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Let f : U → V be a sense-preserving homeomorphism of domains
U, V ⊆ Rn. We define, for any ζ ∈ U,

Hf (ζ) = lim sup
r→0+

max|z−ζ |=r |f(z) − f(ζ)|

min|z−ζ |=r |f(z) − f(ζ)|
.

Denote by

H(f) =


∞, if sup

ζ∈U
Hf (ζ) = ∞,

ess sup
ζ∈U

Hf (ζ), if sup
ζ∈U

Hf (ζ) , ∞,

the linear dilatation of f .
When H(f) < ∞, we call it quasiconformal.



Theorem

A quasiconformal homeomorphism f : U → V possesses the

following properties:

I f is A. C. L (Absolutely Continuous on Lines). Also it is

differentiable with Jacobian Jf (ζ) > 0 almost everywhere;

I f−1 : V → U is quasiconformal;

I For measurable set E ⊂ U, the measure m(E) = 0 implies

that m(f(E)) = 0.



Lemma

If A is an (n × n)-real matrix with determinant det(A) > 0, then

there exist P, Q ∈ SO(n) such that

P · A · Q = diag (λ1, λ2, · · · , λn),

with λ1 ≥ λ2 ≥ · · · ≥ λn > 0.

That is, for any orientation preserving linear mapping A : Rn → Rn,
there are orthogonal bases {v1, v2, · · · , vn} and {w1,w2, · · · ,wn}

such that the matrix A with respect to these bases is diagonal.
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Proof:
Since the determinant det(A) > 0, the symmetric matrix AAT is
positive definite. There exists P ∈ SO(n) such that

P · AAT · PT = diag (λ2
1, λ

2
2, · · · , λ

2
n),

where λ1 ≥ λ2 ≥ · · · ≥ λn > 0. Denote

Q = AT · PT · diag (λ−1
1 , λ−1

2 , · · · , λ−1
n ).

Then QT · Q = In. Consequently,

P, Q ∈ SO(n) and P · A · Q = diag (λ1, λ2, · · · , λn).



Suppose that a quasiconformal map f : U → V is differentiable at
point ζ with Jacobian Jf (ζ) > 0.

Let A = A(ζ) be the Jacobian matrix of f .

Suppose that
λ1 ≥ λ2 ≥ · · · ≥ λn > 0

are the eigenvalues of the matrix A .



(i) the linear dilatation. H(A) =
max{|Aζ | : |ζ | = 1}
min{|Aζ | : |ζ | = 1}

=
λ1

λn
;

(ii) the outer dilatation. KO(A) =
|A |n

|det(A)|
=

λn
1

λ1λ2 · · · λn
;

(iii) the inner dilatation. KI(A) =
|A#|n

|det(A)|n−1 =
λ1λ2 · · · λn

λn
n

,

where A# is the adjugate matrix of A .

In geometric terms, H(A) measures the eccentricity of the ellipsoid
A(Sn−1), while HI(A) and HO(A) relate the volume of A(Bn) to the
volumes of the balls centered at the origin that are, respectively,
inscribed in and circumscribed about A(Sn−1).
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Obviously, using definitions we obtain the following symmetry
relations:

H(A) = H(A−1), KO(A) = KI(A−1).

Furthermore, these dilatation functions are submultiplicative. That
is, for any non-degenerate (n × n)-matrices A and B,

H(AB) ≤ H(A)H(B),

KI(AB) ≤ KI(A)KI(B),

KO(AB) ≤ KO(A)KO(B).

For the proofs we will use exterior algebra.



If f satisfies the following conditions:

I f is ACL (Absolutely Continuous on Lines);

I f is differentiable almost everywhere;

I the Jacobian Jf (ζ) > 0 almost everywhere,

Definition

H(f) = ess sup
ζ∈D

H(Df(ζ)),

KI(f) = ess sup
ζ∈D

KI(Df(ζ)), KO(f) = ess sup
ζ∈D

KO(Df(ζ)).

If one of the above conditions is not satisfied, then

H(f) = KI(f) = KO(f) = ∞.
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From the definition, it follows that

1 ≤ H(f) ≤ KI(f), 1 ≤ H(f) ≤ KO(f), (1)

1 ≤ KO(f) ≤ H(f)n−1, 1 ≤ KI(f) ≤ H(f)n−1. (2)

In particular, when n = 2 these dilatations

H(f) = KO(f) = KI(f).

Theorem (analytic definition)

A homeomorphism f is quasiconformal if and only if one of the

dilatations H(f),KI(f),KO(f) is finite.
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Remark:
1. In dimension n = 2 a theorem due to Gehring and Lehto asserts
that an ACL-homeomorphism is differentiable almost everywhere.

2. It is not known whether the corresponding statement is true in
higher dimensions.

3. Väisälä shows that if the given mapping f is an
ACLn-homeomorphism, then it is necessarily differentiable almost
everywhere. in D.
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Alternative definition

Ring domain: A domain of Rn ∪ {∞} with two boundary
components.

For any ring domain A ⊂ Rn, ΓA denote the family of local
rectifiable curves joining ∂A . The muduli of A

M(ΓA ) = inf
∫

A
ρndm,

where the infimum is taken over all non-negative Borel functions
ρ : A → [0,∞] with

∫
γ
ρds ≥ 1, ∀γ ∈ ΓA .
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For any homeomorphism f : U → V , Väisälä gives

KI(f) = sup
M(Γf(A))

M(ΓA )
, KO(f) = sup

M(ΓA )

M(Γf(A))
,

where the suprema are taken over all ring domains A ⊂ U with
A ⊂ U.



A dilatation is lower semicontinuous if {f : K(f) ≤ K } are closed
under local uniform convergence. That is, if
fk : U → Vk , k = 1, 2, · · · is a sequence of quasiconformal
mappings which converges locally uniformly to a homeomorphism
f : U → V, then K(f) ≤ lim inf

k→∞
K(fk ).

Theorem

If fk : U → Vk is a sequence of qc mappings locally uniformly

converging to f : U → V,

KI(f) ≤ lim inf
i→∞

KI(fi), KO(f) ≤ lim inf
i→∞

KO(fi).

That is, f is either a constant or K-quasiconformal.



In contrast, the linear dilatation H is not lower semicontinous.

Theorem (T. Iwaniec)

For each dimension n ≥ 3 and K > 1 there exists a sequence of

quasiconformal mappings fk : Rn → Rn converging uniformly to a

linear quasiconformal map f : Rn → Rn such that

H(x, fk ) = K < H(x, f), a.e. Rn, k = 1, 2 · · · ,

It implies that the standard Teichmüller metric approach to
topology on the spaces of deformations for hyperbolic manifolds of
dimension 2 has no counterpart in dimensions greater than 2.



Any 1-quasiconformal homeomorphisms of plane domains are
holomorphic.

For n(≥ 3)-dimensional 1-quasiconformal homeomorphisms, we
have the following Liouville Theorem due to F. Gehring and Yu.
Reshetnyak. Note that this result involves no priori differentiability
hypotheses.

Theorem (Liouville Theorem)

An n(≥ 3)-dimensional quasiconformal homeomorphism f : U → V

is 1-quasiconformal if and only if f is the restriction to U of a

Möbius transformation, i.e. the composition of even reflections in

(n − 1)-spheres or planes.
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Bi-lipschitz mapping

Definition

A map is L -bi-Lipschitz if

L−1 |z − z′| ≤ |f(z) − f(z′)| ≤ L |z − z′|, ∀ z, z′ ∈ Rn.

The least L is the isometric dilatation.

Obviously, by definition, an L -bi-Lip mapping is L2-quasiconformal.

The converse is not true. For example,

f(x) = |x |b−1, b = K1−n,

is K -quasiconformal but not bi-Lipschitz in Rn.
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Minimal factorization

For quasiconformal maps f1, f2 and f = f2 ◦ f1, we always have

K [f ] ≤ K [f2] · K [f1],

where K = H or KI, KO

When K [f ] = K [f2] · K [f1], we call f = f2 ◦ f1 is a minimal
factorization in the dilatation f .
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Suppose that f is a plane quasiconformal map with maximal
dilatation K and 1 < K1 < K .
The Measurable Riemann Mapping Theorem tells us that a
minimal factorization f = f2 ◦ f1 always exists with

K(f1) = K1, K(f2) = K/K1.

In fact, supposing f has Beltrami differential µ(z), we choose
f1 : ∆→ ∆ to be the quasi-conformal mapping with Beltrami
differential t · µ(z), where

K1 =
1 + t |µ|∞
1 − t |µ|∞

, K =
1 + |µ|∞
1 − |µ|∞

.

Then f = (f ◦ f−1
1 ) ◦ f1 is a minimal factorization.
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Let λ > 0 and let

sλ(ρ, θ) = (ρ, θ + λ log ρ) : R2 → R2

be the logarithmic spiral mapping, where (ρ, θ) are the polar
coordinates of R2.

 

Figure:



sλ has Betrami differential

µλ(z) =
iλ

2 + iλ
·

z
z̄
,

with maximal dilatation

K =

√
4 + λ2 + λ
√

4 + λ2 − λ
.

Furthermore, the logarithmic spiral mapping sλ is
√

K -bi-lipschitz.

Using minimal factorization of quasiconformal map, the number of

quasiconformal factors of sλ with maximal dilatations ≤ L grows

like

logL K .
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On the other hand, we have

Theorem (M. Freedman & Z. He)

It requires at least K√
L2−1

factors to write sλ into a composition of

L-bi-lipschitz homeomorphisms. That is, if

sλ = fm ◦ · · · ◦ f1,

where fi is L-bi-lip, then the number m

≥
K

√
L2 − 1

.



Thus for large K , the number of factors with small isometric
dilatation needed to “unwind” the spiral map sλ is much greater
that the number of factors with the same linear dilatation.

� M. Freedman & Z. He, Factoring the logarithmic spiral. Invent.
Math. 92 no. 1 (1988) 129–138.



Define

fn,λ(z, t1, · · · , tn−2) =

(
sλ(z),

t1
√

K
, · · · ,

tn−2
√

K

)
.

where z ∈ R2 and (t1, · · · , tn−2) ∈ Rn−2.

fn,λ is a quasiconformal homeomorphism with maximal distortion

K = H(fn,λ) = KI(fn,λ), K2 = KO(fn,λ).
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Theorem

The n-dimensional quasiconformal map fn,λ : Rn → Rn admits no

minimal factorizations in the linear dilatation. That is,

fn,λ , f2 ◦ f1

for any quasiconformal map f1 with H(f1) = K s and quasiconformal

map f2 with H(f2) = K1−s , where 0 < s < 1.

Theorem

The n-dimensional quasiconformal map fn,λ admits no minimal

factorizations in the inner dilatation.
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By setting gn,λ ≡ f−1
n,λ : Rn → Rn, we have

Theorem

The quasiconformal mapping gn,λ admits no minimal factorizations

in the outer dilatation.

Open Problem. For any A > 1, is there an n-dimensional (n ≥ 3)
quasiconformal map f : Rn → Rn with K(f) = K/A such that
f , f2 ◦ f1 for any quasiconformal map f1 with K(f1) = K s and
quasiconformal map f2 with K(f2) = K1−s?

� Zhengxu He & L, Factorization of Higher Dimensional
Quasiconformal Maps, Trans. A.M.S. 372 (2019), no. 8,
5341õ5353.
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Quasisymmetric maps

Let (X , d), (Y , d′) be metric spaces.

Definition (weak quasisymmetry)

Given a homeomorphism f : X → Y , f is quasisymmetric if there is

a constant H < ∞, for all x ∈ X and all r > 0,

Hf (x, r) =
sup|y−x |=r

{
|f(y) − f(x)|

}
inf|y−x |=r

{
|f(y) − f(x)|

} ≤ H. (3)
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Quasisymmetric mappings on the real line R were first introduced
by Beurling & Ahlfors.

Any quasiconformal mappings between H2 can be extended to a
quasisymmetric self-mapping of the real line ∂H2 = R.

Conversely, quasisymmetric self-mapping of R can be extended to
a quasiconformal self-mapping of H2.



Quasisymmetric mappings on the real line R were first introduced
by Beurling & Ahlfors.

Any quasiconformal mappings between H2 can be extended to a
quasisymmetric self-mapping of the real line ∂H2 = R.

Conversely, quasisymmetric self-mapping of R can be extended to
a quasiconformal self-mapping of H2.



Quasisymmetric mappings on the real line R were first introduced
by Beurling & Ahlfors.

Any quasiconformal mappings between H2 can be extended to a
quasisymmetric self-mapping of the real line ∂H2 = R.

Conversely, quasisymmetric self-mapping of R can be extended to
a quasiconformal self-mapping of H2.



Stronger quasisymmetry condition

Definition

A homeomorphism f : X → Y between two metric spaces is called

η-quasisymmetric (η − QS) if there is a homeomorphism

η : [0,∞)→ [0,∞) such that

|f(x) − f(a)|

|f(x) − f(b)|
≤ η

(
|x − a |
|x − b |

)
(4)

for each triple x, a, b of points in X .



Obviously, (4) implies quasisymmetry as defined in (3). In general,
these two notions are not equivalent.

However, in any pathwise connected doubling metric spaces we
know that (3) implies (4).

A metric space is called doubling if and only for all 0 < r < R, there
is N = N(R/r) such that every open ball of radius R can be
covered by N open balls of radius r .

Eg: Rn, n ≥ 2, these two definitions are equivalent.
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Definition

For metric spaces, a homeomorphism f : X → Y is said

quasiconformal if there is a constant H < ∞ such that

Hf (x) = lim sup
r→0

Hf (x, r) ≤ H (5)

for all x ∈ X , where Hf (x, r) is defined in (3).

If f is η-quasisymmetric, then Hf (x, r) =
Lf (x,r)
lf (x,r)

≤ η(1). So,
quasisymmetric mappings are quasiconformal.
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Conversely, If f : X → Y quasiconformal, X ,Y Q-regular, X
Lowner, Y -linearly locally connected, then f locally
η-quasisymmetric.

Eg. If f : Rn → Rn, n ≥ 2, is quasiconformal, then it is
quasisymmetric.



By a curve we mean any continuous mapping γ : [a, b]→ X . The
length of γ is defined by

l(γ) = sup

 n∑
i=1

|γ(ti) − γ(ti+1)|

 ,
where the supremum is taken over all partitions
a = t0 < t1 < · · · < tn = b.

The curve is rectifiable if l(γ) < ∞.



Definition

For c ≥ 1, a metric space X is c-quasiconvex if each pair of points

x, y ∈ X can be joined by an curve γ with length l(γ) ≤ c |x − y |.

Example: S1
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Definition

For any x ∈ G, we denote by δG(x) the distance between x and the

boundary of G. That is,

δG(x) = dist(x, ∂G).

Definition

Let γ be a rectifiable curve in an open set G  X . The

quasihyperbolic length of γ in G is

lqh(γ) =

∫
γ

ds
δG(x)

.



Gehring and others introduced the quasihyperbolic metric kG(·, ·).
It is an important tool in the research of quasisymmetric and
quasiconformal mappings between metric spaces.

The quasihyperbolic distance between x and y in G is defined by

kG(x, y) = inf
γ

lqh(γ),

where γ runs over all rectifiable curves in G joining x and y. If
there is no rectifiable curve in G joining x and y, we define

kG(x, y) = +∞.
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It is an important tool in the research of quasisymmetric and
quasiconformal mappings between metric spaces.

The quasihyperbolic distance between x and y in G is defined by

kG(x, y) = inf
γ

lqh(γ),

where γ runs over all rectifiable curves in G joining x and y. If
there is no rectifiable curve in G joining x and y, we define

kG(x, y) = +∞.



If G  X is a rectifiably connected open set, it is clear that
kG(x, y) < ∞ for any two points x, y ∈ G. Thus it is easy to verify
that kG(·) is a metric in G, called the quasihyperbolic metric of G.



I Upper half plane

H2 = {z ∈ C : =z > 0}. hyperbolic metric dH = ds
=z .

δH2(z) = dist(z, ∂H2) = =z.

I Unit disk

∆ = {z ∈ C : |z| < 1}. hyperbolic metric d∆ = 2ds
1−|z|2 .

1/2 ≤
δ∆(z)

1 − |z|2
≤ 1.



By using the Schwarz Lemma, we have the following
Schwarz-Picard Lemma.

Theorem

If f : H2 → H2 is a conformal mapping, then

kH2

(
f(x1), f(x2)

)
≤ kH2(x1, x2),

for all x1, x2 ∈ H
2.

Gehring and Osgood proved that quasihyperbolic metric is
quasi-invariant under any K -quasiconformal mappings of a domain
D ⊂ Rn.
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The result of Gehring & Osgood can be stated as follows:

Theorem

There exists a constant c = c(n,K) with the following property: if f

is a K-quasiconformal mapping of domain D onto D′, then

kD′
(
f(x1), f(x2)

)
≤ c max

(
kD(x1, x2), kD(x1, x2)α

)
,

for all x1, x2 ∈ D, where α = K1/(1−n).

� Gehring, F. W. & Osgood, B. G., Uniform domains and the
quasi-hyperbolic metric. J. Analyse Math., 36 (1979), 50–74.



In this talk we shall give a general result for metric spaces.

Theorem

Let X be a c-quasiconvex complete metric space and let Y be a

c′-quasiconvex metric space. Suppose that G  X and G′  Y are

two domains and f : G → G′ is an H-quasisymmetry. Then there

exists a non-decreasing function ψ : (0,∞)→ (0,∞) such that, for

all x, y ∈ G,

kG′
(
f(x), f(y)

)
≤ ψ

(
kG(x, y)

)
.

Note that the function ψ = ψc,c′,H and ψ(t)→ 0 as t → 0.



It is clear that the converse to the above Theorem is also an
interesting problem.

Generally, the inverse problem of this Theorem is false.

Here we study the above problem and give a partial answer.
That is, for any two c-convex and complete metric spaces, we
prove that quasi-invariance of the quasihyperbolic metrics implies
the corresponding map is quasiconformal.
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Here we study the above problem and give a partial answer.
That is, for any two c-convex and complete metric spaces, we
prove that quasi-invariance of the quasihyperbolic metrics implies
the corresponding map is quasiconformal.



Theorem

Let X be a c-quasiconvex, complete metric space and G  X be a

domain. Let G′  Y be be a domain in a complete metric space Y.

Suppose that f : G → G′ is a homeomorphism.

If there is an increasing function ϕ : (0,∞)→ (0,∞), and for any

sub-domain E ⊆ G and ∀x, y ∈ E,

kf(E)

(
f(x), f(y)

)
≤ ϕ

(
kE(x, y)

)
, (6)

then f is an H-quasiconformal mapping with

H = eϕ(2c) − 1.



As an application of the above Theorems to the composition map,
we obtain

Theorem

Let X(resp. Y) be a c1(resp. c2)-quasiconvex and complete metric

space and let Z be a c3-quasiconvex metric space.

For any two domains G′  Y and G′′  Z, if f : G → G′ is an

H1-quasisymmetric mapping and g : G′ → G′′ is an

H2-quasisymmetric mapping, then g ◦ f is an

H = H(ci ,Hi)-quasiconformal mapping.

� Xiaojun Huang & L, Quasihyperbolic metric and Quasisymmetric
mappings in metric spaces, Trans. A.M.S. 367 (2015), no. 9,
6225-6246.



Thanks for your attention!


