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Energy function

Let π : X → T be Teichmüller curve over Teichmüller space T of
a surface Σ, gΣ ≥ 2, namely it is the holomorphic family of
Riemann surfaces over T , the fiber Xz := π−1(z) being exactly
the Riemann surface given by the complex structure z ∈ T .
Let (Mn,g) be a closed Riemannian manifold and
u0 : (Mn,g)→ (Xz ,Φz) a continuous map, where Φz is the
hyperbolic metric on the Riemann surface Xz .
For each z ∈ T , there exists a smooth harmonic map
u : (Mn,g)→ (Xz ,Φz) homotopic to u0 (Eells-Sampson), and it is
unique unless the image of the map is a point or a closed
geodesic (Hartman).

3 / 35



Harmonics maps from a Riemannian manifold to Riemann surfaces
Harmonics maps from Riemann surfaces to a Riemannian manifold

Plurisubharmoncity
Geodesic convexity

The energy function is defined by

E(z) = E(u(z)) =
1
2

∫
M
|du(z)|2dµg , z ∈ T , (1)

which is a smooth function on Teichmüller space T .
M = S1,

√
E = `(γ) is the geodesic length function of a closed

curve γ. In 1987, Wolpert showed the function is strictly
plurisubharmonic and strictly convex along WP geodesics.
In 2012, Wolf presented a precise formula for the second
derivative of `(γ) along a Weil-Petersson geodesic.
By using the methods of Kähler geometry, Axelsson and
Schumacher (in 2012) obtained the formulas for the first and the
second variation of `(γ), and proved that its logarithm log `(γ) is
strictly plurisubharmonic.
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If M is a Riemann surface and the fixed map u0 is identity, in
1989, Wolf defined the energy function and proved the energy
function is proper, strictly convex along WP geodesics.
For a general Riemannian manifold M, in 1999, Yamada proved
the strict convexity of the energy function along the WP
geodesics.

Inspired by the above results. Naturally, one may ask whether the
logarithm of energy function is also strictly plurisubharmonic for a
general Riemannian manifold?
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By following Axelsson-Schumacher’s method, we obtain

Theorem (Kim-W.-Zhang, 2018)

Let π : X → T be Teichmüller curve over Teichmüller space T . Let
(Mn,g), be a Riemannian manifold and fix a continuous map
u0 : (Mn,g)→ (Xz ,Φz). Consider the energy E(z) of the harmonic
map from (Mn,g) to Xz = π−1(z) homotopic to u0, z ∈ T . Then the
logarithm of energy log E(z) is a strictly plurisubharmonic function on
Teichmüller space. In particular, the energy function is also strictly
plurisubharmonic.
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Variations of energy function
Let π : X → T be a Teichmüller curve. Denote by (zα, v) the
holomorphic coordinates of X such that zα,1 ≤ α ≤ 3g − 3 are the
holomorphic coordinates of T , and v is holomorphic coordinate of
each fiber. Each fiber is equipped with the hyperbolic metric

ωXz =
√
−1φvv̄ dv ∧ dv̄ .

One can define the following tensor

Aα = Aαv̄ v̄ uv
i φ

vv̄ dx i ⊗
∂

∂v
∈ A1(M ,u∗TXz); (2)

where Av
αv̄ = ∂v̄

(
−φvv̄φαv̄

)
,Aαv̄ v̄ = Av

αv̄φvv̄ , φvv̄ := (φvv̄ )−1. The first
variation of the energy function E(z) is given by

∂

∂zα
E(z) = 〈Aα, ∂u〉 =

∫
M

Aαv̄ v̄ uv
i uv

j g ijdµg . (3)

where ∂u := uv
l dx l ⊗ ∂

∂v .
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Let Φz be the hyperbolic Riemannian metric on Xz . Denote
TCXz = TXz ⊕ TXz the complex tangent bundle. Then there is a
natural connection on ∧`T ∗M ⊗ u∗TCXz induced from the Levi-Civita
connections of (Mn,g) and (Xz ,Φz). Let ∆ = ∇∇∗ + ∇∗∇ be the
Hodge-Laplace operator on A`(M ,u∗TXz), and set

L = ∆ +
1
2
|du|2, G = g ijφvv̄ uv

i uv
j
∂

∂v
⊗ dv̄ ∈ Hom(u∗TXz ,u∗TXz),

(4)

and c(φ)αβ̄ := φαβ̄ − φαv̄φv β̄φ
vv̄ denotes the geodesic curvature. Then

the second variation of the energy function is given by

∂α∂β̄E =
1
2

∫
M

c(φ)αβ̄|du|2dµg + 〈(Id −∇
(
L − GL−1G

)−1
∇∗)Aα,Aβ〉. (5)
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The case of dimM = 1

If dim M = 1, then

∂α∂β̄E
1/2 =

1
2

1
E1/2

(∫
M

(�+ 1)−1(Aα,Aβ)dµg

+〈
1
2
|du|2(|du|2 + ∆)−1Aα,Aβ〉

)
, (6)

where � = −φvv̄∂v∂v̄ . In this case, |du| = constant. And we used
Schumacher’s formula (1 + �)c(φ)αβ̄ = Av

αv̄ Av
βv̄ .

Corollary (Axelsson-Schumacher, 2012)

If we take the arc-length parametrization at z = z0, i.e. 1
2 |du|2(z0) = 1,

then

∂α∂β̄`(z)|z=z0 =
1
2

(∫
M

(�+ 1)−1(Aα,Aβ)dµg + 〈(2 + ∆)−1Aα,Aβ〉

)
. (7)
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Plurisubharmonicity

For higher dimensional M, ∇2 . 0 generally, and we shall treat the
second term in more details. A major ingredient of our proof is the
following decomposition

Id − ∇
(
L − GL−1G

)−1
∇∗ = (∆−1∆ − ∇∆−1∇∗)

+ (∇∆−1∇∗ − ∇
(
L − GL−1G

)−1
∇∗) + H,

where H is the orthogonal projection onto harmonic forms. And we
can prove the first two operators are non-negative when acting on
A1(M ,u∗TXz). Thus

∂z∂z̄E(z) ≥
1
2

∫
M

c(φ)zz̄ |du|2dµg + ‖H(A)‖2 (8)

For simplify, we assume the base is dimension one.
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Note that ∂u := uv
l dx l ⊗ ∂

∂v is a harmonic element (i.e.
∇(∂u) = ∇∗(∂u) = 0) since u is a harmonic map. We obtain a lower
bound for ‖H(A)‖2

‖H(A)‖2 ≥
1
‖∂u‖2

|〈A, ∂u〉|2 =
1
E
∂E
∂z

∂E
∂z̄

, (9)

Therefore,

∂z∂z̄ log E(z) ≥
1
‖du‖2

∫
M

c(φ)zz̄ |du|2dµg > 0, (10)

which proves the strict plurisubharmonicity of logarithm of energy
function.
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Related to Weil-Petersson metric

Definition
The Weil-Petersson metric ωWP on Teichmüller space T is defined by

ωWP =
√
−1Gαβ̄dzα ∧ dz̄β, Gαβ̄(z) =

∫
Xz

Av
αv̄ Av

βv̄

√
−1φvv̄ dv ∧ dv̄ .

(11)

Because Av
αv̄ dv̄ ⊗ ∂

∂v is a harmonic Betrami differential.

Theorem (Kim-W.-Zhang, 2019)

Let (M , ωg) be a compact Kähler manifold and fix a smooth map
u0 : M → Σ, let E(z) denote the energy function of harmonic maps
from (M ,g) to (Xz ,Φz) in the class [u0], where g is the Riemannian
metric associated to ωg . If u(z0) is holomorphic or anti-holomorphic
for some z0 ∈ T , then

√
−1∂∂̄ log E(z)|z=z0 =

ωWP

2π(g(Σ) − 1)
. (12)
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As a corollary, we obtain

Corollary

If M is a Riemann surface, and u(z0) is holomorphic or
anti-holomorphic, then

√
−1∂∂̄E(z)|z=z0 = | deg u(z0)| · 2ωWP . (13)

Here deg u(z0) is the degree of u(z0).

In this case,
∂E
∂zα
|z=z0 = 2

∫
M

Aαv̄ v̄ uv
i uv

j̄
g j̄ idµg = 0

E(z0) =

∣∣∣∣∣∫
M

u∗ωXz0

∣∣∣∣∣ = |2π deg(u∗KXz0
)| = 4π(gΣ − 1)| deg u(z0)|.

Thus ∂∂̄E = E∂∂̄ log E . In particular, if u(z0) is the identity map, then
√
−1∂∂̄E(z)|z=z0 = 2ωWP ,

which was proved by M. Wolf in 1989.
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Geodesic convexity

For the geodesic convexity of energy function, Yamada proved

Theorem (Yamada, 1999)

The energy function E(z) is strictly convex along any Weil-Petersson
geodesic in T .

In 2012, Wolf gave a precise asymptotic formula on the hyperbolic
metrics associated to WP geodesics. By using this formula, we obtain

Proposition (Kim-W.-Zhang, 2018)

The function E(z)c , c > 5/6 (resp. c = 5/6) is strictly convex (resp.
convex) along a Weil-Petersson geodesic.
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Energy function

(N ,g): a Riemannian manifold;
∇N denotes the Levi-Civita connection of (N ,g);
Riemann curvature endomorphism R ∈ A2(N ,End(TN)),

R(X ,Y )Z = ∇N
X∇

N
Y Z − ∇N

Y∇
N
X Z − ∇N

[X ,Y ]Z .

Denote R(X ,Y ,Z ,W ) := −〈R(X ,Y )Z ,W 〉.
Sectional curvature: For X ,Y ∈ TN

K (X ∧ Y ) =
R(X ,Y ,X ,Y )

‖X ‖2‖Y ‖2 − 〈X ,Y 〉2
.

Hermitian sectional curvature: For X ,Y ∈ TN ⊗ C, by complex
mult-linear extension

KC(X ∧ Y ) :=
R(X ,Y ,X ,Y )

‖X ‖2‖Y ‖2 − |〈X ,Y 〉|2
.
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Fix a continuous map u0 : Σ→ N. If there is a unique harmonic map
u(z) : (Xz ,Φz)→ (N ,g) homotopic to u0, then one gets a smooth
map u(z, v) : X → N and the energy

E(z) = E(u(z)) =
1
2

∫
Xz

|du(z)|2dµΦz (14)

is a smooth function on T .
If N is also a negatively curved Riemann surface Tromba showed
that this energy function is strictly plurisubharmonic.
When N has non-positive Hermitian sectional curvature, Toledo
proved that the energy function is also plurisubharmonic.
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A natural question is whether the logarithm of energy function is also
plurisubharmonic. We obtain

Theorem (Kim-W.-Zhang, 2019)

Let (N ,g) be a Riemannian manifold with non-positive Hermitian
sectional curvature and fix a smooth map u0 : Σ→ N. If there is a
unique harmonic map u(z) : Xz → N in the homotopy class [u0] for
each z ∈ T , then

the reciprocal energy function E(z)−1 is plurisuperharmonic, that
is,
√
−1∂∂̄E(z)−1 ≤ 0. In particular,

√
−1∂∂̄ log E ≥ 0.

Moreover, if (N ,g) has strictly negative Hermitian sectional
curvature and d(u(z0)) is never zero on Xz0 for some z0 ∈ T ,
then log E(z) is strictly plurisubharmonic at z0.
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Horizontal-Vertical decomposition

Denote by (z; v) the local coordinates of X with π(z, v) = z,
where π : X → T .
Let
√
−1φvv̄ (z, v)dv ∧ dv̄ be a smooth family of hyperbolic

metrics for some weight φ with eφ = φvv̄ . Set ω =
√
−1∂∂̄φ.

H-V decomposition: TX = H ⊕V and T ∗X = H∗ ⊕V∗

H = Span
{
δ

δzα
=

∂

∂zα
+ av

α

∂

∂v
,av

α := −φαv̄φ
vv̄

}
, V = Span

{
∂

∂v

}
,

H∗ = Span {dzα} , V∗ = Span
{
δv = dv − av

αdzα
}
.

ω = c(φ) +
√
−1φvv̄δv ∧ δv̄ .
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Let {u(z)}z∈T be a smooth family of harmonic maps. We shall treat it
as a smooth map u,

u : X → N , (z, v) 7→ u(z, v) := (u(z))(v). (15)

Then

du = ∂u + ∂̄u ∈ A1(X,u∗TN), (16)

where ∂u := ∂ui ⊗ ∂
∂x i ∈ A1,0(X,u∗TN) and ∂̄u = ∂u. Let

〈∂u ∧ ∂̄u〉 := gij (u(z, v))∂ui ∧ ∂̄uj ∈ A1,1(X) (17)

denote the two-form on X obtained by combining the wedge product
in X with the Riemannian metric 〈, 〉 on u∗TN. The corresponding
energy function can be written as

E(z) =
√
−1

∫
X/T

〈∂u ∧ ∂̄u〉. (18)
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The variations of energy function E(z) are

∂E(z) =
√
−1

∫
X/T

∂〈∂u ∧ ∂̄u〉 =
√
−1

∫
X/T

[
∂〈∂u ∧ ∂̄u〉

](δv∧δv̄)
(19)

∂∂̄E(z) =
√
−1

∫
X/T

∂∂̄〈∂u ∧ ∂̄u〉 =
√
−1

∫
X/T

[
∂∂̄〈∂u ∧ ∂̄u〉

](δv∧δv̄)
.

(20)

[
∂〈∂u ∧ ∂̄u〉

](δv∧δv̄)
= 〈∂V u ∧ ∇ δ

δzα
∂̄V u〉 ∧ dzα.

Denote ∂V = δv ⊗ ∂
∂v , and ∇ the induced connection on

(V∗ ⊕V∗) ⊗ u∗TN from (V∗,e−φ) and (N ,g),

[
∂∂̄〈∂u ∧ ∂̄u〉

](δv∧δv̄)
= −2R

(
∂u
∂v

,
δu
δzα

,
∂u
∂v̄

,
δu
δz̄β

)
δv∧δv̄∧dzα∧dz̄β

+ 2〈∇ δ

δz̄β
∂V u ∧ ∇ δ

δzα
∂̄V u〉 ∧ dzα ∧ dz̄β. (21)
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By using Cauchy-Schwarz inequality, one has

Lemma

For any ξ = ξα ∂
∂zα ∈ TzT it holds∣∣∣∣∣∣ξα ∂E(z)

∂zα

∣∣∣∣∣∣2 ≤ E(z) ·

∫
X/T

〈∇ξ̄β δ

δz̄β
∂V u ∧ ∇ξα δ

δzα
∂̄V u〉. (22)

Thus,

∂2E(z)

∂zα∂z̄β
ξαξ̄β ≥ 2

∫
X/T

〈∇ξ̄β δ

δz̄β
∂V u ∧ ∇ξα δ

δzα
∂̄V u〉 (23)

≥
2
E

∣∣∣∣∣∣ξα ∂E(z)

∂zα

∣∣∣∣∣∣2 =
2
E
∂E(z)

∂zα
∂E(z)

∂z̄β
ξαξ̄β. (24)
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Since
∂2E(z)−1

∂zα∂z̄β
= −

1
E2

(
∂2E(z)

∂zα∂z̄β
−

2
E
∂E(z)

∂zα
∂E(z)

∂z̄β

)
,

so E(z)−1 is plurisuperharmonic.
On the other hand,

√
−1∂∂̄ log E = −E

√
−1∂∂̄E−1 + E−2

√
−1∂E ∧ ∂̄E ,

√
−1∂∂̄E = E

√
−1∂∂̄ log E + E−1

√
−1∂E ∧ ∂̄E ,

so both log E(z) and E(z) are plurisubharmonic.

22 / 35



Harmonics maps from a Riemannian manifold to Riemann surfaces
Harmonics maps from Riemann surfaces to a Riemannian manifold

Plurisubharmonicity
Convexity at critical points

Strictly plurisubharmonic

If (N ,g) has strictly negative Hermitian sectional curvature and

∂2 log E(z)

∂zα∂z̄β
ξαξ̄β = 0.

then

∂u
∂v
∧ ξα

δu
δzα

= 0, ∇ξα δ
δzα
∂̄V u = 0. (25)

If moreover, du(z0) never zero on Xz0 , then ∂u
∂v is also never zero. So

there exists a vector filed W = W v ∂
∂v ∈ A0(Xz0 ,TXz0 ) such that

ξα
δu
δzα

= du(W ). (26)
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For the second equation, we have

0 = ∇ξα δ
δzα
∂̄V u =

(
∂v̄ W v − ξαAv

αv̄

)
ui

vδv̄ ⊗
∂

∂x i
, (27)

where Av
αv̄ = ∂v̄ av

α. So

ξαAv
αv̄ dv̄ ⊗

∂

∂v
= ∂̄W ∈ A0,1(Xz0 ,TXz0 ). (28)

This implies that

ρ

(
ξα

∂

∂zα

)
=

[
ξαAv

αv̄ dv̄ ⊗
∂

∂v

]
= [∂̄W ] = 0 ∈ H1(Xz0 ,TXz0 ). (29)

Since the Kodaira-Spencer map ρ : Tz0T → H1(Xz0 ,TXz0 ) is injective,
so ξ = 0. Thus log E(z) is strictly plurisubharmonic at z0.
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The relation to Weil-Petersson metric

Now we assume that (N ,h) is a Hermitian manifold and g = Re h.
Then we obtain

Theorem (Kim-W.-Zhang, 2019)

If u(z0) is holomorphic (resp. anti-holomorphic) and totally geodesic
on Xz0 , then

√
−1∂∂̄ log E(z)|z=z0 =

ωWP

2π(gΣ − 1)
. (30)
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Convexity at critical points

In this talk, we focus on the case when the target manifold N = S is
also a fixed Riemann surface with genus gS ≥ 2. Then

Theorem (Kim-W.-Zhang, 2019)

Let u0 : Σ→ S be a smooth map with non-zero degree, and let E(t)
be the associated energy function on the Teichmüller space T of Σ. If
t0 ∈ T is a critical point of E(t), then the energy function is convex at
this point. If moreover the associated harmonic map ut0 satisfies that
dut0 is never zero, then the energy function is strictly convex at t0 ∈ T .

Remark
In particular, for the case u0 = Id, then the energy function has a
unique critical point, the second derivative of energy function at the
critical point is exactly given by the Weil-Petersson metric (Tromba).
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Weil-Petersson geodesic

Fix a point t0 ∈ T and let g0 = λ2
0dzdz̄ be the corresponding

hyperbolic metric on Σt0 . Let Γ(t), (Γ(0) = t0), be the Weil-Petersson
geodesic arc with initial tangent vector given by the harmonic
Beltrami differential µ = q̄

λ2
0

dz̄
dz , where qdz2 is a holomorphic quadratic

differential on Σt0 . Then the associated hyperbolic metrics on Σt has
the following Taylor expansion near t = 0 (M. Wolf, 2012),

g(t) =λ2
0dzdz̄ + t(qdz2 + qdz2)

+
t2

2

2|q|2

λ4
0

− 2(∆ − 2)−1 2|q|2

λ4
0

 λ2
0dzdz̄ + O(t4).

(31)

Here ∆ = 4
λ2

0

∂2

∂z∂z̄ = 1
λ2

0
(∂2

x + ∂2
y ).
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Variation of energy function

Hence, the energy function along the Weil-Petersson geodesic Γ(t) is

E(t) =
1
2

∫
Σ
|du|2dµgt =

1
2

∫
Σ

Trg(t)(u∗(ρ2dvdv̄))dµgt . (32)

The first derivative is

dE(t)
dt
|t=0 = Re

∫
Σ

−4ρ2

λ2
0

q̄uv
z̄ uv

z

 i
2

dz∧dz̄ = −4
〈
ρ2uv

z uv
z̄ dz2,

q̄
λ2

0

dz̄
dz

〉
QB

,

where 〈·, ·〉QB is a pairing between holomorphic quadratic differentials
and harmonic Beltrami differentials. Thus, t0 ∈ T is a critical point of
energy function if and only if the associated harmonic map ut0 is ±
holomorphic.
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Then the second derivative of energy function is given by

Proposition (Kim-W.-Zhang, 2019)

The second derivative of energy function is given by

1
2

d2E(t)
dt2 |t=0 =

∫
Σ
|du|2

|q|2

λ4
0

dµg0 −

〈
J

(
∂u
∂t

)
,
∂u
∂t

〉
, (33)

where J( ∂u
∂t ) = −Re( 2q̄

λ4
0
∇

u∗TCS⊗KΣ
z

∂u
∂z ) and

J := −
1
λ2

0

∇z∇z̄ −
1
λ2

0

R(•,
∂u
∂z

)
∂u
∂z̄

(34)

J is real, self-adjoint, semi-positive. Here the connection term
∇

u∗TCS⊗KΣ
z

∂u
∂z is the coefficient

∇
u∗TCS⊗KΣ

∂/∂z ∂u = ∇u∗TCS⊗KΣ

∂/∂z (
∂u
∂z
⊗ dz) =: (∇u∗TCS⊗KΣ

z
∂u
∂z

) ⊗ dz.
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Denote by ∇0,1 the (0,1)-part of the connection ∇. Denote

∆0,1 := ∇0,1(∇0,1)∗ + (∇0,1)∗∇0,1. (35)

In terms of ∆0,1 the Jacobi operator J on smooth sections of u∗TCS is

J = ∆0,1 + R, (36)

where R(•) := − 1
λ2

0
R(•, ∂u

∂z ) ∂u
∂z̄ , R is semi-positive. Denote by

µ = q̄
λ2

0
dz̄ ⊗ ∂

∂z the harmonic Beltrami differential. Then

(∇0,1)∗iµdu = −
1
λ2

0

∇z(
q̄
λ2

0

∂u
∂z

) = −
q̄
λ4

0

∇
u∗TCS⊗KΣ
z

∂u
∂z
. (37)
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The second derivative of energy function at t = 0 satisfies

d2E(t)
dt2 |t=0 ≥ 4

(
‖H(iµdu)‖2 − Re〈(∇0,1)∗iµdu,J−1((∇0,1)∗iµdu)〉

)
, (38)

with the equality if and only if R(J−1(∇0,1)∗iµdu) = 0, where H
denotes the harmonic projection to the space Ker∆0,1

If t = 0 is a critical point, then (∇0,1)∗iµdu// ∂u
∂z ,J

−1((∇0,1)∗iµdu)// ∂u
∂z

and so

R(J−1(∇0,1)∗iµdu) = 0 = 〈(∇0,1)∗iµdu,J−1((∇0,1)∗iµdu)〉

we have

d2E(t)
dt2 |t=0 = 4‖H(iµdu)‖2 ≥ 0, (39)

i.e. the energy is convex at the critical point t0 ∈ T . If moreover, dut0 is
never zero, then we can prove H(iµdu) , 0, and so
d2E(t)

dt2 |t=0 = 4‖H(iµdu)‖2 > 0.
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As an application , we have

Corollary

If u0 : Σ→ S is a covering map, then there exists a unique complex
structure t0 ∈ T such that the associated harmonic map ut0 is ±
holomorphic, and

E(t) ≥ E(t0) = Area(Σ). (40)

Moreover, the energy density satisfies 1
2 |du|2(t0) ≡ 1. Indeed, the

unique hyperbolic metric on Σ which minimizes the energy is the
pull-back hyperbolic metric via ut0 . In this case,

d2E(t)
dt2 |t=0 = 4‖µ‖2WP > 0. (41)
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For a general smooth and surjective map u0 : Σ→ S, whether the
critical points of energy function are unique?

Definition (Simple branched covering)

A branched covering u : Σ→ S of absolute degree (maximum
cardinality of a fiber) n > 2 is simple provided that for each y ∈ S the
fiber u−1(y) over y consists of at least n − 1 points (and hence
contains at most one singular point of local degree 2). A branched
covering is called non-simple if it is not simple.

Proposition (Kim-W., 2020)

If u0 : Σ→ S is a non-simple branched covering, then the associated
energy function has at least two critical points.
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Proof.

Since u0 is a branched covering, then u0 : (Σ, [u∗0h])→ (S,h) is
±-holo., and [u∗0h] ∈ T (Σ) is a critical point.
By a result of Berstein and Edmonds, u0 is homotopic to a simple
branched covering u : Σ→ S. So [u∗h] ∈ T (Σ) is also a critical
point.
If [u∗h] = [u∗0h], then ∃ f : (Σ, [u∗0h])→ (Σ, [u∗h]) is biholo. and
f ∈ [Id ], so u ◦ f is ±-holo. and in [u0]. By uniqueness, u0 = u ◦ f .
Since u0 is a non-simple while u is simple, so ∃ p s.t. the
absolute degree | deg(u0,p)| > 2. Then

2 < | deg(u0,p)| = | deg(u, f (p)) · deg(f ,p)| = | deg(u, f (p))| ≤ 2,

contradiction. Thus [u∗h] , [u∗0h].
�
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Thanks for your attention !
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