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Negative curvature property

Problem (Negative curvature problem (NCP))

Let p : X → B be a proper holomorphic submersion between two
Kähler manifolds. Assume that the Kodaira–Spencer map is
injective. Does there exist a Kähler metric, say ω, on B satisfying
the following negative curvature (NC) property ?

Property (NC property)

The holomorphic sectional curvature of ω is bounded above by a
negative constant and the holomorphic bisectional curvature of ω
is non-positive.

Remark (Known cases)

Riemann surface case and Calabi–Yau case.
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Known cases

(1) dimXt = 1, ω: Weil–Petersson metric. NC is known as the
Ahlfors theorem proved by Ahlfors, Royden, Wolpert etc.

(2) dimXt = dimB = 1 and B is compact: Kodaira–fibration
satisfying g(Xt) ≥ 3, g(B) ≥ 2.

(3) KXt : Hermitian flat, NC follows from variation of Hodge theory
(for trivial KXt ) and Higgs bundle package (for general case).

(4) KXt > 0 and dimB = 1: To-Yeung, Schumacher,
Berndtsson-Paun-Wang (iterated Kodaira-Spencer map).

(5) weak version of NCP (existence of Viehweg–Zuo sheaf and
hyperbolicity): Viehweg-Zuo, Popa-Schnell, Deng etc.

Our main result is based on (3), (4), the background is Burns’
local NC property along the leaves of a Monge–Ampère foliation.
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Poisson–Kähler fibration

Definition (also called Monge–Ampère foliation (fibration))

A proper holomorphic submersion p : (X , ωX )→ (B, ωB) between
two Kähler manifolds is said to be Poisson–Kähler if

(ωX − p∗ωB)n+1 ≡ 0 (1)

on X , where n denotes the dimension of the fibers.

Theorem (Theorem A)

Poisson–Kähler fibration satisfies the nagative curvature property.

Remark

Theorem A is also proved independently without using Higgs
bundles by Berndtsson. We use the same Weil–Petersson type
metric but different approaches for the curvature computation.

Xu Wang, Norwegian University of Science and Technology Poisson–Kähler fibration



Poisson–Kähler fibration

Definition (also called Monge–Ampère foliation (fibration))

A proper holomorphic submersion p : (X , ωX )→ (B, ωB) between
two Kähler manifolds is said to be Poisson–Kähler if

(ωX − p∗ωB)n+1 ≡ 0 (1)

on X , where n denotes the dimension of the fibers.

Theorem (Theorem A)

Poisson–Kähler fibration satisfies the nagative curvature property.

Remark

Theorem A is also proved independently without using Higgs
bundles by Berndtsson. We use the same Weil–Petersson type
metric but different approaches for the curvature computation.

Xu Wang, Norwegian University of Science and Technology Poisson–Kähler fibration



Poisson–Kähler fibration

Definition (also called Monge–Ampère foliation (fibration))

A proper holomorphic submersion p : (X , ωX )→ (B, ωB) between
two Kähler manifolds is said to be Poisson–Kähler if

(ωX − p∗ωB)n+1 ≡ 0 (1)

on X , where n denotes the dimension of the fibers.

Theorem (Theorem A)

Poisson–Kähler fibration satisfies the nagative curvature property.

Remark

Theorem A is also proved independently without using Higgs
bundles by Berndtsson. We use the same Weil–Petersson type
metric but different approaches for the curvature computation.

Xu Wang, Norwegian University of Science and Technology Poisson–Kähler fibration



Examples

(1) Trivial fibrations: complexification of Kähler metric geodesics,
holomorphic curves in the complex Banach manifold

{f ∈ Diffk(X , ω) : (f −1)∗ω is Kähler}.

(2) Non-trivial fibrations: torus family with Kähler total space.

Family of elliptic curves: For each t in the upper half plane H,

Xt := C/(Z + tZ).

The R-linear quasi-conformal mapping f t : C→ C defined by

f t(1) = 1, f t(t) = i , (2)

naturally induces a map, still denoted by f t , from Xt to Xi . Put

f : X → H× Xi , f (t, ζ) := (t, f t(ζ)),

where X := {Xt}t∈H ' (H× C)/Z2.
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Family of elliptic curves

Put

ω := f ∗(idz ∧ dz̄), A :=
ζ − ζ̄
t̄ − t

,

we compute

ω =
i

Im t

(
dζ ∧ d ζ̄ + Adζ ∧ dt̄ + Adt ∧ d ζ̄ + A2dt ∧ dt̄

)
.

Thus ω is of degree-(1, 1) satisfying ω2 = 0 and

p : (X , ω)→ H

is Poisson–Kähler, moreover the natural SL2(Z) action

SL2(Z) 3
(
a b
c d

)
: (t, ζ) 7→

(
at + b

ct + d
,

ζ

ct + d

)
,

preserves ω.
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Properties of Poisson–Kähler fibrations

Definition (Horizontal vector fields)

Let p : (X , ω)→ B be a relative Kähler fibration. Vector field V
on X is horizontal if

ω(V ,W ) = 0

for W tangent to the fibers.

Definition (Horizontal lift)

A horizontal V is the horizontal lift of v ∈ TB if p∗V = v .

Remark (Integrability of horizontal distribution)

The horizontal distribution is integrable iff the horizontal lift {Vj}
of local basis {∂/∂t j} of TB satisfies

[Vj ,Vk ] = [Vj ,Vk ] = 0.
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Properties of Poisson–Kähler fibrations

Proposition (Integrability VS Poisson–Kähler)

The horizontal distribution of a relative Kähler fibration
p : (X , ω)→ B is integrable iff there is a real d-closed smooth
(1, 1)-form α on B such that

(ω − p∗α)n+1 ≡ 0.

Proposition (Poisson-Kähler=Poisson+Kähler)

A Kähler fibration p : (X , ωX )→ (B, ωB) is a Poisson map iff it is
Poisson-Kähler.

Remark (Poisson map)

”Poisson map” means {p∗f , p∗g}ωX = p∗{f , g}ωB for all smooth
functions f , g on B.
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Non-harmonic Weil-Petersson metric

p : (X , ω)→ B relative Kähler fibration, V horizontal lift of ∂/∂t.

We call κ := (∂V )|Xt the ω-Kodaira–Spencer tensors on Xt .

Definition (Non-harmonic Weil–Petersson metric)

We call

|∂/∂t|2DF := ||κ||2 :=

∫
Xt

|κ|2ωt

ωn
t

n!
, ωt := ω|Xt ,

the non-harmonic Weil–Petersson metric on B.

Remark

In the above definition, we do NOT use the harmonic part of κ.
We use the notation ”DF” since it reduces to the Donaldson-Fujiki
metric in the Poisson–Kähler case.
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Variation of non-harmonic Weil–Petersson metrics

Main idea: For smooth family of form ut , denote by

||u||(t) := ||ut ||

the fiberwise L2-norm. If dω = 0 then

||u||2t = (Dtu, u) + (u,Dt̄u), Dt := [∂, δV ], Dt̄ := [∂, δV̄ ],

moreover, Dt̄u = 0 ({ut} is a holomorphic section) implies

||u||2tt̄ = ||Dtu||2 − (Θtt̄u, u).

Recall that if D is the Chern connection of a bundle V then it
induces a Chern connection D on EndV by Df := [D, f ]. In our
case, think of κ as an endomorphism

κ · u := [∂, δV ]u, known as the Kodaira-Spencer action

we know that [Dt̄ , κ] = 0 implies that

||κ||2tt̄ = ||[Dt , κ]||2 − ([Θtt̄ , κ], κ).
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Variation of non-harmonic Weil–Petersson metrics

[Dt̄ , κ] = 0 ??, since Dt̄ = [∂, δV̄ ], κ = [∂, δV ], we know that
[Dt̄ , κ] is the degree (−1, 1) part of

[LV̄ , LV ] = L[V ,V̄ ],

it vanishes iff [V , V̄ ] = 0, i.e. {V , V̄ } is integrable (more or less
equivalent to Poisson–Kähler). Moreover, denote by ∇ the
connection defined by the full Lie derivatives, i.e.

∇ = D + θ + θ̄, θ := dt ⊗ κ.

Observation (Higgs flat=integrable=Poisson-Kähler)

∇ is Higgs flat iff the horizontal distribution is integrable iff p is
Poisson-Kähler up to a factor from the base, in which case the
Higgs package gives the negative curvature properties.
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Higgs package

Higgs description explains

||κ||2tt̄ = ||[Dt , κ]||2 − ([Θtt̄ , κ], κ),

and gives Θtt̄ = −[κ, κ̄], thus

||κ||2tt̄ ≥ ([[κ, κ̄], κ], κ) = ||[κ, κ̄]||2 ≥ 2||κ||4

n|Xt |
,

gives negativity of holomorphic sectional curvature. Similarly,

∂2

∂t j∂ t̄ j
||κl ||2 ≥

2 |(κl , κj)|2

n|Xt |
,

gives seminegativity of holomorphic bisectional curvature.

Remark (General relative Kähler fibration)

The computation also applies to general cases (with some extra
curvature terms).
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Relation to polystable vector bundles

Theorem

Let E be a holomorphic vector bundle over a compact Kähler
manifold B. Let P(E ) := (E \ {0})/C∗ be the projectivization of
E . Then the followings are equivalent:

1) (E , h) is projectively flat, i.e. there exists a hermitian metric h
on E such that Θ(E , h) = α⊗ IdE ;

2) the natural projection P(E )→ B is Poisson–Kähler.

In case dimB = 1, both are equivalent to polystability of E .

Remark

Aikou proved that E admits a projectively flat Hermitian metric iff
P(E )→ B is flat Kähler, i.e. locally biholomorphic to product
Kähler fibrations. Our proof depends on Berndtsson curvature
formula of the direct image sheaf.
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Non-trivial Poissson–Kähler fibrations

Locally there are many non-trivial Poissson–Kähler fibrations.

Theorem (Arezzo–Tian’s theorem)

Every relative Kähler fibration is locally Poisson–Kähler, i.e. every
point in the base manifold has a neighborhood over which the
fibration possesses a Poisson–Kähler structure.

Question (Global version)

When a proper holomorphic submersion between two Kähler
manifolds possesses a Poisson–Kähler structure ?

Remark (Motivation)

Moduli fibration of abelian varieties (which is Poisson-Kähler
outside a proper subvariety) suggests to study the following:
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Question for projective morphism

Question

Let p : X → B be a surjective holomorphic map between two
smooth projective manifold with maximal variation. Do we know
that p is Poisson–Kähler over a Zariski open set in B ?

Remark

We do not know the answer even for fibration of Riemann surfaces.

Remark (Final remark)

Thanks for your patience!
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