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Let Sg be a closed surface of genus g (g ≥ 2).

Tg = T(Sg ) is the Teichmüller space of Sg .

Mg = M(Sg ) is the moduli space of Sg .
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Injectivity radius

Let p ∈ Sg be fixed and any X ∈ Tg . The injectivity radius InjX (p)
of X at p is half of the length of a shortest nontrivial closed
geodesic loop based at p.

Let
σ : [0, 2 InjX (p)]→ X

be such a shortest geodesic loop with σ(0) = σ(2 InjX (p)) = p of
arc-length parameter. Then

1. the restriction σ : [0, InjX (p)]→ X is a minimizing geodesic;

2. the restriction σ : [InjX (p), 2 InjX (p)]→ X is also a
minimizing geodesic.

The map Inj(·)(p) : Tg → R>0 is continuous.
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Systole function

For any X ∈ Tg , we let `sys(X ), called the systole of X , denote the
length of shortest closed geodesics in X . The systole function

`sys(·) : Tg → R+

is continuous, but not smooth because of corners where `sys(·)
may be achieved by multi closed geodesics.

It is easy to see that

1. `sys(X ) = 2 minp∈X InjX (p).

2. `sys(X ) ≤ 2 InjX (p) ≤ 2 ln(4g − 2).

Theorem (Buser-Sarnak 1994)

There exists a universal constant U > 0, independent of g , such
that for all g ≥ 2,

sup
X∈Tg

`sys(X ) ≥ U ln g .
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Geodesic length function

For any essential closed curve α ⊂ Sg and X ∈ Tg , there exists a
unique closed geodesic [α] in X representing α. The geodesic
length function of α

`α(·) : Tg → R>0

is defined as
`α(X ) := `[α](X ).

The geodesic length function `α(·) is real-analytic on Tg .
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Gradient of geodesic length function

Let X ∈ Tg and α ⊂ X be a simple closed geodesic. One may lift
α onto the imaginary axis in H and denote by A : z → e`α(X ) · z its
deck transformation on H.

(Gardiner 1975) The Weil-Petersson gradient ∇`α(X ) of the
geodesic length function `α(·) at X can be expressed as

∇`α(X )(z) =
2

π

∑
E∈〈A〉\Γ

E
′
(z)2

E (z)2ρ(z)

dz

dz
∈ TXTg

where 〈A〉 is the cyclic group generated by A, Γ is the Fuchsian

group of X and ρ(z)|dz |2 = |dz|2
Im(z)2 is the hyperbolic metric on H.

(Labourie-Wentworth 2018) Generalized formula at the Fuchsian
locus of Hitchin representations.
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Now we always assume that both Tg and Mg are endowed with
the Weil-Petersson metric.

1. (Alhfors 1961) The space Tg is Kähler.

2. (Chu 1976, Wolpert 1975) The space Tg is incomplete.

3. (Wolpert 1987) The space Tg is geodesically convex.
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A new uniform lower bound

Theorem (W. 2020)

Fix a point p ∈ Sg (g ≥ 2). Then for any X ,Y ∈ Tg ,∣∣∣√InjX (p)−
√

InjY (p)
∣∣∣ ≤ 0.3884 distwp(X ,Y )

where distwp is the Weil-Petersson distance.

Remark
(Rupflin-Topping 2018) With the notations above,∣∣∣√InjX (p)−

√
InjY (p)

∣∣∣ ≤ c(g) distwp(X ,Y )

where c(g) > 0 is a constant depending on g .
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Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
`sys(Y )

∣∣∣∣ ≤ 0.5492 distwp(X ,Y ).

Proof.
Without loss of generality, one may assume that
`sys(X ) ≥ `sys(Y ). Let α ⊂ Y be a shortest closed geodesic. So
for any p ∈ α, we have 2 InjY (p) = `sys(Y ) and
2 InjX (p) ≥ `sys(X ). Then by the Theorem above we get√

`sys(X )−
√
`sys(Y ) ≤

√
2 InjX (p)−

√
2 InjY (p)

≤
√

2× 0.3884 distwp(X ,Y ) = 0.5492 distwp(X ,Y ).

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
`sys(Y )

∣∣∣∣ ≤ 0.5492 distwp(X ,Y ).

Proof.
Without loss of generality, one may assume that
`sys(X ) ≥ `sys(Y ).

Let α ⊂ Y be a shortest closed geodesic. So
for any p ∈ α, we have 2 InjY (p) = `sys(Y ) and
2 InjX (p) ≥ `sys(X ). Then by the Theorem above we get√

`sys(X )−
√
`sys(Y ) ≤

√
2 InjX (p)−

√
2 InjY (p)

≤
√

2× 0.3884 distwp(X ,Y ) = 0.5492 distwp(X ,Y ).

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
`sys(Y )

∣∣∣∣ ≤ 0.5492 distwp(X ,Y ).

Proof.
Without loss of generality, one may assume that
`sys(X ) ≥ `sys(Y ). Let α ⊂ Y be a shortest closed geodesic.

So
for any p ∈ α, we have 2 InjY (p) = `sys(Y ) and
2 InjX (p) ≥ `sys(X ). Then by the Theorem above we get√

`sys(X )−
√
`sys(Y ) ≤

√
2 InjX (p)−

√
2 InjY (p)

≤
√

2× 0.3884 distwp(X ,Y ) = 0.5492 distwp(X ,Y ).

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
`sys(Y )

∣∣∣∣ ≤ 0.5492 distwp(X ,Y ).

Proof.
Without loss of generality, one may assume that
`sys(X ) ≥ `sys(Y ). Let α ⊂ Y be a shortest closed geodesic. So
for any p ∈ α, we have 2 InjY (p) = `sys(Y ) and
2 InjX (p) ≥ `sys(X ).

Then by the Theorem above we get√
`sys(X )−

√
`sys(Y ) ≤

√
2 InjX (p)−

√
2 InjY (p)

≤
√

2× 0.3884 distwp(X ,Y ) = 0.5492 distwp(X ,Y ).

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
`sys(Y )

∣∣∣∣ ≤ 0.5492 distwp(X ,Y ).

Proof.
Without loss of generality, one may assume that
`sys(X ) ≥ `sys(Y ). Let α ⊂ Y be a shortest closed geodesic. So
for any p ∈ α, we have 2 InjY (p) = `sys(Y ) and
2 InjX (p) ≥ `sys(X ). Then by the Theorem above we get√

`sys(X )−
√
`sys(Y ) ≤

√
2 InjX (p)−

√
2 InjY (p)

≤
√

2× 0.3884 distwp(X ,Y ) = 0.5492 distwp(X ,Y ).

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
`sys(Y )

∣∣∣∣ ≤ 0.5492 distwp(X ,Y ).

Proof.
Without loss of generality, one may assume that
`sys(X ) ≥ `sys(Y ). Let α ⊂ Y be a shortest closed geodesic. So
for any p ∈ α, we have 2 InjY (p) = `sys(Y ) and
2 InjX (p) ≥ `sys(X ). Then by the Theorem above we get√

`sys(X )−
√
`sys(Y ) ≤

√
2 InjX (p)−

√
2 InjY (p)

≤
√

2× 0.3884 distwp(X ,Y ) = 0.5492 distwp(X ,Y ).

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Application

Corollary

For any X ,Y ∈ Tg (g ≥ 2),∣∣∣∣√`sys(X )−
√
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Remark
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We say
f1(g) ≺ f2(g) or f2(g) � f1(g)

if there exists a universal constant C > 0, independent of g , such
that

f1(g) ≤ C · f2(g).

And we say
f1(g) � f2(g)

if f1(g) ≺ f2(g) and f2(g) ≺ f1(g).
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Weil-Petersson Inradius

The Weil-Petersson inradius InRad(Mg ) of Mg is

InRad(Mg ) := sup
X∈Mg

distwp(X , ∂Mg )

where ∂Mg is the boundary of Mg consisting of nodal surfaces.

Theorem (W. 2016)

For g ≥ 2,
InRad(Mg ) �

√
ln g .
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Outline of proof

Upper bound: it follows by the following two properties.

(1). For any Xg ∈Mg ,

`sys(Xg ) ≤ 2 ln (4g − 2).

(2). (Wolpert 2008) For any Xg ∈Mg ,

distwp(Xg ,Mα) ≤
√

2π`α(Xg )

where Mα is the stratum of Mg whose pinching curve is α. By

choosing α ⊂ Xg to be a systolic curve,

InRad(Mg ) ≤ sup
Xg∈Mg

distwp(Xg ,Mα) ≺
√

ln g .
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Outline of proof

Lower bound: let Xg ∈Mg be a Buser-Sarnak surface, i.e.,

`sys(Xg ) � ln g .

Recall that

|
√
`sys(X )−

√
`sys(Y )| ≺ distwp(X ,Y )

which implies that√
ln g ≺ distwp(Xg , ∂Mg ) ≤ InRad(Mg ).
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A natural question is:

does lim
g→∞

InRad(Mg )√
ln g

exist?

Set
sys(g) = max

X∈Mg

`sys(X ).

It is known that

sys(g) � ln g and InRad(Mg ) �
√

sys(g).

By applying a slightly refined argument in (W. 2016),

Theorem (W. 2020)

lim
g→∞

InRad(Mg )√
sys(g)

=
√

2π.

Remark
This result above is firstly obtained by Bridgeman-Bromberg in
2020. The ideas of both proofs are similar, but the estimations are
different.

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



A natural question is:

does lim
g→∞

InRad(Mg )√
ln g

exist?

Set
sys(g) = max

X∈Mg

`sys(X ).

It is known that

sys(g) � ln g and InRad(Mg ) �
√

sys(g).

By applying a slightly refined argument in (W. 2016),

Theorem (W. 2020)

lim
g→∞

InRad(Mg )√
sys(g)

=
√

2π.

Remark
This result above is firstly obtained by Bridgeman-Bromberg in
2020. The ideas of both proofs are similar, but the estimations are
different.

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



A natural question is:

does lim
g→∞

InRad(Mg )√
ln g

exist?

Set
sys(g) = max

X∈Mg

`sys(X ).

It is known that

sys(g) � ln g and InRad(Mg ) �
√

sys(g).

By applying a slightly refined argument in (W. 2016),

Theorem (W. 2020)

lim
g→∞

InRad(Mg )√
sys(g)

=
√

2π.

Remark
This result above is firstly obtained by Bridgeman-Bromberg in
2020. The ideas of both proofs are similar, but the estimations are
different.

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



A natural question is:

does lim
g→∞

InRad(Mg )√
ln g

exist?

Set
sys(g) = max

X∈Mg

`sys(X ).

It is known that

sys(g) � ln g and InRad(Mg ) �
√

sys(g).

By applying a slightly refined argument in (W. 2016),

Theorem (W. 2020)

lim
g→∞

InRad(Mg )√
sys(g)

=
√

2π.

Remark
This result above is firstly obtained by Bridgeman-Bromberg in
2020. The ideas of both proofs are similar, but the estimations are
different.

Yunhui Wu A new uniform lower bound on Weil-Petersson distance



Outline of proof

As introduced above, we know that

InRad(Mg ) ≤
√

2π · sys(g)

implying

lim sup
g→∞

InRad(Mg )√
sys(g)

≤
√

2π.

It suffices to show the lower bound:

lim inf
g→∞

InRad(Mg )√
sys(g)

≥
√

2π.

Step-1: Show that the systole function

`sys(·) : Tg → R>0

is piecewise smooth along Weil-Petersson geodesics.
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Step-2: A formula of Riera in 2005 says that

〈∇`α,∇`α〉wp(X ) =
2

π
(`α(X ) +

∑
C∈{〈A〉\Γ/〈A〉−id}

(u ln
u + 1

u − 1
− 2))

where u = cosh (distH(α̃,C ◦ α̃)) and α̃ is an axis in H for α.

If we choose α ⊂ X with `α(X ) = `sys(X ), by using
two-dimensional hyperbolic geometry we show that

Proposition

Let X ∈Mg with `sys(X ) ≥ 8. Then for any curve α ⊂ X with
`α(X ) = `sys(X ) there exists a uniform constant C > 0
independent of g such that

1√
2π
≤ ||∇`

1
2
α(X )||wp ≤

1√
2π

√(
1 + Ce−

`sys (X )

8

)
.

In particular, ||∇`
1
2
sys(X )||wp ∼ 1√

2π
as `sys(X )→∞.
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Step-3 (Endgame): Let X ∈Mg with `sys(X ) = sys(g) and
γ : [0, s)→Mg be the Weil-Petersson geodesic of arc-length
parameter with γ(0) = X and γ(s) ∈ ∂Mg , where s = InRad(Mg ).

Let rg ∈ [0, s] such that

inf
0≤t≤rg

`sys(γ(t)) = `sys(γ(rg )) =
√
sys(g).

Then,

|
√
sys(g)−

√√
sys(g)| = |

√
`sys(X )−

√
`sys(γ(rg ))|

=|
∫ rg

0
〈∇`

1
2
sys(γ(t)), γ′(t)〉wpdt| ≤

∫ rg

0
||∇`

1
2
sys(γ(t))||wpdt

∼rg ·
1√
2π
≤ InRad(Mg )√

2π
.

Thus,

lim inf
g→∞

InRad(Mg )√
sys(g)

≥
√

2π.
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Weil-Petersson diameter

The Weil-Petersson diameter diamwp(Mg ) of the moduli space
Mg is

diamwp(Mg ) = sup
X 6=Y∈Mg

distwp(X ,Y ).

Theorem (Cavendish-Parlier 2012)

For g ≥ 2, √
g ≺ diamwp(Mg ) ≺ √g ln g .

Open questions:

1. diamwp(Mg ) � √g ln g?

2. Does lim
g→∞

sys(g)
ln g exist?
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Recall

Theorem (W. 2020)

Fix a point p ∈ Sg (g ≥ 2). Then for any X ,Y ∈ Tg ,∣∣∣√InjX (p)−
√

InjY (p)
∣∣∣ ≤ 0.3884 distwp(X ,Y )

where distwp is the Weil-Petersson distance.
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Outline of proof

Let c : [0,T0]→ Tg be a Weil-Petersson geodesic of arc-length
parameter where T0 > 0 is a fixed constant, and let
σ : [0, 2 Injc(t0)(p)]→ c(t0) be a shortest geodesic loop based at p.

Now we outline the proof as the following several steps.

Step-1: (Rupflin-Topping 2018) Show that the function
Inj(•)(p) : Tg → R>0 is locally Lipschitz along Weil-Petersson
geodesics.

If it is differentiable at t = t0 ∈ (0,T0), then∣∣∣∣∣ ddt Injc(t)(p)

∣∣∣∣
t=t0

∣∣∣∣∣ ≤ 1

4

∫ 2 Injc(t0)(p)

0

∣∣c ′(t0)(σ(s))
∣∣ ds.
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We divide Step-2 into two cases.

Step-2-0: If Injc(t0)(p) ≤ arcsinh(1), it is not hard to see that for
any s ∈ [0, 2 Injc(t0)(p)],(√

2− 1
)

Injc(t0)(p) ≤ Injc(t0)(σ(s)) ≤ Injc(t0)(p) ≤ arcsinh(1).

Proposition (Bridgeman-W. 2019)

Let X be a closed hyperbolic surface and µ be a harmonic Beltrami
differential on X . Then for any p ∈ X with InjX (p) ≤ arcsinh(1),

|µ(p)|2 ≤
∫
X |µ(z)|2 dArea(z)

InjX (p)
.

By applying the Proposition above and Step-1 we get∣∣∣∣∣ ddt√Injc(t)(p)

∣∣∣∣
t=t0

∣∣∣∣∣ ≤ 0.3884.
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Step-2-1: If Injc(t0)(p) > arcsinh(1), it is not hard to see that

min
s∈[0,2 Injc(t0)(p)]

Injc(t0)(σ(s)) ≥ 0.2407.

Proposition (Teo 2009)

Let X be a closed hyperbolic surface and µ be a harmonic
Beltrami differential on X . Then for any p ∈ X ,

|µ(p)|2 ≤ C (r)

∫
B(p;r)

|µ(z)|2 dArea(z), ∀ 0 < r ≤ InjX (p)

where the constant C (•) is a function of •.
By applying the Proposition above, Step-1 and a Necklace type
inequality we get ∣∣∣∣∣ ddt√Injc(t)(p)

∣∣∣∣
t=t0

∣∣∣∣∣ ≤ 0.3454.
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Proposition (Necklace type inequality)

Let X be a hyperbolic surface. For any p ∈ X we let
σ : [0, 2 InjX (p)]→ X be a shortest nontrivial geodesic loop based
at p. Assume that

inf
s∈[0,2 InjX (p)]

InjX (σ(s)) ≥ 2ε0

for some uniform constant ε0 > 0. Then for any function f ≥ 0 on
X , we have∫ 2 InjX (p)

0

(∫
B(σ(s);ε0)

f dArea

)
ds ≤ 12ε0

∫
Nε0 (σ)

f dArea .

Where B(σ(s); ε0) = {q ∈ X ; dist(q, σ(s)) < ε0} and Nε0(σ) is
the ε0-neighbourhood of σ, i.e.,

Nε0(σ) = {z ∈ X ; dist (x , σ([0, 2 InjX (p)])) < ε0}
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Step-3 (Endgame): We apply the Fundamental Theorem of
Calculus to get

|
√

InjX (p)−
√

InjY (p)|

=

∣∣∣∣∣
∫ distwp(X ,Y )

0

d

dt

(√
Injc(t)(p)

)
dt

∣∣∣∣∣
≤

∫ distwp(X ,Y )

0

∣∣∣∣ ddt (√Injc(t)(p)
)∣∣∣∣ dt

≤ 0.3884 distwp(X ,Y )

as desired.
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Thank you!
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