Negative curvature property of a Poisson–Kähler fibration – Joint work with Xue-yuan Wan

Xu Wang, Norwegian University of Science and Technology

17th Aug 2020; KIAS—Teichmüller Theory and related topics

Problem (Negative curvature problem (NCP))

Let $p: \mathcal{X} \to \mathcal{B}$ be a proper holomorphic submersion between two Kähler manifolds. Assume that the Kodaira–Spencer map is injective. Does there exist a Kähler metric, say ω , on \mathcal{B} satisfying the following negative curvature (NC) property ?

Problem (Negative curvature problem (NCP))

Let $p: \mathcal{X} \to \mathcal{B}$ be a proper holomorphic submersion between two Kähler manifolds. Assume that the Kodaira–Spencer map is injective. Does there exist a Kähler metric, say ω , on \mathcal{B} satisfying the following negative curvature (NC) property ?

Property (NC property)

The holomorphic sectional curvature of ω is bounded above by a negative constant and the holomorphic bisectional curvature of ω is non-positive.

Problem (Negative curvature problem (NCP))

Let $p: \mathcal{X} \to \mathcal{B}$ be a proper holomorphic submersion between two Kähler manifolds. Assume that the Kodaira–Spencer map is injective. Does there exist a Kähler metric, say ω , on \mathcal{B} satisfying the following negative curvature (NC) property ?

Property (NC property)

The holomorphic sectional curvature of ω is bounded above by a negative constant and the holomorphic bisectional curvature of ω is non-positive.

Remark (Known cases)

Riemann surface case and Calabi-Yau case.

(1) dim $X_t = 1$, ω : Weil-Petersson metric. NC is known as the *Ahlfors theorem* proved by Ahlfors, Royden, Wolpert etc.

(2) dim $X_t = \dim \mathcal{B} = 1$ and \mathcal{B} is compact: Kodaira-fibration satisfying $g(X_t) \ge 3$, $g(\mathcal{B}) \ge 2$.

(3) K_{X_t} : Hermitian flat, NC follows from variation of Hodge theory (for trivial K_{X_t}) and Higgs bundle package (for general case).

(4) $K_{X_t} > 0$ and dim $\mathcal{B} = 1$: To-Yeung, Schumacher, Berndtsson-Paun-Wang (iterated Kodaira-Spencer map).

(5) weak version of NCP (existence of Viehweg–Zuo sheaf and hyperbolicity): Viehweg-Zuo, Popa-Schnell, Deng etc.

Our main result is based on (3), (4), the background is Burns' local NC property along the leaves of a Monge–Ampère foliation.

< 同 > < 三 > < 三 > 、

Definition (also called Monge-Ampère foliation (fibration))

A proper holomorphic submersion $p : (\mathcal{X}, \omega_{\mathcal{X}}) \to (\mathcal{B}, \omega_{\mathcal{B}})$ between two Kähler manifolds is said to be Poisson–Kähler if

$$(\omega_{\mathcal{X}} - p^* \omega_{\mathcal{B}})^{n+1} \equiv 0 \tag{1}$$

on \mathcal{X} , where n denotes the dimension of the fibers.

Definition (also called Monge-Ampère foliation (fibration))

A proper holomorphic submersion $p : (\mathcal{X}, \omega_{\mathcal{X}}) \to (\mathcal{B}, \omega_{\mathcal{B}})$ between two Kähler manifolds is said to be Poisson–Kähler if

$$(\omega_{\mathcal{X}} - \rho^* \omega_{\mathcal{B}})^{n+1} \equiv 0 \tag{1}$$

on \mathcal{X} , where n denotes the dimension of the fibers.

Theorem (Theorem A)

Poisson-Kähler fibration satisfies the nagative curvature property.

Definition (also called Monge-Ampère foliation (fibration))

A proper holomorphic submersion $p : (\mathcal{X}, \omega_{\mathcal{X}}) \to (\mathcal{B}, \omega_{\mathcal{B}})$ between two Kähler manifolds is said to be Poisson–Kähler if

$$(\omega_{\mathcal{X}} - \rho^* \omega_{\mathcal{B}})^{n+1} \equiv 0 \tag{1}$$

< 同 > < 国 > < 国 >

on \mathcal{X} , where n denotes the dimension of the fibers.

Theorem (Theorem A)

Poisson-Kähler fibration satisfies the nagative curvature property.

Remark

Theorem A is also proved independently without using Higgs bundles by Berndtsson. We use the same Weil–Petersson type metric but different approaches for the curvature computation.

Examples

(1) Trivial fibrations: complexification of Kähler metric geodesics, holomorphic curves in the complex Banach manifold

$$\{f \in \mathrm{Diff}^k(X,\omega) : (f^{-1})^*\omega \text{ is Kähler}\}.$$

(2) Non-trivial fibrations: torus family with Kähler total space. **Family of elliptic curves**: For each t in the upper half plane \mathbb{H} ,

$$X_t := \mathbb{C}/(\mathbb{Z} + t\mathbb{Z}).$$

The $\mathbb R$ -linear quasi-conformal mapping $f^t:\mathbb C o\mathbb C$ defined by

$$f^{t}(1) = 1, \quad f^{t}(t) = i,$$
 (2)

naturally induces a map, still denoted by f^t , from X_t to X_i . Put

$$f: \mathcal{X} \to \mathbb{H} \times X_i, \quad f(t, \zeta) := (t, f^t(\zeta)),$$

where $\mathcal{X}:=\{X_t\}_{t\in\mathbb{H}}\simeq (\mathbb{H} imes\mathbb{C})/\mathbb{Z}^2.$

Xu Wang, Norwegian University of Science and Technology

Family of elliptic curves

Put

$$\omega := f^*(\operatorname{idz} \wedge d\overline{z}), \quad A := \frac{\zeta - \overline{\zeta}}{\overline{t} - t},$$

we compute

$$\omega = \frac{i}{\operatorname{Im} t} \left(d\zeta \wedge d\overline{\zeta} + A \, d\zeta \wedge d\overline{t} + A \, dt \wedge d\overline{\zeta} + A^2 dt \wedge d\overline{t} \right).$$

Thus ω is of degree-(1,1) satisfying $\omega^2=0$ and

$${\sf p}:({\mathcal X},\omega) o \mathbb{H}$$

is Poisson–Kähler, moreover the natural $SL_2(\mathbb{Z})$ action

$$SL_2(\mathbb{Z})
ightarrow \begin{pmatrix} a & b \\ c & d \end{pmatrix} : (t,\zeta) \mapsto \left(\frac{at+b}{ct+d}, \frac{\zeta}{ct+d} \right),$$

• • = • • = •

preserves ω .

Definition (Horizontal vector fields)

Let $p: (\mathcal{X}, \omega) \to \mathcal{B}$ be a relative Kähler fibration. Vector field V on \mathcal{X} is horizontal if

$$\omega(V,W)=0$$

for W tangent to the fibers.

Definition (Horizontal vector fields)

Let $p: (\mathcal{X}, \omega) \to \mathcal{B}$ be a relative Kähler fibration. Vector field V on \mathcal{X} is horizontal if

$$\omega(V,W)=0$$

for W tangent to the fibers.

Definition (Horizontal lift)

A horizontal V is the horizontal lift of $v \in T_{\mathcal{B}}$ if $p_*V = v$.

Definition (Horizontal vector fields)

Let $p: (\mathcal{X}, \omega) \to \mathcal{B}$ be a relative Kähler fibration. Vector field V on \mathcal{X} is horizontal if

$$\omega(V,W)=0$$

for W tangent to the fibers.

Definition (Horizontal lift)

A horizontal V is the horizontal lift of $v \in T_{\mathcal{B}}$ if $p_*V = v$.

Remark (Integrability of horizontal distribution)

The horizontal distribution is integrable iff the horizontal lift $\{V_j\}$ of local basis $\{\partial/\partial t^j\}$ of TB satisfies

$$[V_j, V_k] = [V_j, \overline{V_k}] = 0.$$

Xu Wang, Norwegian University of Science and Technology Pois

Proposition (Integrability VS Poisson–Kähler)

The horizontal distribution of a relative Kähler fibration $p: (\mathcal{X}, \omega) \rightarrow \mathcal{B}$ is integrable iff there is a real d-closed smooth (1, 1)-form α on \mathcal{B} such that

$$(\omega - p^* \alpha)^{n+1} \equiv 0.$$

Proposition (Integrability VS Poisson-Kähler)

The horizontal distribution of a relative Kähler fibration $p: (\mathcal{X}, \omega) \rightarrow \mathcal{B}$ is integrable iff there is a real d-closed smooth (1, 1)-form α on \mathcal{B} such that

$$(\omega - p^* \alpha)^{n+1} \equiv 0.$$

Proposition (Poisson-Kähler=Poisson+Kähler)

A Kähler fibration $p: (\mathcal{X}, \omega_{\mathcal{X}}) \to (\mathcal{B}, \omega_{\mathcal{B}})$ is a Poisson map iff it is Poisson-Kähler.

Proposition (Integrability VS Poisson-Kähler)

The horizontal distribution of a relative Kähler fibration $p: (\mathcal{X}, \omega) \rightarrow \mathcal{B}$ is integrable iff there is a real d-closed smooth (1, 1)-form α on \mathcal{B} such that

$$(\omega - p^* \alpha)^{n+1} \equiv 0.$$

Proposition (Poisson-Kähler=Poisson+Kähler)

A Kähler fibration $p: (\mathcal{X}, \omega_{\mathcal{X}}) \to (\mathcal{B}, \omega_{\mathcal{B}})$ is a Poisson map iff it is Poisson-Kähler.

Remark (Poisson map)

"Poisson map" means $\{p^*f, p^*g\}_{\omega_{\mathcal{X}}} = p^*\{f, g\}_{\omega_{\mathcal{B}}}$ for all smooth functions f, g on \mathcal{B} .

・ 一 マ ト ・ 日 ト ・

Non-harmonic Weil-Petersson metric

 $p: (\mathcal{X}, \omega) \to \mathcal{B}$ relative Kähler fibration, V horizontal lift of $\partial/\partial t$. We call $\kappa := (\overline{\partial}V)|_{X_t}$ the ω -Kodaira–Spencer tensors on X_t .

→ < Ξ → <</p>

Non-harmonic Weil-Petersson metric

 $p: (\mathcal{X}, \omega) \to \mathcal{B}$ relative Kähler fibration, V horizontal lift of $\partial/\partial t$. We call $\kappa := (\overline{\partial}V)|_{X_t}$ the ω -Kodaira–Spencer tensors on X_t .

Definition (Non-harmonic Weil-Petersson metric)

We call

$$|\partial/\partial t|_{DF}^2 := ||\kappa||^2 := \int_{X_t} |\kappa|_{\omega_t}^2 \frac{\omega_t^n}{n!}, \quad \omega_t := \omega|_{X_t},$$

the non-harmonic Weil–Petersson metric on \mathcal{B} .

Non-harmonic Weil-Petersson metric

 $p: (\mathcal{X}, \omega) \to \mathcal{B}$ relative Kähler fibration, V horizontal lift of $\partial/\partial t$. We call $\kappa := (\overline{\partial}V)|_{X_t}$ the ω -Kodaira–Spencer tensors on X_t .

Definition (Non-harmonic Weil-Petersson metric)

We call

$$|\partial/\partial t|_{DF}^2 := ||\kappa||^2 := \int_{X_t} |\kappa|_{\omega_t}^2 \frac{\omega_t^n}{n!}, \quad \omega_t := \omega|_{X_t},$$

the non-harmonic Weil–Petersson metric on \mathcal{B} .

Remark

In the above definition, we do NOT use the harmonic part of κ . We use the notation "DF" since it reduces to the Donaldson-Fujiki metric in the Poisson-Kähler case.

Variation of non-harmonic Weil-Petersson metrics

Main idea: For smooth family of form u^t , denote by

 $||u||(t) := ||u^t||$

the fiberwise L^2 -norm. If $d\omega = 0$ then

$$||u||_t^2 = (D_t u, u) + (u, D_{\overline{t}} u), \quad D_t := [\partial, \delta_V], \quad D_{\overline{t}} := [\overline{\partial}, \delta_{\overline{V}}],$$

moreover, $D_{\bar{t}}u = 0$ ({ u^t } is a holomorphic section) implies

$$||u||_{t\bar{t}}^2 = ||D_t u||^2 - (\Theta_{t\bar{t}} u, u).$$

Recall that if D is the Chern connection of a bundle V then it induces a Chern connection **D** on EndV by $\mathbf{D}f := [D, f]$. In our case, think of κ as an endomorphism

 $\kappa \cdot u := [\overline{\partial}, \delta_V] u$, known as the Kodaira-Spencer action

we know that $[D_{\overline{t}},\kappa]=0$ implies that

$$||\kappa||_{t\overline{t}}^2 = ||[D_t,\kappa]||^2 - ([\Theta_{t\overline{t}},\kappa],\kappa).$$

• • = • • = •

Variation of non-harmonic Weil-Petersson metrics

 $[D_{\overline{t}},\kappa] = 0$??, since $D_{\overline{t}} = [\overline{\partial},\delta_{\overline{V}}], \ \kappa = [\overline{\partial},\delta_{V}]$, we know that $[D_{\overline{t}},\kappa]$ is the degree (-1,1) part of

$$[L_{\bar{V}}, L_V] = L_{[V,\bar{V}]},$$

it vanishes iff $[V, \overline{V}] = 0$, i.e. $\{V, \overline{V}\}$ is integrable (more or less equivalent to Poisson–Kähler). Moreover, denote by ∇ the connection defined by the full Lie derivatives, i.e.

$$abla = D + heta + ar{ heta}, \ \ heta := dt \otimes \kappa.$$

Variation of non-harmonic Weil-Petersson metrics

 $[D_{\overline{t}},\kappa] = 0$??, since $D_{\overline{t}} = [\overline{\partial},\delta_{\overline{V}}], \ \kappa = [\overline{\partial},\delta_{V}]$, we know that $[D_{\overline{t}},\kappa]$ is the degree (-1,1) part of

$$[L_{\bar{V}}, L_V] = L_{[V,\bar{V}]},$$

it vanishes iff $[V, \overline{V}] = 0$, i.e. $\{V, \overline{V}\}$ is integrable (more or less equivalent to Poisson–Kähler). Moreover, denote by ∇ the connection defined by the full Lie derivatives, i.e.

$$abla = D + \theta + \overline{ heta}, \ \ heta := dt \otimes \kappa.$$

Observation (Higgs flat=integrable=Poisson-Kähler)

 ∇ is Higgs flat iff the horizontal distribution is integrable iff p is Poisson-Kähler up to a factor from the base, in which case the Higgs package gives the negative curvature properties.

Higgs package

Higgs description explains

$$||\kappa||_{t\bar{t}}^2 = ||[D_t,\kappa]||^2 - ([\Theta_{t\bar{t}},\kappa],\kappa),$$

and gives $\Theta_{t\bar{t}} = -[\kappa,\bar{\kappa}]$, thus

$$||\kappa||_{t\bar{t}}^2 \geq ([[\kappa,\bar{\kappa}],\kappa],\kappa) = ||[\kappa,\bar{\kappa}]||^2 \geq \frac{2||\kappa||^4}{n|X_t|},$$

gives negativity of holomorphic sectional curvature. Similarly,

$$\frac{\partial^2}{\partial t^j \partial \overline{t}^j} ||\kappa_l||^2 \ge \frac{2 |(\kappa_l, \kappa_j)|^2}{n|X_t|},$$

• • = • • = •

gives seminegativity of holomorphic bisectional curvature.

Higgs package

Higgs description explains

$$||\kappa||_{t\bar{t}}^2 = ||[D_t,\kappa]||^2 - ([\Theta_{t\bar{t}},\kappa],\kappa),$$

and gives $\Theta_{t\bar{t}} = -[\kappa,\bar{\kappa}]$, thus

$$||\kappa||_{t\bar{t}}^2 \geq \left([[\kappa,\bar{\kappa}],\kappa],\kappa\right) = ||[\kappa,\bar{\kappa}]||^2 \geq \frac{2||\kappa||^4}{n|X_t|},$$

gives negativity of holomorphic sectional curvature. Similarly,

$$\frac{\partial^2}{\partial t^j \partial \overline{t}^j} ||\kappa_I||^2 \geq \frac{2 |(\kappa_I, \kappa_j)|^2}{n|X_t|},$$

gives seminegativity of holomorphic bisectional curvature.

Remark (General relative Kähler fibration)

The computation also applies to general cases (with some extra curvature terms).

Xu Wang, Norwegian University of Science and Technology Poisson-Kähler fibration

Theorem

Let *E* be a holomorphic vector bundle over a compact Kähler manifold *B*. Let $P(E) := (E \setminus \{0\})/\mathbb{C}^*$ be the projectivization of *E*. Then the followings are equivalent:

- 1) (E, h) is projectively flat, i.e. there exists a hermitian metric h on E such that $\Theta(E, h) = \alpha \otimes Id_E$;
- 2) the natural projection $P(E) \rightarrow B$ is Poisson–Kähler.

In case dim $\mathcal{B} = 1$, both are equivalent to polystability of E.

Theorem

Let *E* be a holomorphic vector bundle over a compact Kähler manifold *B*. Let $P(E) := (E \setminus \{0\})/\mathbb{C}^*$ be the projectivization of *E*. Then the followings are equivalent:

- 1) (E, h) is projectively flat, i.e. there exists a hermitian metric h on E such that $\Theta(E, h) = \alpha \otimes Id_E$;
- 2) the natural projection $P(E) \rightarrow B$ is Poisson–Kähler.

In case dim $\mathcal{B} = 1$, both are equivalent to polystability of E.

Remark

Aikou proved that E admits a projectively flat Hermitian metric iff $P(E) \rightarrow B$ is flat Kähler, i.e. locally biholomorphic to product Kähler fibrations. Our proof depends on Berndtsson curvature formula of the direct image sheaf.

< ロ > < 同 > < 回 > < 回 >

Non-trivial Poissson–Kähler fibrations

Locally there are many non-trivial Poissson-Kähler fibrations.

Theorem (Arezzo–Tian's theorem)

Every relative Kähler fibration is locally Poisson–Kähler, i.e. every point in the base manifold has a neighborhood over which the fibration possesses a Poisson–Kähler structure.

Non-trivial Poissson-Kähler fibrations

Locally there are many non-trivial Poissson-Kähler fibrations.

Theorem (Arezzo–Tian's theorem)

Every relative Kähler fibration is locally Poisson–Kähler, i.e. every point in the base manifold has a neighborhood over which the fibration possesses a Poisson–Kähler structure.

Question (Global version)

When a proper holomorphic submersion between two Kähler manifolds possesses a Poisson–Kähler structure ?

Non-trivial Poissson-Kähler fibrations

Locally there are many non-trivial Poissson-Kähler fibrations.

Theorem (Arezzo–Tian's theorem)

Every relative Kähler fibration is locally Poisson–Kähler, i.e. every point in the base manifold has a neighborhood over which the fibration possesses a Poisson–Kähler structure.

Question (Global version)

When a proper holomorphic submersion between two Kähler manifolds possesses a Poisson–Kähler structure ?

Remark (Motivation)

Moduli fibration of abelian varieties (which is Poisson-Kähler outside a proper subvariety) suggests to study the following:

Question

Let $p: \mathcal{X} \to \mathcal{B}$ be a surjective holomorphic map between two smooth projective manifold with maximal variation. Do we know that p is Poisson–Kähler over a Zariski open set in \mathcal{B} ?

Question

Let $p: \mathcal{X} \to \mathcal{B}$ be a surjective holomorphic map between two smooth projective manifold with maximal variation. Do we know that p is Poisson–Kähler over a Zariski open set in \mathcal{B} ?

Remark

We do not know the answer even for fibration of Riemann surfaces.

Question

Let $p: \mathcal{X} \to \mathcal{B}$ be a surjective holomorphic map between two smooth projective manifold with maximal variation. Do we know that p is Poisson–Kähler over a Zariski open set in \mathcal{B} ?

Remark

We do not know the answer even for fibration of Riemann surfaces.

Remark (Final remark)

Thanks for your patience!