q

dp1 · · · dpn
<latexit sha1_base64="IL5h8QTUMkLm6FOifDmQ8i/6YB8="></latexit>

dPdata(x) = ↵qdPq + ↵gdPg + · · ·
<latexit sha1_base64="gsCwG4RePkDIIvhONT4/hFT8AI4="></latexit>

goal is to test/measure
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Quark jets vs gluon jets: theory
Probability of quark radiating: Probability of gluon radiating:

• Gluons around twice as likely to radiate than quarks
• Gluon jets are fatter, on average
• Gluon jets are more massive, on average
• Gluon jets have more particles, on average
• …

Color 
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(· · · )

<latexit sha1_base64="ECRPGVEuBRqjY+WGK/j7uatT/RM=">AAACGnicdVBNS8NAEN34WetX1aOXxSLUS0lsau2t6MVjBdsKTQmbzcYubj7cnQgl9Hd48a948aCIN/Hiv3HTVlDRBwOP92aYmeclgiswzQ9jbn5hcWm5sFJcXVvf2CxtbXdVnErKOjQWsbz0iGKCR6wDHAS7TCQjoSdYz7s+zf3eLZOKx9EFjBI2CMlVxANOCWjJLVl+273BjuIhrjnAQ6awE0hCM4eIZEhcNc5sJ+FjXMEO9WNQB26pbFZN86hZb2BNLNuu2TmpN5uHJra0laOMZmi7pTfHj2kasgioIEr1LTOBQUYkcCrYuOikiiWEXpMr1tc0IvqIQTZ5bYz3teLjIJa6IsAT9ftERkKlRqGnO0MCQ/Xby8W/vH4KwfEg41GSAovodFGQCgwxznPCPpeMghhpQqjk+lZMh0QnAzrNog7h61P8P+keVq1a1Tq3y62TWRwFtIv2UAVZqIFa6Ay1UQdRdIce0BN6Nu6NR+PFeJ22zhmzmR30A8b7J6VNoKU=</latexit>

3 colors of quark

dPg ⇠ 8⇥ ↵s

4⇡
(· · · )

<latexit sha1_base64="LnWhidkDsDwe6axAyu6Y1tQWdNU="></latexit>

8 colors of gluon
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Figure 23. Significance Improvement Curves for pT = 100 jets for selected variables. These curves
show the significance improvement εS/

√
εB as a function of εS.
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Particle count

Top 5 combined with BDT

Jet width

Gallicchio, MDS (arXiv:1211.7038)

Traditional approach
Consider lots of “motivated” variables
• Jet width
• # of particles
• # of subjets
• Jet “shape”
• Jet mass
• …

eQ

"Sp
"B

eQ
eG

be
tt

er
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Convolutional Neural Networks
for quark/gluon jet discrimination

preprocess

• Center
• Crop 
• Normalize
• Zero
• Standardize

• Red = energy of charged particles
• Green = energy of neutral particles
• Blue = number of charged particles

NN inputs

Three input layers 

Komiske, Metodiev, MDS (arXiv:1612.01551)



Matthew SchwartzFigure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

in signal over background discrimination power in a collider physics application, and also

exhibits a nontrivial maximum (at some "q) which gives an unbiased measure of the relative

performance of di↵erent discriminants [6].

The ROC and SIC curves of the jet variables and the deep convolutional network on

200GeV and 1000GeV Pythia jets are shown in Figure 5. The quark jet classificiation

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.
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Quark/Gluon CNN results

Deep Color NN 

BDT of top 5 variables

Single variables

Komiske, Metodiev, MDS (arXiv:1612.01551)
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Top-tagging
Hypothetical new heavy particles often decay to top quarks:

Looks like 6 Jets

top W

Anti-
top

W

b u

d

b

u

d
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Anti-top

For heavy KK gluons (> 1000 GeV) 
tops are ultrarelativistic (boosted)

Now it looks like 2 jets!

Tops are often boosted

W dijets

tt (SM)

m = 1TeV
E
= 500

Ge
V

E
=
500GeV

top 

W
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Typical background jets

Typical top jets Large boost (PT = 1500 GeV)

subjets within a jet
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Top-tagging
1. Look for big jets (R = 1.2) 

2. with subjets within the jet

3. Analyze the subjets
• W mass peak, top mass peak, and helicity angle

W

Hopkins top-tagger
Kaplan et al. arXiv:0806.0848

es = 0.4
eb = 0.006

two tops: background down by 20,000 
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Many ML hammers hit the top-tagging nail

Hopkins top-tagger

bette
r

arXiv:1902.09914

• Factor of 10 better 
background rejection
than traditional taggers
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Apples-to-apples top-tagging comparison

• Uses same samples
• 800k training, 200k test

• So good, limited by sample size
• GoaT: 200k/1368 = 146 bg events survive

image based

4-vector 

based

theory 

inspired

particle 

cloud

arXiv:1902.09914
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Particle net uses point cloud approach 
• Respects permutation symmetry
(other approaches include  energy flow polynomials, arXiv:1712.07124)

■uses EdgeConv
■ angular distance metric 
■ k-nearest neighbors

Gouskos and Qu: (arXiv:1902.08570)
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ATLAS top-tagging : topoDNN

raw topoclusters

high level inputs

• inputs topoclusters to deep neural network 
• also finds better performance with modern machine learning

be
tte

r
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I Look at correlations between truth and corrected jets.

I Shown below with 140 pileup events.

I Subtraction alone does not perform as well.
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Area Subtraction

Matthew Low (UChicago) Jet Cleansing August 12, 2013 13 / 23

Pileup
Pile-Up ⌘ Z0 ! µµ candidate event with NPV = 25 from 2012

S. Menke, MPP München ⇣ Pile-Up in Jets in ATLAS ⌘ BOOST, 12-16. Aug 2013, Flagstaff, AZ 7

• LHC collides protons in bunches
• 1011 protons/bunch
• Up to 200 collisions per bunch crossing

• Tracking system can resolve primary collision from secondary ”pileup” collisions
• Only charged particles can be seen this way

Pileup removal
algorithm

• Can we use machine learning to remove the pileup radiation?
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Pileup Images

Eric M. Metodiev (MIT) PUMML July 19, 2017 12 / 23

Pileup removal as regression problem

Can measure
1. Leading vertex charged particles
2. Pileup charged particles
3. Total neutral particles

Leading vertex 
neutral particles?
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Convnets for Pileup Removal
Pileup Images

Eric M. Metodiev (MIT) PUMML July 19, 2017 12 / 23

• Separate observable energy deposits into 3 images 

Input to CNN and train

Komiske, Metodiev, Nachman, MDS (arXiv:1707.08600)
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PileUp Mitigation with Machine Learning (PUMML)

Leading Vertex with Pileup PUMML PUPPI SoftKiller

Figure 3: Depictions of three randomly chosen leading jets. Shown from left to right are

the neutral leading vertex particles, with pileup added, with PUMML applied, with PUPPI

applied, and with SoftKiller applied. From examining these events, it appears that PUMML

has learned an e↵ective pileup mitigation strategy.

• Energy Correlation Functions, ECF(�)
N [41]: Specifically, we consider the logarithm

of the two- and three-point ECFs with � = 4.

Fig. 4 illustrates the distributions of several of these jet observables after applying the

di↵erent pileup subtraction methods. While these plots are standard, they do not give a per-

event indication of performance. A more useful comparison is to show the distributions of the

per-event percent error in reconstructing the true values of the observables, which are shown

in Fig. 5. To numerically explore the event-by-event e↵ectiveness, we can look at the Pearson

linear correlation coe�cient between the true and corrected values or the interquartile range

(IQR) of the percent errors. Table 1 summarizes the event-by-event correlation coe�cients

of the distributions shown in Fig. 4. Table 2 summarizes the IQRs of the distributions shown

in Fig. 5. PUMML outperforms the other pileup mitigation techniques on both of these

metrics, with improvements for jet substructure observables such as the jet mass and the

energy correlation functions.

It is important to verify that PUMML learns a pileup mitigation function which is not

overly sensitive to the NPU distribution of its training sample. Robustness to the NPU on

which it is trained would indicate that PUMML is learning a universal subtraction strategy.

– 9 –
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Truth PUMML

Truth

With 140 
piluep events

PUMML

• Excellent leading 
vertex (truth) reconstruction

With 140 
piluep events

• Excellent observable reconstruction • Excellent stability for variable piluep #

Komiske, Metodiev, Nachman, MDS (arXiv:1707.08600) Traditional approaches
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ATLAS uses conv nets  to measure MET (in simulation) 

Conv net
image regression

ATL-PHYS-PUB-2019-028
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PUPPIML: Graphnet approach

PUPPIML

PUMML

• good stability • comparable to PUMML

Martinez et al. (arXiv:1810.07988)



UNSUPERVISED LEARNING
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JUNIPR

1 GeV

500 GeV

20 GeV

nodes labeled
with

• unsupervised approach: learn probability distribution for each sample
• represent data as clustering tree
• can be used to classify or generate dPq(x) =

dn�q

dp1 · · · dpn
<latexit sha1_base64="IL5h8QTUMkLm6FOifDmQ8i/6YB8="></latexit>

Probability written as product

• each term interpretable

Andreassen, Feige, Frye, MDS 
(arXiv:1804.09720, 1906.10137)
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Visualizing discrimination power: boosted top or QCD jet?
• nodes labeled with probabilities that jet is 

top, given only info at that node

JUNIPR
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What is different?

quark vs glue

pythia vs herwig

• Length of shower important
• angular distribution early on
• energy sharing different early on 

JUNIPR
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DCTR:  Use relative weights for tuning

• includes simulation parameters q in truth data

• learns relative weight P(x, q)/P(x,q0)

Reweights as=0.1365 
distribution back to as=0.1600 

c2 is minimal for as=0.1600 

• Could be a very efficient way to tune simulations
• or to reweight simulations to data

Andreassen and Nachman 
(arXiv:1907.08209)
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OmniFold:  Unfold events

• Uses ML to learn mapping 
from generator  to  detector 

• Can then unfold any distribution  to truth level
• Previous unfolding techniques are

observable-by-observable

• Examples given used 
• Herwig as “truth” + delphes ->  “data” 
• pythia as “sim” + delphes -> “gen”
• Truth and omnifold agree

• Trying out on actual data is work in progess

Andreassen et al. (arXiv:1911.09107)
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Weak supervision
Supervised learning: pure samples of quark and gluons used
Weak learning: mixed samples of quarks or gluons used
Unsupervised learning: no labels at all, just find patterns

results that mention quark/gluon tagging, but there many more analyses that would benefit from a
tagger if a robust technique existed.

The weakly supervised classification strategy is particularly useful for quark/gluon tagging because
the fraction of quark jets for a particular set of events is well-known from parton distribution functions
and matrix element calculations while useful discriminating features have not been computed to high
accuracy and simulations often mis-model the data. To illustrate this concrete example, quark and
gluon jets are simulated and a weakly supervised classifier is trained on the generated event sample.
Unlike real data, in the simulated sample, we also know per-event labels which are used to additionally
train a fully supervised classifier. Events with 2 ! 2 quark-gluon scattering (dijet events) are simulated
using the Pythia 8.18 [16] event generator. Jets are clustered using the anti-kt algorithm [17] with
distance parameter R = 0.4 via the FastJet 3.1.3 [18] package. Jets are classified as quark- or gluon-
initiated by considering the type of the highest energy quark or gluon in the full generator event
record that is inside a 0.3 radius of the jet axis. For simplicity, one transverse momentum range is
considered: 45 GeV < pT < 55 GeV. Additionally, there is a pseudo-rapidity requirement that mimics
the usual detector acceptance for charged particle tracking: |⌘| < 2.1. Heuristically, gluons have twice
as much strong-force charge as quark jets, resulting in more constituents and a broader radiation
pattern. Therefore, the following variables are useful for quark/gluon discrimination: the number of
jet constituents n, the first radial moment in pT (jet width) w, and the fraction of the jet pT carried
by the leading anti-kT R = 0.1 subjet f0. The constituents i considered for computing n and w are
the hadrons in the jet with pT > 500 MeV.

(a) (b)

Figure 3: Comparison of ROC curves for quark/gluon jet discrimination using a fully supervised clas-
sifier or a weakly supervised classifier. In (a) the fully and weakly supervised classifiers are trained on
identical simulated data and evaluated on a test sample drawn from the same population. The weakly
supervised classifier matches the performance of the fully supervised one. The curves corresponding
to the three input observables used as discriminant are shown as reference. In (b), the fully supervised
classifier (blue line) is trained on a labeled simulated training sample. The weakly supervised classifier
(red line) is trained on an unlabeled pseudo-data training sample. In both cases, the performance is
evaluated on the same pseudo-data test sample. The ratios to the performance of a fully supervised
classifier trained on a labeled pseudo-data sample are shown in the bottom pad.

A weakly supervised classifier with one hidden layer of size 30 is trained by considering 12 bins
of the distribution of the absolute di↵erence in pseudorapidity between the two jets [19]. The propor-

– 5 –

Multiplicity
Jet width
Hard subjet

• Weak learning works
with three Q/G discriminants

Weakly supervised works as well as
fully supervised

better

Dery at al. (arXiv:1702.00414)
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Jet images + weak supervision

• Works as well  as with full supervision
• Labels not needed even for complex inputs

MDS, Komiske, Metodiev, Nachman (arXiv:1801.10158)

Fully supervised

Weak supervision
(Mixed samples)

Weak supervision is a breakthrough for particle physics: 
Can learn complex discrimination directly from data

be
tt

er



DECORRELATION
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Adversarial networks
Louppe, Kagan, Cranmer (arXiv:1611.01046)
Shimmin et al. (arXiv:1703.03507)

on the jet pT, which shows some small pT-dependent
e↵ects, but no large features. As an alternative
strategy, we trained a network using an adversar-
ial strategy with respect to log(m/pT), which more
closely mimics the approach used in Ref. [9]; the
training succeeded in finding a network with a flat
response in log(m/pT), but the distortion in jet mass
was much more significant. In principle, it is possi-
ble to use the adversary to enforce a two-dimensional
decorrelation, but since the pT-dependence is not se-
vere here, we leave this for future study.
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FIG. 4. Signal e�ciency and background rejection
(1/e�ciency) for varying thresholds on the outputs of
several jet-tagging discriminants: traditional networks
trained to optimize classification, networks trained with
an adversarial strategy to optimize classification while
minimizing impact on jet mass, the unmodified ⌧21, and
the two DDT-modified variables ⌧ 0

21, and ⌧ 00
21. The signal

samples have mZ0 = 100 GeV for this example. Gener-
alization to other masses is shown in Sec. VII.

V. STATISTICAL INTERPRETATION

The ability to discriminate jets due the hadronic
decay of a boosted object from those due to a quark
or gluon is an important feature of a jet substruc-
ture tagging tool, but as discussed above it is not the
only requirement. Due to the necessity of accurately
modeling the background, it is desirable that the jet
tagger avoid distortion of the background distribu-
tion. Simpler background shapes are especially pre-
ferred because they allow for robust estimates that
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FIG. 5. Top left, relationship between jet mass and neu-
ral network output in background events for a network
trained to optimize classification compared to an adver-
sarial network trained to optimize classification while
minimizing dependence on jet mass. Top right, rela-
tionship between jet mass and jet substructure variable
⌧21 and the DDT-modified ⌧ 0

21 and ⌧ 00
21 which attempt

to minimize dependence on jet mass. Bottom left, pro-
file of neural network output versus jet mass for the ad-
versarial trained network with varying jet pT thresholds.
Bottom right, contour plot of neural network output ver-
sus jet mass in background events for the adversarially-
trained network. The signal sample used in training has
mZ0 = 100 GeV; generalization to other masses is shown
in Sec. VII.

are constrained by the sidebands; backgrounds that
can be modeled with fewer parameters and inflec-
tions avoid degeneracy with signal features, such as
a peak.

Fig. 5 shows qualitatively that the adversarial net-
work’s response is not strongly dependent on jet
mass. But a quantitative assessment is more dif-
ficult. Mass-independence is not in itself the goal;
instead, we seek reduced dependence on knowledge
of the background shape and reduced sensitivity to
the systematic uncertainties that tend to dilute the
statistical significance of a discovery.

However, our lack of knowledge of the true back-
ground model in general also makes it non-trivial to
rigorously define and estimate the background un-
certainty. In practice, experimentalists use an as-
sumed functional form, with parameters constrained
by background-dominated sidebands to predict the
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• Train network on signal and background
• Can sculpt background to look like signal

No longer trust bump Discovery significance 
reduced

Adversarial network

Tries to separate
signal from background

Tries to guess mass 
from network 1 output
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FIG. 11. Profile of the paramterized NN responses
to background versus jet mass, where the parameterized
network was evaluated at di↵erent Z0 mass hypotheses.
Top shows the response of the adversarially-trained clas-
sifier, which minimizes correlation with jet mass; bottom
shows the response of a network trained in the traditional
manner, to optimize classification accuracy.

able of interest, the jet mass. This allows the classi-
fier to enhance signal to noise ratio while minimiz-
ing the tendency of the background distribution to
morph into a shape which is degenerate with the ob-
servable signal. When the background cannot be re-
liably predicted a priori, as is often the case, it is im-
portant to be able to constrain its rate in sidebands
surrounding the signal region. Therefore, avoiding
such degeneracy is critical to performing successful
measurements.

We note that, from Fig. 8, it is clear that ap-
plying su�ciently tight cuts to the adversarial clas-
sifier causes significant background morphing, par-
ticularly when compared to the ⌧21-based discrimi-
nants. However, the solid lines of Fig. 9 illustrate
the case where the background rate is uncertain
and hence benefits from sideband constraints. We
see that the optimal significance is realized for the
adversarial classifier at a relatively high signal e�-
ciency of roughly 90%, where the background mor-
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FIG. 12. The AUC metric (Area Under the Curve) for
NNs parameterized in mZ0 and tested at several values
(both traditional and adversarial training techniques),
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FIG. 13. Discovery significance for a hypothetical sig-
nal after optimizing thresholds on the output of networks
parameterized in mZ0 trained with an adversarial or tra-
ditional approaches, compared to thresholds on ⌧21, ⌧

0
21

and ⌧ 00
21 or to placing no threshold. Significance is eval-

uated for the case of 50% background uncertainty.

phing is quite limited (Fig. 7). Hence, the adversar-
ial classifier achieves its goal of optimizing the trade-
o↵ between correlation and discrimination power.
We also note that the decorrelation could poten-
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Decorrlates NN output
from mass

Discovery Significance
Improved!

Penalty in loss function 51
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ABCDisCo: ML the ABCD method
Kaciecka, Nachman, MDS, Shih (to appear..)

ABCD method:
• Standard experimental sideband technique
• Estimate background in region A via 𝑁! =

"!""
"#

• Requires two features 𝑓 and 𝑔 to be uncorrelated
• E.g. 𝑓 = mass and 𝑔 = rapidity

• Single DisCo

𝑓 is fixed (e.g. mass) 𝑔 is learned

• Double DisCo

𝑓 and 𝑔 are learned

Top tagging RPV squark search

Works great! 



Matthew Schwartz

Conclusions
• Modern machine learning is growing rapidly
• “Traditional” collider physics is dead

• Much progress on standard nails 
• top-tagging
• quark/gluon
• anomaly detection

• State-of-the-art methodology
• New observables (ML top tagging…)
• New data representations (JUNIPR, point clouds …)
• Improving experimental analyses (Omnifold, ABCDisCo..)

• See https://iml-wg.github.io/HEPML-LivingReview for a comprehensive list of papers

• Past: apply hammers to nails • Future: learn some new physics

https://iml-wg.github.io/HEPML-LivingReview/

