Dominating surface-group representations into $PSL_2(\mathbb{C})$ in the relative representation variety

Weixu Su

Fudan University

2020/08/17

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

1. Surface-group representations into $\mathrm{PSL}_2(\mathbb{C})$

 $S_{g,k}$: oriented surface of genus $g \ge 0$ with $k \ge 1$ punctures, labelled by p_1, \dots, p_k .

(We assume that 2g - 2 + k > 0.)

- Π : the fundamental group of $S_{g,k}$.
- $\rho: \Pi \to \mathrm{PSL}_2(\mathbb{C})$: non-Fuchsian representation.

Theorem (Gupta-Su, arXiv:2003.13572) There exists a Fuchsian representation that strictly dominates ρ in the simple length-spectra and preserves the boundary lengths.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥ ♥

For a fixed k -tuple $\mathcal{L} = (l_1, l_2, \dots, l_k) \in \mathbb{R}_{\geq 0}^k$, the *relative* representation variety for the surface-group Π is

 $\mathsf{Hom}(\Pi, \mathcal{L}) = \{ \rho : \Pi \to \mathsf{PSL}_2(\mathbb{C}) \mid I_\rho(\gamma_i) = I_i \}$

where γ_i is the loop around p_i .

A Fuchsian representation $j \in \text{Hom}(\Pi, \mathcal{L})$ is said to strictly dominate a representation $\rho \in \text{Hom}(\Pi, \mathcal{L})$ if

$$\sup_{\gamma} \frac{\mathit{l}_{\rho}(\gamma)}{\mathit{l}_{j}(\gamma)} < 1$$

where γ varies over all non-peripheral essential simple closed curves on $S_{g,k}$.

Remarks:

- (Thurston) A Fuchsian representation cannot have a strictly dominating Fuchsian representation in the same relative representation variety.
- (Gueritaud-Kassel-Wolff) Closed surface-group representations into PSL₂(ℝ), using "unfolding" contruction.
- (Deroin-Tholozan) More general domination result for representations of a closed surface-group into the isometry group of smooth Riemannian CAT(−1) spaces, using the theory of harmonic maps.

Our theorem is independently proved by Sagman using harmonic maps.

Our proof avoids harmonic maps, which relies instead on the pleated-surface interpretation of the Fock-Goncharov coordinates of a framed representation into $PSL_2(\mathbb{C})$, as exploited in the work of Gupta-Mj and Gupta.

The idea is to straightening the pleated plane in \mathbb{H}^3 determined by the Fock-Goncharov coordinates of a framed representation, and applying strip-deformations. (Thurston, Papadopoulos-Theret, Gueritaud-Kassel-Wolff, Danciger-Gueritaud-Kassel)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の < @

S. Gupta and W. Su

Corollary

S. Gupta and W. Su Let $\rho \in \text{Hom}(\Pi, \mathcal{L})$ be a representation such that the length of each peripheral curve is bounded above by L. Then there exists a pants decomposition of $S_{g,k}$ such that the ρ -lengths of the pants curves are less than the Bers constant B(g, k, L).

The above result improves on a result of Whang.

Conjecture

A generic representation $\rho : \Pi \to \mathrm{PSL}_n(\mathbb{C})$ has a strictly dominating Hitchin representation $\Pi \to \mathrm{PSL}_n(\mathbb{R})$ in the same relative representation variety.

A closely related "Metric Domination Conjecture" in the case of a closed surface is proposed by Dai-Li.

2. Framed representations and pleated laminations

Let $\rho \in Hom(\Pi, \mathcal{L})$ is a non-Fuchsian representation.

Definition. A representation $\rho : \Pi \to \mathsf{PSL}_2(\mathbb{C})$ is said to be degenerate if either

(a) the image of ρ has a global fixed point on \mathbb{CP}^1 , and $\rho(\gamma_i)$ is parabolic or identity for each peripheral loop γ_i , or

(b) the image of ρ preserves a two-point set on \mathbb{CP}^1 , which is fixed by each $\rho(\gamma_i)$ (where $1 \le i \le k$).

A representation is then said to be non-degenerate if it is not degenerate. In this talk we shall assume that ρ is non-degenerate.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥ ♥

Given a non-degenerate representation ρ , one can construct a non-degenerate framing β by assigning to each puncture one of the fixed points of the holonmy (monodromy) around it.

To define β , let us fix a finite-area hyperbolic metric on $S_{g,k}$ such that the punctures are cusps. Passing to the universal cover, the Farey set F_{∞} is the points in the ideal boundary that are the lifts of the punctures.

Note that F_{∞} is equipped with an action of the surface-group Π . A ρ -equivariant map $\beta : F_{\infty} \to \mathbb{C}P^1$ is called a frame. The pair (ρ, β) is called a framed representation.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition. A framed representation (P, β) is said to be degenerate if either of the following conditions hold: (1) The image of the map β is a single point $p \in CP'$, the S. Gupta and W Su monodromy around each puncture is parabolic with fixed point p or the identity element, and p(y) fixes p for each $y \in \Pi$, or (2) The image of the map β is a pair of points $\{p-, p+\} \in CP',$ that is fixed by the monodromy around each puncture, and preserved (i.e. fixed or permuted) by $\rho(z)$ for each $z \in \Pi$.

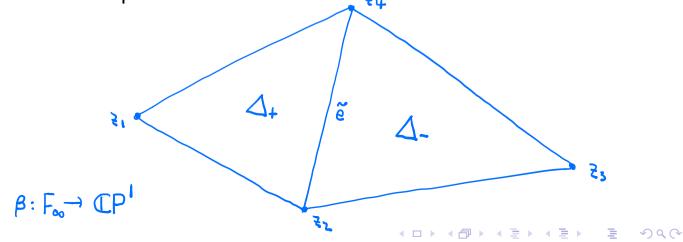
Given a non-degenerate representation p, one can construct a non-degenerate framing β by assigning to each puncture one of the fixed points of the holonmy/monodromy around it.

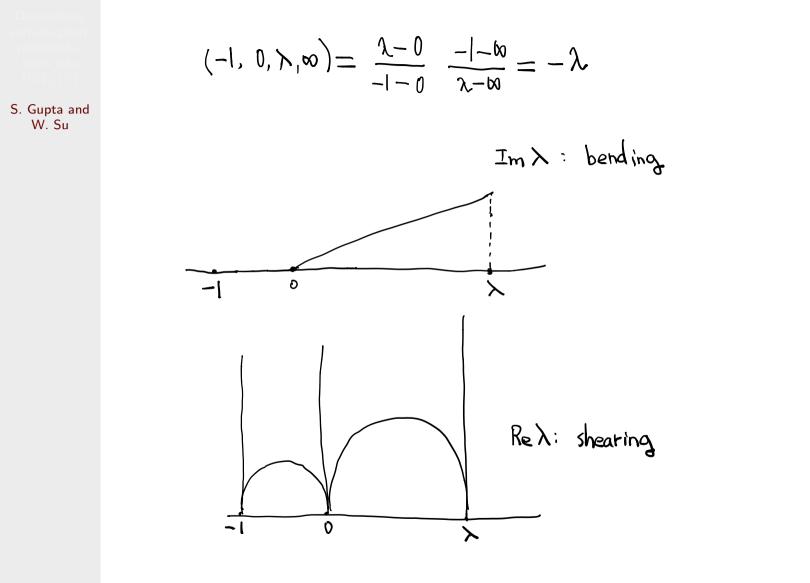
Fock-Goncharov coordinates: cross-ratios

S. Gupta and W. Su

Theorem (Allegretti-Bridgeland). For a non-degenerate framed representation (ρ, β) , there is an ideal triangulation T such that the Fock-Goncharov coordinates for (ρ, β) are well-defined and non-zero.

A geometric interpretation of the Fock-Goncharov coordinates as Pleated planes in \mathbb{H}^3 :





3. Proof of the theorem

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● のへで

(The work of Gupta:)

S. Gupta and W. Su

- (ρ, β) : (nondegenerate) framed representation.
- T: ideal triangulation.
- $\{c(e)\}_{e \in T} \in (\mathbb{C}^*)^{|T|}$: Fock-Goncharov coordinates.
- $\Psi: \widetilde{S} \to \mathbb{H}^3$: ρ -equivariant pleated plane.
- $\widehat{\Psi}: \widetilde{S} \to \mathbb{H}^3$: straightening of Ψ .
- $j_0: \Pi \to \mathsf{PSL}_2(\mathbb{R})$: Fuchsian representation induced by $\widehat{\Psi}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ めのの

- $\widehat{S} = \mathbb{H}^2/j_0(\Pi)$
- λ: pleated measured lamination on Ŝ. Each geodesic boundary component of Ŝ has at least one leaf of λ spiralling onto it.

Our first observation is:

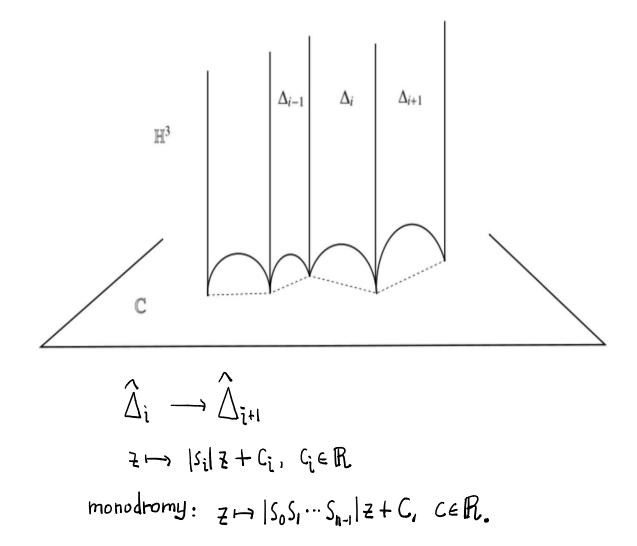
Lemma

The j_0 -length of the boundary curve around the *i*-th puncture p_i is equal to l_i , for $1 \le i \le k$. That is, $j_0 \in \text{Hom}(\Pi, \mathcal{L})$ as well.

This implies that the Fuchsian representation j_0 weakly dominate ρ :

$$\sup_{\gamma} rac{\mathit{l}_{
ho}(\gamma)}{\mathit{l}_{j_0}(\gamma)} \leq 1$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の Q @

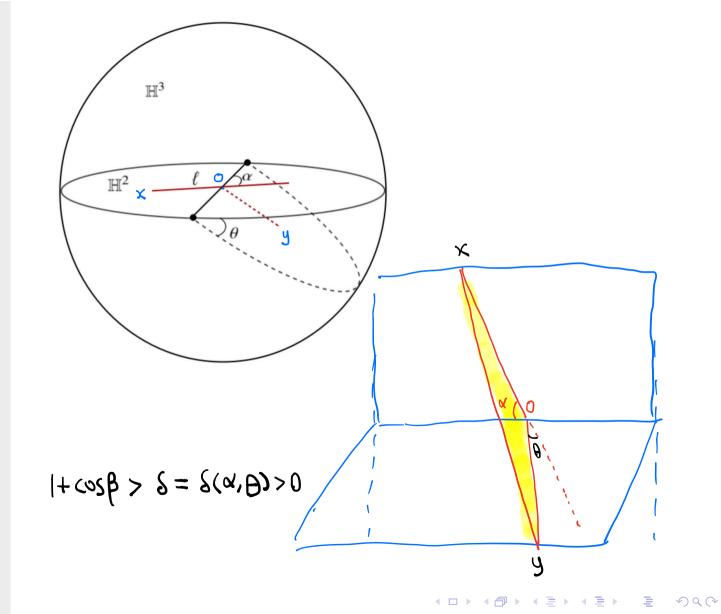


A geometric lemma to quantify how the translation length of a non-peripheral loop changes under pleating:

Lemma

For any $L > 0, \alpha \in (0, \pi/2)$ and $\theta \in (-\pi, \pi)$, there is a constant C > 0 such that the following holds:

Let \mathbb{H}^2 be isometrically embedded as the equatorial plane in \mathbb{H}^3 , containing a geodesic segment ℓ and a bi-infinite geodesic line γ , such that the two intersect at an angle at least α , and ℓ has length at least L on either side of γ . Let $\hat{\ell}$ be the piecewise-geodesic in \mathbb{H}^3 obtained when the equatorial plane is pleated along γ by a pleating angle at least θ . Then the distance in \mathbb{H}^3 between the endpoints of $\hat{\ell}$ is less than $|\ell| - C$.



Lemma (Wolpert)

Given a hyperbolic surface X of finite type, with finitely many geodesic boundaries and cusps, there exists a D > 0 such that any non-peripheral simple closed geodesic γ on X remains at least distance D away from the geodesic boundary components, and the standard horoball neighborhoods of the cusps.

Let χ be any simple closed geodesic on S. We can decompose χ into a finite union of geodesic arcs $\{y_j\}$ such that each y_j has endpoints on λ , and has its interior disjoint from λ . Since γ does S. Gupta and W. Su not cross some collar neighborhood of ∂S and a horodiskneighborhoods around the cusps. As a result, χ j satisfies the hypotheses of Lemma for some L, α and θ (which are all independent of the choice of χ). Note that the length of χ is uniformly comparable to L. We denote by $|\chi| = O(L)$. Then $\frac{l_{\rho}(\gamma)}{l_{j_{o}}(\gamma)} \leq \frac{\sum_{i=1}^{N} |\gamma_{i}| - NC}{\frac{\sum_{i=1}^{N} |\gamma_{i}|}{\sum_{i=1}^{N} |\gamma_{i}|}} = 1 - \frac{C}{O(L)}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ●

Proposition

For any simple closed curve $\gamma \in \Pi$ that intersects λ on \hat{S} , the j_0 -length of γ is strictly greater than its ρ -length, such that

$$\sup_{\gamma}rac{l_{
ho}(\gamma)}{l_{j_0}(\gamma)} < 1$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ のへで

when γ varies over all simple closed curves on $S_{g,k}$ that intersect λ .

If λ is filling, then j_0 strictly dominates ρ .

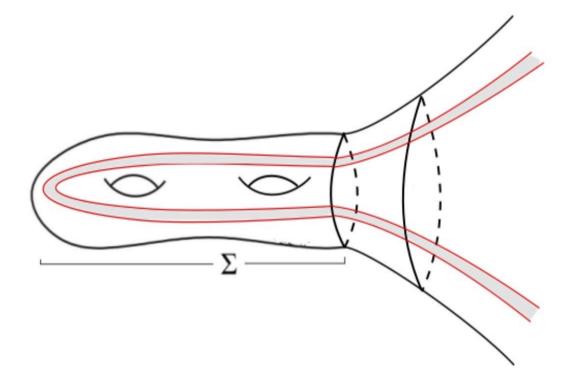
Non-filling case: modify j_0 to a strictly dominating representation j using *strip-deformations*.

Proposition

Given a hyperbolic surface Σ with non-empty geodesic boundary, there exists a hyperbolic surface Σ' homeomorphic to Σ , such that

$$\sup_{\gamma}rac{\mathit{I}_{\Sigma}(\gamma)}{\mathit{I}_{\Sigma'}(\gamma)} < 1$$

where $I_X(\gamma)$ denotes the hyperbolic length of the (geodesic representative of) the curve γ on the hyperbolic surface X, and γ varies over all simple closed curves, including the boundary components.



Each connected component Σ^0 of $\widehat{S} \setminus \lambda$ (that is not simply-connected) is a crowned surface.

The convex core of Σ^0 is either a hyperbolic surface Σ with geodesic boundary, or a simple closed geodesic σ .

 $R = \widehat{S} \setminus (\Sigma_1 \cup \Sigma_2 \cup \cdots \cup \Sigma_k \cup \sigma_1 \cup \sigma_2 \cup \cdots \cup \sigma_l)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥ ♥

