A new uniform lower bound on Weil-Petersson distance

Yunhui Wu

Tsinghua University

Teichmüller theory and related topics

KIAS

August 18, 2020

Let S_{g} be a closed surface of genus $g(g \geq 2)$.

$$
\mathcal{T}_{g}=\mathcal{T}\left(S_{g}\right) \text { is the Teichmüller space of } S_{g} .
$$

$\mathcal{M}_{g}=\mathcal{M}\left(S_{g}\right)$ is the moduli space of S_{g}.

Injectivity radius

Let $p \in S_{g}$ be fixed and any $X \in \mathcal{T}_{g}$. The injectivity radius $\operatorname{lnj}_{X}(p)$ of X at p is half of the length of a shortest nontrivial closed geodesic loop based at p.

Injectivity radius

Let $p \in S_{g}$ be fixed and any $X \in \mathcal{T}_{g}$. The injectivity radius $\operatorname{lnj}_{X}(p)$ of X at p is half of the length of a shortest nontrivial closed geodesic loop based at p.

Let

$$
\sigma:\left[0,2 \operatorname{lnj}_{X}(p)\right] \rightarrow X
$$

be such a shortest geodesic loop with $\sigma(0)=\sigma\left(2 \operatorname{lnj}_{X}(p)\right)=p$ of arc-length parameter. Then

1. the restriction $\sigma:\left[0, \operatorname{lnj}_{X}(p)\right] \rightarrow X$ is a minimizing geodesic;
2. the restriction $\sigma:\left[\operatorname{lnj}_{X}(p), 2 \operatorname{lnj}_{X}(p)\right] \rightarrow X$ is also a minimizing geodesic.

Injectivity radius

Let $p \in S_{g}$ be fixed and any $X \in \mathcal{T}_{g}$. The injectivity radius $\operatorname{lnj}_{X}(p)$ of X at p is half of the length of a shortest nontrivial closed geodesic loop based at p.

Let

$$
\sigma:\left[0,2 \operatorname{lnj}_{X}(p)\right] \rightarrow X
$$

be such a shortest geodesic loop with $\sigma(0)=\sigma\left(2 \operatorname{lnj}_{X}(p)\right)=p$ of arc-length parameter. Then

1. the restriction $\sigma:\left[0, \operatorname{lnj}_{X}(p)\right] \rightarrow X$ is a minimizing geodesic;
2. the restriction $\sigma:\left[\operatorname{lnj}_{X}(p), 2 \operatorname{lnj}_{X}(p)\right] \rightarrow X$ is also a minimizing geodesic.

The map $\operatorname{Inj}(\cdot)(p): \mathcal{T}_{g} \rightarrow \mathbb{R}^{>0}$ is continuous.

Systole function

For any $X \in \mathcal{T}_{g}$, we let $\ell_{\text {sys }}(X)$, called the systole of X, denote the length of shortest closed geodesics in X. The systole function

$$
\ell_{\text {sys }}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{+}
$$

is continuous, but not smooth because of corners where $\ell_{\text {sys }}(\cdot)$ may be achieved by multi closed geodesics.

Systole function

For any $X \in \mathcal{T}_{g}$, we let $\ell_{\text {sys }}(X)$, called the systole of X, denote the length of shortest closed geodesics in X. The systole function

$$
\ell_{\text {sys }}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{+}
$$

is continuous, but not smooth because of corners where $\ell_{\text {sys }}(\cdot)$ may be achieved by multi closed geodesics. It is easy to see that 1. $\ell_{\text {sys }}(X)=2 \min _{p \in X} \operatorname{lnj}_{X}(p)$.

Systole function

For any $X \in \mathcal{T}_{g}$, we let $\ell_{\text {sys }}(X)$, called the systole of X, denote the length of shortest closed geodesics in X. The systole function

$$
\ell_{\text {sys }}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{+}
$$

is continuous, but not smooth because of corners where $\ell_{\text {sys }}(\cdot)$ may be achieved by multi closed geodesics. It is easy to see that 1. $\ell_{\text {sys }}(X)=2 \min _{p \in X} \operatorname{lnj}_{X}(p)$.
2. $\ell_{\text {sys }}(X) \leq 2 \operatorname{lnj}_{X}(p) \leq 2 \ln (4 g-2)$.

Systole function

For any $X \in \mathcal{T}_{g}$, we let $\ell_{\text {sys }}(X)$, called the systole of X, denote the length of shortest closed geodesics in X. The systole function

$$
\ell_{\text {sys }}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{+}
$$

is continuous, but not smooth because of corners where $\ell_{\text {sys }}(\cdot)$ may be achieved by multi closed geodesics. It is easy to see that

$$
\begin{aligned}
& \text { 1. } \ell_{\text {sys }}(X)=2 \min _{p \in X} \operatorname{lnj} j_{X}(p) \\
& \text { 2. } \ell_{\text {sys }}(X) \leq 2 \operatorname{lnj}_{X}(p) \leq 2 \ln (4 g-2) .
\end{aligned}
$$

Theorem (Buser-Sarnak 1994)

There exists a universal constant $U>0$, independent of g, such that for all $g \geq 2$,

$$
\sup _{X \in \mathcal{T}_{g}} \ell_{\text {sys }}(X) \geq U \ln g .
$$

Geodesic length function

For any essential closed curve $\alpha \subset S_{g}$ and $X \in \mathcal{T}_{g}$, there exists a unique closed geodesic $[\alpha]$ in X representing α. The geodesic length function of α

$$
\ell_{\alpha}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{>0}
$$

is defined as

$$
\ell_{\alpha}(X):=\ell_{[\alpha]}(X)
$$

Geodesic length function

For any essential closed curve $\alpha \subset S_{g}$ and $X \in \mathcal{T}_{g}$, there exists a unique closed geodesic $[\alpha]$ in X representing α. The geodesic length function of α

$$
\ell_{\alpha}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{>0}
$$

is defined as

$$
\ell_{\alpha}(X):=\ell_{[\alpha]}(X)
$$

The geodesic length function $\ell_{\alpha}(\cdot)$ is real-analytic on \mathcal{T}_{g}.

Gradient of geodesic length function

Let $X \in \mathcal{T}_{g}$ and $\alpha \subset X$ be a simple closed geodesic. One may lift α onto the imaginary axis in \mathbb{H} and denote by $A: z \rightarrow e^{\ell_{\alpha}(X)} \cdot z$ its deck transformation on \mathbb{H}.

Gradient of geodesic length function

Let $X \in \mathcal{T}_{g}$ and $\alpha \subset X$ be a simple closed geodesic. One may lift α onto the imaginary axis in \mathbb{H} and denote by $A: z \rightarrow e^{\ell_{\alpha}(X)} \cdot z$ its deck transformation on \mathbb{H}.
(Gardiner 1975) The Weil-Petersson gradient $\nabla \ell_{\alpha}(X)$ of the geodesic length function $\ell_{\alpha}(\cdot)$ at X can be expressed as

$$
\nabla \ell_{\alpha}(X)(z)=\frac{2}{\pi} \sum_{E \in\langle A\rangle \backslash \Gamma} \frac{\bar{E}^{\prime}(z)^{2}}{\bar{E}(z)^{2} \rho(z)} \frac{d \bar{z}}{d z} \in T_{X} \mathcal{T}_{g}
$$

where $\langle A\rangle$ is the cyclic group generated by A, Γ is the Fuchsian group of X and $\rho(z)|d z|^{2}=\frac{|d z|^{2}}{\operatorname{lm}(z)^{2}}$ is the hyperbolic metric on \mathbb{H}.

Gradient of geodesic length function

Let $X \in \mathcal{T}_{g}$ and $\alpha \subset X$ be a simple closed geodesic. One may lift α onto the imaginary axis in \mathbb{H} and denote by $A: z \rightarrow e^{\ell_{\alpha}(X)} \cdot z$ its deck transformation on \mathbb{H}.
(Gardiner 1975) The Weil-Petersson gradient $\nabla \ell_{\alpha}(X)$ of the geodesic length function $\ell_{\alpha}(\cdot)$ at X can be expressed as

$$
\nabla \ell_{\alpha}(X)(z)=\frac{2}{\pi} \sum_{E \in\langle A\rangle \backslash \Gamma} \frac{\bar{E}^{\prime}(z)^{2}}{\bar{E}(z)^{2} \rho(z)} \frac{d \bar{z}}{d z} \in T_{X} \mathcal{T}_{g}
$$

where $\langle A\rangle$ is the cyclic group generated by A, Γ is the Fuchsian group of X and $\rho(z)|d z|^{2}=\frac{|d z|^{2}}{\operatorname{lm}(z)^{2}}$ is the hyperbolic metric on \mathbb{H}.
(Labourie-Wentworth 2018) Generalized formula at the Fuchsian locus of Hitchin representations.

Now we always assume that both \mathcal{T}_{g} and \mathcal{M}_{g} are endowed with the Weil-Petersson metric.

Now we always assume that both \mathcal{T}_{g} and \mathcal{M}_{g} are endowed with the Weil-Petersson metric.

1. (Alhfors 1961) The space \mathcal{T}_{g} is Kähler.

Now we always assume that both \mathcal{T}_{g} and \mathcal{M}_{g} are endowed with the Weil-Petersson metric.

1. (Alhfors 1961) The space \mathcal{T}_{g} is Kähler.
2. (Chu 1976, Wolpert 1975) The space \mathcal{T}_{g} is incomplete.

Now we always assume that both \mathcal{T}_{g} and \mathcal{M}_{g} are endowed with the Weil-Petersson metric.

1. (Alhfors 1961) The space \mathcal{T}_{g} is Kähler.
2. (Chu 1976, Wolpert 1975) The space \mathcal{T}_{g} is incomplete.
3. (Wolpert 1987) The space \mathcal{T}_{g} is geodesically convex.

A new uniform lower bound

Theorem (W. 2020)
Fix a point $p \in S_{g}(g \geq 2)$. Then for any $X, Y \in \mathcal{T}_{g}$,

$$
\left|\sqrt{\operatorname{lnj}_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right| \leq 0.3884 \operatorname{dist}_{w p}(X, Y)
$$

where $^{\text {dist }}$ wp is the Weil-Petersson distance.

A new uniform lower bound

Theorem (W. 2020)
Fix a point $p \in S_{g}(g \geq 2)$. Then for any $X, Y \in \mathcal{T}_{g}$,

$$
\left|\sqrt{\operatorname{lnj}_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right| \leq 0.3884 \operatorname{dist}_{w p}(X, Y)
$$

where $^{\text {dist }}$ wp is the Weil-Petersson distance.

Remark

(Rupflin-Topping 2018) With the notations above,

$$
\left|\sqrt{\operatorname{lnj}_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right| \leq c(g) \operatorname{dist}_{w p}(X, Y)
$$

where $c(g)>0$ is a constant depending on g.

Application

Corollary

For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Application

Corollary
For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Proof.
Without loss of generality, one may assume that $\ell_{\text {sys }}(X) \geq \ell_{\text {sys }}(Y)$.

Application

Corollary
For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Proof.
Without loss of generality, one may assume that $\ell_{\text {sys }}(X) \geq \ell_{\text {sys }}(Y)$. Let $\alpha \subset Y$ be a shortest closed geodesic.

Application

Corollary
For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Proof.

Without loss of generality, one may assume that $\ell_{\text {sys }}(X) \geq \ell_{\text {sys }}(Y)$. Let $\alpha \subset Y$ be a shortest closed geodesic. So for any $p \in \alpha$, we have $2 \operatorname{lnj}_{Y}(p)=\ell_{\text {sys }}(Y)$ and $2 \operatorname{lnj}_{X}(p) \geq \ell_{\text {sys }}(X)$.

Application

Corollary

For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{s y s}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Proof.

Without loss of generality, one may assume that
$\ell_{\text {sys }}(X) \geq \ell_{\text {sys }}(Y)$. Let $\alpha \subset Y$ be a shortest closed geodesic. So for any $p \in \alpha$, we have $2 \operatorname{lnj}_{Y}(p)=\ell_{\text {sys }}(Y)$ and $2 \operatorname{lnj}_{X}(p) \geq \ell_{\text {sys }}(X)$. Then by the Theorem above we get

$$
\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{s y s}(Y)} \leq \sqrt{2 \operatorname{lnj}_{X}(p)}-\sqrt{2 \operatorname{lnj}_{Y}(p)}
$$

Application

Corollary

For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{s y s}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Proof.

Without loss of generality, one may assume that
$\ell_{\text {sys }}(X) \geq \ell_{\text {sys }}(Y)$. Let $\alpha \subset Y$ be a shortest closed geodesic. So for any $p \in \alpha$, we have $2 \operatorname{lnj}_{Y}(p)=\ell_{\text {sys }}(Y)$ and $2 \operatorname{lnj}_{X}(p) \geq \ell_{\text {sys }}(X)$. Then by the Theorem above we get

$$
\begin{aligned}
& \sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{s y s}(Y)} \leq \sqrt{2 \operatorname{lnj}_{X}(p)}-\sqrt{2 \operatorname{lnj}_{Y}(p)} \\
& \leq \sqrt{2} \times 0.3884 \operatorname{dist}_{w p}(X, Y)=0.5492 \operatorname{dist}_{w p}(X, Y) .
\end{aligned}
$$

Application

Corollary

For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Application

Corollary
For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Remark

1. $(W .2016,2019)\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq K \operatorname{dist}_{w p}(X, Y)$ where $K>0$ is a uniform constant independent of g.

Application

Corollary
For any $X, Y \in \mathcal{T}_{g}(g \geq 2)$,

$$
\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq 0.5492 \operatorname{dist}_{w p}(X, Y)
$$

Remark

1. $(W .2016,2019)\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \leq K \operatorname{dist}_{w p}(X, Y)$ where $K>0$ is a uniform constant independent of g.
2. (Bridgeman-Bromberg 2020)

$$
\left|\sqrt{\ell_{s y s}(X)}-\sqrt{\ell_{s y s}(Y)}\right| \leq \frac{\operatorname{dist}_{w p}(X, Y)}{2} .
$$

We say

$$
f_{1}(g) \prec f_{2}(g) \text { or } \quad f_{2}(g) \succ f_{1}(g)
$$

if there exists a universal constant $C>0$, independent of g, such that

$$
f_{1}(g) \leq C \cdot f_{2}(g)
$$

And we say

$$
f_{1}(g) \asymp f_{2}(g)
$$

if $f_{1}(g) \prec f_{2}(g)$ and $f_{2}(g) \prec f_{1}(g)$.

Weil-Petersson Inradius

The Weil-Petersson inradius $\operatorname{In} \operatorname{Rad}\left(\mathcal{M}_{g}\right)$ of \mathcal{M}_{g} is

$$
\operatorname{InRad}\left(\mathcal{M}_{g}\right):=\sup _{X \in \mathcal{M}_{g}} \operatorname{dist}_{w p}\left(X, \partial \overline{\mathcal{M}}_{g}\right)
$$

where $\partial \overline{\mathcal{M}}_{g}$ is the boundary of $\overline{\mathcal{M}}_{g}$ consisting of nodal surfaces.

Weil-Petersson Inradius

The Weil-Petersson inradius $\operatorname{In} \operatorname{Rad}\left(\mathcal{M}_{g}\right)$ of \mathcal{M}_{g} is

$$
\operatorname{lnRad}\left(\mathcal{M}_{g}\right):=\sup _{X \in \mathcal{M}_{g}} \operatorname{dist}_{w p}\left(X, \partial \overline{\mathcal{M}}_{g}\right)
$$

where $\partial \overline{\mathcal{M}}_{g}$ is the boundary of $\overline{\mathcal{M}}_{g}$ consisting of nodal surfaces.

Theorem (W. 2016)
For $g \geq 2$,

$$
\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right) \asymp \sqrt{\ln g} .
$$

Outline of proof

Upper bound: it follows by the following two properties.
(1). For any $X_{g} \in \mathcal{M}_{g}$,

$$
\ell_{\text {sys }}\left(X_{g}\right) \leq 2 \ln (4 g-2)
$$

Outline of proof

Upper bound: it follows by the following two properties.
(1). For any $X_{g} \in \mathcal{M}_{g}$,

$$
\ell_{s y s}\left(X_{g}\right) \leq 2 \ln (4 g-2)
$$

(2). (Wolpert 2008) For any $X_{g} \in \mathcal{M}_{g}$,

$$
\operatorname{dist}_{w p}\left(X_{g}, \mathcal{M}_{\alpha}\right) \leq \sqrt{2 \pi \ell_{\alpha}\left(X_{g}\right)}
$$

where \mathcal{M}_{α} is the stratum of $\overline{\mathcal{M}}_{g}$ whose pinching curve is α.

Outline of proof

Upper bound: it follows by the following two properties.
(1). For any $X_{g} \in \mathcal{M}_{g}$,

$$
\ell_{\text {sys }}\left(X_{g}\right) \leq 2 \ln (4 g-2)
$$

(2). (Wolpert 2008) For any $X_{g} \in \mathcal{M}_{g}$,

$$
\operatorname{dist}_{w p}\left(X_{g}, \mathcal{M}_{\alpha}\right) \leq \sqrt{2 \pi \ell_{\alpha}\left(X_{g}\right)}
$$

where \mathcal{M}_{α} is the stratum of $\overline{\mathcal{M}}_{g}$ whose pinching curve is α. By choosing $\alpha \subset X_{g}$ to be a systolic curve,

$$
\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right) \leq \sup _{X_{g} \in \mathcal{M}_{g}} \operatorname{dist}_{w p}\left(X_{g}, \mathcal{M}_{\alpha}\right) \prec \sqrt{\ln g}
$$

Outline of proof

Lower bound: let $X_{g} \in \mathcal{M}_{g}$ be a Buser-Sarnak surface, i.e.,

$$
\ell_{\text {sys }}\left(X_{g}\right) \asymp \ln g .
$$

Outline of proof

Lower bound: let $X_{g} \in \mathcal{M}_{g}$ be a Buser-Sarnak surface, i.e.,

$$
\ell_{\text {sys }}\left(X_{g}\right) \asymp \ln g .
$$

Recall that

$$
\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}(Y)}\right| \prec \operatorname{dist}_{w p}(X, Y)
$$

which implies that

$$
\sqrt{\ln g} \prec \operatorname{dist}_{w p}\left(X_{g}, \partial \mathcal{M}_{g}\right) \leq \ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)
$$

A natural question is:

$$
\text { does } \lim _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\ln g}} \text { exist? }
$$

A natural question is:

$$
\text { does } \lim _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\ln g}} \text { exist? }
$$

Set

$$
\operatorname{sys}(g)=\max _{X \in \mathcal{M}_{g}} \ell_{\text {sys }}(X)
$$

It is known that

$$
\operatorname{sys}(g) \asymp \ln g \text { and } \ln \operatorname{Rad}\left(\mathcal{M}_{g}\right) \asymp \sqrt{\operatorname{sys}(g)}
$$

A natural question is:

$$
\text { does } \lim _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\ln g}} \text { exist? }
$$

Set

$$
\operatorname{sys}(g)=\max _{X \in \mathcal{M}_{g}} \ell_{\text {sys }}(X)
$$

It is known that

$$
\operatorname{sys}(g) \asymp \ln g \text { and } \ln \operatorname{Rad}\left(\mathcal{M}_{g}\right) \asymp \sqrt{\operatorname{sys}(g)}
$$

By applying a slightly refined argument in (W. 2016),
Theorem (W. 2020)

$$
\lim _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}}=\sqrt{2 \pi}
$$

A natural question is:

$$
\text { does } \lim _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\ln g}} \text { exist? }
$$

Set

$$
\operatorname{sys}(g)=\max _{X \in \mathcal{M}_{g}} \ell_{\text {sys }}(X)
$$

It is known that

$$
\operatorname{sys}(g) \asymp \ln g \text { and } \ln \operatorname{Rad}\left(\mathcal{M}_{g}\right) \asymp \sqrt{\operatorname{sys}(g)}
$$

By applying a slightly refined argument in (W. 2016),
Theorem (W. 2020)

$$
\lim _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}}=\sqrt{2 \pi}
$$

Remark

This result above is firstly obtained by Bridgeman-Bromberg in 2020. The ideas of both proofs are similar, but the estimations are different.

Outline of proof

As introduced above, we know that

$$
\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right) \leq \sqrt{2 \pi \cdot \operatorname{sys}(g)}
$$

implying

$$
\limsup _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}} \leq \sqrt{2 \pi}
$$

Outline of proof

As introduced above, we know that

$$
\operatorname{InRad}\left(\mathcal{M}_{g}\right) \leq \sqrt{2 \pi \cdot \operatorname{sys}(g)}
$$

implying

$$
\limsup _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}} \leq \sqrt{2 \pi}
$$

It suffices to show the lower bound:

$$
\liminf _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}} \geq \sqrt{2 \pi}
$$

Outline of proof

As introduced above, we know that

$$
\operatorname{InRad}\left(\mathcal{M}_{g}\right) \leq \sqrt{2 \pi \cdot \operatorname{sys}(g)}
$$

implying

$$
\limsup _{g \rightarrow \infty} \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}} \leq \sqrt{2 \pi}
$$

It suffices to show the lower bound:

$$
\liminf _{g \rightarrow \infty} \frac{\operatorname{lnRad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}} \geq \sqrt{2 \pi}
$$

Step-1: Show that the systole function

$$
\ell_{\text {sys }}(\cdot): \mathcal{T}_{g} \rightarrow \mathbb{R}^{>0}
$$

is piecewise smooth along Weil-Petersson geodesics.

Step-2: A formula of Riera in 2005 says that

$$
\left\langle\nabla \ell_{\alpha}, \nabla \ell_{\alpha}\right\rangle_{w p}(X)=\frac{2}{\pi}\left(\ell_{\alpha}(X)+\sum_{C \in\{\langle A\rangle \backslash \Gamma /\langle A\rangle-i d\}}\left(u \ln \frac{u+1}{u-1}-2\right)\right)
$$

where $u=\cosh \left(\operatorname{dist}_{\mathbb{H}}(\tilde{\alpha}, C \circ \tilde{\alpha})\right)$ and $\tilde{\alpha}$ is an axis in \mathbb{H} for α.

Step-2: A formula of Riera in 2005 says that

$$
\left\langle\nabla \ell_{\alpha}, \nabla \ell_{\alpha}\right\rangle_{w p}(X)=\frac{2}{\pi}\left(\ell_{\alpha}(X)+\sum_{C \in\{\langle A\rangle \backslash \Gamma /\langle A\rangle-i d\}}\left(u \ln \frac{u+1}{u-1}-2\right)\right)
$$

where $u=\cosh \left(\operatorname{dist}_{\mathbb{H}}(\tilde{\alpha}, C \circ \tilde{\alpha})\right)$ and $\tilde{\alpha}$ is an axis in \mathbb{H} for α.
If we choose $\alpha \subset X$ with $\ell_{\alpha}(X)=\ell_{\text {sys }}(X)$, by using two-dimensional hyperbolic geometry we show that

Proposition

Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X) \geq 8$. Then for any curve $\alpha \subset X$ with $\ell_{\alpha}(X)=\ell_{\text {sys }}(X)$ there exists a uniform constant $C>0$ independent of g such that

$$
\frac{1}{\sqrt{2 \pi}} \leq\left\|\nabla \ell_{\alpha}^{\frac{1}{2}}(X)\right\|_{w p} \leq \frac{1}{\sqrt{2 \pi}} \sqrt{\left(1+C e^{-\frac{\ell_{s y s}(X)}{8}}\right)} .
$$

Step-2: A formula of Riera in 2005 says that

$$
\left\langle\nabla \ell_{\alpha}, \nabla \ell_{\alpha}\right\rangle_{w p}(X)=\frac{2}{\pi}\left(\ell_{\alpha}(X)+\sum_{C \in\{\langle A\rangle \backslash \Gamma /\langle A\rangle-i d\}}\left(u \ln \frac{u+1}{u-1}-2\right)\right)
$$

where $u=\cosh \left(\operatorname{dist}_{\mathbb{H}}(\tilde{\alpha}, C \circ \tilde{\alpha})\right)$ and $\tilde{\alpha}$ is an axis in \mathbb{H} for α.
If we choose $\alpha \subset X$ with $\ell_{\alpha}(X)=\ell_{\text {sys }}(X)$, by using two-dimensional hyperbolic geometry we show that

Proposition

Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X) \geq 8$. Then for any curve $\alpha \subset X$ with $\ell_{\alpha}(X)=\ell_{\text {sys }}(X)$ there exists a uniform constant $C>0$ independent of g such that

$$
\frac{1}{\sqrt{2 \pi}} \leq\left\|\nabla \ell_{\alpha}^{\frac{1}{2}}(X)\right\|_{w p} \leq \frac{1}{\sqrt{2 \pi}} \sqrt{\left(1+C e^{-\frac{\ell_{5 y s}(X)}{8}}\right)}
$$

In particular, $\left\|\nabla \ell_{\text {sys }}^{\frac{1}{2}}(X)\right\|_{w p} \sim \frac{1}{\sqrt{2 \pi}}$ as $\ell_{\text {sys }}(X) \rightarrow \infty$.

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$.

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Then,

$$
|\sqrt{\operatorname{sys}(g)}-\sqrt{\sqrt{s y s(g)}}|=\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)}\right|
$$

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Then,

$$
\begin{aligned}
& |\sqrt{\operatorname{sys}(g)}-\sqrt{\sqrt{\operatorname{sys}(g)}}|=\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)}\right| \\
& =\left|\int_{0}^{r_{g}}\left\langle\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t)), \gamma^{\prime}(t)\right\rangle_{w p} d t\right|
\end{aligned}
$$

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Then,

$$
\begin{aligned}
& |\sqrt{\text { sys }(g)}-\sqrt{\sqrt{\text { sys }(g)}}|=\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)}\right| \\
& =\left|\int_{0}^{r_{g}}\left\langle\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t)), \gamma^{\prime}(t)\right\rangle_{w p} d t\right| \leq \int_{0}^{r_{g}}\left\|\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t))\right\|_{w p} d t
\end{aligned}
$$

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Then,

$$
\begin{aligned}
& |\sqrt{\text { sys }(g)}-\sqrt{\sqrt{\text { sys }(g)}}|=\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)}\right| \\
& \left.=\left|\int_{0}^{r_{g}}\left\langle\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t)), \gamma^{\prime}(t)\right\rangle_{w p} d t\right| \leq \int_{0}^{r_{g}} \right\rvert\,\left\|\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t))\right\|_{w p} d t \\
& \sim r_{g} \cdot \frac{1}{\sqrt{2 \pi}}
\end{aligned}
$$

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Then,

$$
\begin{aligned}
& \left|\sqrt{\text { sys }(g)}-\sqrt{\sqrt{\text { sys }(g)} \mid}=\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)}\right|\right. \\
& =\left|\int_{0}^{r_{g}}\left\langle\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t)), \gamma^{\prime}(t)\right\rangle_{w p} d t\right| \leq \int_{0}^{r_{g}}\left\|\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t))\right\|_{w p} d t \\
& \sim r_{g} \cdot \frac{1}{\sqrt{2 \pi}} \leq \frac{\operatorname{lnRad}\left(\mathcal{M}_{g}\right)}{\sqrt{2 \pi}} .
\end{aligned}
$$

Step-3 (Endgame): Let $X \in \mathcal{M}_{g}$ with $\ell_{\text {sys }}(X)=\operatorname{sys}(g)$ and $\gamma:[0, s) \rightarrow \mathcal{M}_{g}$ be the Weil-Petersson geodesic of arc-length parameter with $\gamma(0)=X$ and $\gamma(s) \in \partial \mathcal{M}_{g}$, where $s=\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)$. Let $r_{g} \in[0, s]$ such that

$$
\inf _{0 \leq t \leq r_{g}} \ell_{\text {sys }}(\gamma(t))=\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)=\sqrt{\operatorname{sys}(g)}
$$

Then,

$$
\begin{aligned}
& |\sqrt{\text { sys }(g)}-\sqrt{\sqrt{\text { sys }(g)}}|=\left|\sqrt{\ell_{\text {sys }}(X)}-\sqrt{\ell_{\text {sys }}\left(\gamma\left(r_{g}\right)\right)}\right| \\
& =\left|\int_{0}^{r_{g}}\left\langle\nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t)), \gamma^{\prime}(t)\right\rangle_{w p} d t\right| \leq \int_{0}^{r_{g}}| | \nabla \ell_{\text {sys }}^{\frac{1}{2}}(\gamma(t)) \|_{w p} d t \\
& \sim r_{g} \cdot \frac{1}{\sqrt{2 \pi}} \leq \frac{\ln \operatorname{Rad}\left(\mathcal{M}_{g}\right)}{\sqrt{2 \pi}} .
\end{aligned}
$$

Thus,

$$
\liminf _{g \rightarrow \infty} \frac{\operatorname{lnRad}\left(\mathcal{M}_{g}\right)}{\sqrt{\operatorname{sys}(g)}} \geq \sqrt{2 \pi}
$$

Weil-Petersson diameter

The Weil-Petersson diameter $\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)$ of the moduli space \mathcal{M}_{g} is

$$
\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)=\sup _{X \neq Y \in \mathcal{M}_{g}} \operatorname{dist}_{w p}(X, Y)
$$

Weil-Petersson diameter

The Weil-Petersson diameter $\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)$ of the moduli space \mathcal{M}_{g} is

$$
\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)=\sup _{X \neq Y \in \mathcal{M}_{g}} \operatorname{dist}_{w p}(X, Y)
$$

Theorem (Cavendish-Parlier 2012)
For $g \geq 2$,

$$
\sqrt{g} \prec \operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right) \prec \sqrt{g} \ln g .
$$

Weil-Petersson diameter

The Weil-Petersson diameter $\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)$ of the moduli space \mathcal{M}_{g} is

$$
\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)=\sup _{X \neq Y \in \mathcal{M}_{g}} \operatorname{dist}_{w p}(X, Y)
$$

Theorem (Cavendish-Parlier 2012)
For $g \geq 2$,

$$
\sqrt{g} \prec \operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right) \prec \sqrt{g} \ln g .
$$

Open questions:

1. $\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right) \asymp \sqrt{g} \ln g$?

Weil-Petersson diameter

The Weil-Petersson diameter $\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)$ of the moduli space \mathcal{M}_{g} is

$$
\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right)=\sup _{X \neq Y \in \mathcal{M}_{g}} \operatorname{dist}_{w p}(X, Y)
$$

Theorem (Cavendish-Parlier 2012)
For $g \geq 2$,

$$
\sqrt{g} \prec \operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right) \prec \sqrt{g} \ln g .
$$

Open questions:

1. $\operatorname{diam}_{w p}\left(\mathcal{M}_{g}\right) \asymp \sqrt{g} \ln g$?
2. Does $\lim _{g \rightarrow \infty} \frac{\text { sys }(g)}{\ln g}$ exist?

Recall
Theorem (W. 2020)
Fix a point $p \in S_{g}(g \geq 2)$. Then for any $X, Y \in \mathcal{T}_{g}$,

$$
\left|\sqrt{\ln j_{X}(p)}-\sqrt{\ln j_{Y}(p)}\right| \leq 0.3884 \operatorname{dist}_{w p}(X, Y)
$$

where dist $_{\text {wp }}$ is the Weil-Petersson distance.

Outline of proof

Let $c:\left[0, T_{0}\right] \rightarrow \mathcal{T}_{g}$ be a Weil-Petersson geodesic of arc-length parameter where $T_{0}>0$ is a fixed constant, and let $\sigma:\left[0,2 \operatorname{lnj}_{c\left(t_{0}\right)}(p)\right] \rightarrow c\left(t_{0}\right)$ be a shortest geodesic loop based at p.

Now we outline the proof as the following several steps.
Step-1: (Rupflin-Topping 2018) Show that the function $\operatorname{lnj}{ }_{(\bullet)}(p): \mathcal{T}_{g} \rightarrow \mathbb{R}^{>0}$ is locally Lipschitz along Weil-Petersson geodesics.

Outline of proof

Let $c:\left[0, T_{0}\right] \rightarrow \mathcal{T}_{g}$ be a Weil-Petersson geodesic of arc-length parameter where $T_{0}>0$ is a fixed constant, and let $\sigma:\left[0,2 \operatorname{lnj}_{c\left(t_{0}\right)}(p)\right] \rightarrow c\left(t_{0}\right)$ be a shortest geodesic loop based at p.

Now we outline the proof as the following several steps.
Step-1: (Rupflin-Topping 2018) Show that the function $\operatorname{lnj}_{(\bullet)}(p): \mathcal{T}_{g} \rightarrow \mathbb{R}^{>0}$ is locally Lipschitz along Weil-Petersson geodesics. If it is differentiable at $t=t_{0} \in\left(0, T_{0}\right)$, then

$$
\left.\left|\frac{d}{d t} \ln j_{c(t)}(p)\right|_{t=t_{0}}\left|\leq \frac{1}{4} \int_{0}^{2 \ln j_{c\left(t_{0}\right)}(p)}\right| c^{\prime}\left(t_{0}\right)(\sigma(s)) \right\rvert\, d s
$$

We divide Step-2 into two cases.
Step-2-0: If $\operatorname{Inj}_{c\left(t_{0}\right)}(p) \leq \operatorname{arcsinh}(1)$, it is not hard to see that for any $s \in\left[0,2 \operatorname{lnj}_{c\left(t_{0}\right)}(p)\right]$,

$$
(\sqrt{2}-1) \operatorname{lnj}_{c\left(t_{0}\right)}(p) \leq \operatorname{lnj}_{c\left(t_{0}\right)}(\sigma(s)) \leq \ln j_{c\left(t_{0}\right)}(p) \leq \operatorname{arcsinh}(1)
$$

We divide Step-2 into two cases.
Step-2-0: If $\operatorname{Inj}_{c\left(t_{0}\right)}(p) \leq \operatorname{arcsinh}(1)$, it is not hard to see that for any $s \in\left[0,2 \operatorname{lnj}_{c\left(t_{0}\right)}(p)\right]$,

$$
(\sqrt{2}-1) \operatorname{lnj}_{c\left(t_{0}\right)}(p) \leq \operatorname{lnj}_{c\left(t_{0}\right)}(\sigma(s)) \leq \ln j_{c\left(t_{0}\right)}(p) \leq \operatorname{arcsinh}(1)
$$

Proposition (Bridgeman-W. 2019)

Let X be a closed hyperbolic surface and μ be a harmonic Beltrami differential on X. Then for any $p \in X$ with $\operatorname{lnj}_{X}(p) \leq \operatorname{arcsinh}(1)$,

$$
|\mu(p)|^{2} \leq \frac{\int_{X}|\mu(z)|^{2} \mathrm{dArea}(z)}{\operatorname{lnj}_{X}(p)}
$$

We divide Step-2 into two cases.
Step-2-0: If $\operatorname{Inj}_{c\left(t_{0}\right)}(p) \leq \operatorname{arcsinh}(1)$, it is not hard to see that for any $s \in\left[0,2 \operatorname{lnj}_{c\left(t_{0}\right)}(p)\right]$,

$$
(\sqrt{2}-1) \operatorname{lnj}_{c\left(t_{0}\right)}(p) \leq \operatorname{lnj}_{c\left(t_{0}\right)}(\sigma(s)) \leq \ln j_{c\left(t_{0}\right)}(p) \leq \operatorname{arcsinh}(1)
$$

Proposition (Bridgeman-W. 2019)

Let X be a closed hyperbolic surface and μ be a harmonic Beltrami differential on X. Then for any $p \in X$ with $\operatorname{lnj}_{X}(p) \leq \operatorname{arcsinh}(1)$,

$$
|\mu(p)|^{2} \leq \frac{\int_{X}|\mu(z)|^{2} \mathrm{dArea}(z)}{\operatorname{lnj}_{X}(p)}
$$

By applying the Proposition above and Step-1 we get

$$
\left.\left|\frac{d}{d t} \sqrt{\ln j_{c(t)}(p)}\right|_{t=t_{0}} \right\rvert\, \leq 0.3884
$$

Step-2-1: If $\operatorname{Inj}_{c\left(t_{0}\right)}(p)>\operatorname{arcsinh}(1)$, it is not hard to see that

$$
\min _{s \in\left[0,2 \ln j_{c\left(t_{0}\right)}(p)\right]} \operatorname{lnj} j_{c\left(t_{0}\right)}(\sigma(s)) \geq 0.2407
$$

Step-2-1: If $\operatorname{Inj}_{c\left(t_{0}\right)}(p)>\operatorname{arcsinh}(1)$, it is not hard to see that

$$
\min _{s \in\left[0,2 \ln j_{c\left(t_{0}\right)}(p)\right]} \operatorname{lnj} j_{c\left(t_{0}\right)}(\sigma(s)) \geq 0.2407 .
$$

Proposition (Teo 2009)

Let X be a closed hyperbolic surface and μ be a harmonic Beltrami differential on X. Then for any $p \in X$,

$$
|\mu(p)|^{2} \leq C(r) \int_{B(p ; r)}|\mu(z)|^{2} \mathrm{dArea}(z), \forall 0<r \leq \operatorname{lnj}_{X}(p)
$$

where the constant $C(\bullet)$ is a function of \bullet.

Step-2-1: If $\operatorname{Inj}_{c\left(t_{0}\right)}(p)>\operatorname{arcsinh}(1)$, it is not hard to see that

$$
\min _{s \in\left[0,2 \operatorname{lnj}_{c\left(t_{0}\right)}(p)\right]} \operatorname{lnj} j_{c\left(t_{0}\right)}(\sigma(s)) \geq 0.2407 .
$$

Proposition (Teo 2009)

Let X be a closed hyperbolic surface and μ be a harmonic Beltrami differential on X. Then for any $p \in X$,

$$
|\mu(p)|^{2} \leq C(r) \int_{B(p ; r)}|\mu(z)|^{2} \mathrm{dArea}(z), \forall 0<r \leq \operatorname{lnj}_{X}(p)
$$

where the constant $C(\bullet)$ is a function of \bullet.
By applying the Proposition above, Step-1 and a Necklace type inequality we get

$$
\left.\left|\frac{d}{d t} \sqrt{\operatorname{lnj}_{c(t)}(p)}\right|_{t=t_{0}} \right\rvert\, \leq 0.3454
$$

Proposition (Necklace type inequality)

Let X be a hyperbolic surface. For any $p \in X$ we let $\sigma:\left[0,2 \operatorname{lnj}_{X}(p)\right] \rightarrow X$ be a shortest nontrivial geodesic loop based at p. Assume that

$$
\inf _{s \in\left[0,2 \ln j_{X}(p)\right]} \operatorname{lnj} j_{X}(\sigma(s)) \geq 2 \varepsilon_{0}
$$

for some uniform constant $\varepsilon_{0}>0$. Then for any function $f \geq 0$ on X, we have

$$
\int_{0}^{2 \ln j_{X}(p)}\left(\int_{B\left(\sigma(s) ; \varepsilon_{0}\right)} f \mathrm{dArea}\right) d s \leq 12 \varepsilon_{0} \int_{\mathcal{N}_{\varepsilon_{0}}(\sigma)} f \mathrm{dA} \text { rea }
$$

Where $B\left(\sigma(s) ; \varepsilon_{0}\right)=\left\{q \in X\right.$; $\left.\operatorname{dist}(q, \sigma(s))<\varepsilon_{0}\right\}$ and $\mathcal{N}_{\varepsilon_{0}}(\sigma)$ is the ε_{0}-neighbourhood of σ, i.e.,

$$
\mathcal{N}_{\varepsilon_{0}}(\sigma)=\left\{z \in X ; \operatorname{dist}\left(x, \sigma\left(\left[0,2 \operatorname{lnj}_{X}(p)\right]\right)\right)<\varepsilon_{0}\right\}
$$

Step-3 (Endgame): We apply the Fundamental Theorem of

 Calculus to get$$
\left|\sqrt{\operatorname{lnj}_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right|
$$

Step-3 (Endgame): We apply the Fundamental Theorem of Calculus to get

$$
\left|\sqrt{\operatorname{lnj}_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right|=\left|\int_{0}^{\operatorname{dist}_{w p}(X, Y)} \frac{d}{d t}\left(\sqrt{\ln j_{c(t)}(p)}\right) d t\right|
$$

Step-3 (Endgame): We apply the Fundamental Theorem of Calculus to get

$$
\begin{aligned}
\left|\sqrt{\operatorname{lnj} X_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right| & =\left|\int_{0}^{\operatorname{dist}_{w p}(X, Y)} \frac{d}{d t}\left(\sqrt{\operatorname{lnj}_{c(t)}(p)}\right) d t\right| \\
& \leq \int_{0}^{\operatorname{dist}_{w p}(X, Y)}\left|\frac{d}{d t}\left(\sqrt{\operatorname{lnj}_{c(t)}(p)}\right)\right| d t
\end{aligned}
$$

Step-3 (Endgame): We apply the Fundamental Theorem of Calculus to get

$$
\begin{aligned}
\left|\sqrt{\operatorname{lnj}_{X}(p)}-\sqrt{\operatorname{lnj}_{Y}(p)}\right| & =\left|\int_{0}^{\operatorname{dist}_{w p}(X, Y)} \frac{d}{d t}\left(\sqrt{\ln j_{c(t)}(p)}\right) d t\right| \\
& \leq \int_{0}^{\operatorname{dist}_{w p}(X, Y)}\left|\frac{d}{d t}\left(\sqrt{\ln j_{c(t)}(p)}\right)\right| d t \\
& \leq 0.3884 \operatorname{dist}_{w p}(X, Y)
\end{aligned}
$$

as desired.

Thank you!

