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1. Higgs at Planck scale



Desert

Experimentally  LHC
SM is good at least below a few TeV.
No signal for new particles or physics.
Especially no indication of low energy SUSY.

Theoretically UV region of SM by RG  
No contradiction below Planck/string scale.

SM is good to high energy scales.



It is natural to imagine that SM is directly 
connected to the string scale dynamics without 
large modification.
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All the couplings are small 
and the perturbative picture 
is very good up to the Planck 
scale.



(1) The three quantities,

become zero around the string scale.

Triple coincidence

( ), ,B B Bmλλ β λ

Froggatt and Nielsen ’95.
Multiple Point Criticality Principle (MPP)

(2) The Higgs potential becomes flat (or zero) 

around the string scale. 
V

As we will see in the next 2 slides, RG analyses 
indicate



Higgs self coupling 
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(1) A toy model – Critical Higgs inflation
Hamada, Oda, Park and HK  ‘14
Bezrukov,Shaposhnikov

We assume 
a) Nature does fine tunings so that the Higgs potential  

becomes flat around the string scale.
b) We can trust the Higgs potential including the string 

scale.
c) We introduce a non-minimal coupling 𝝃𝝃𝝃𝝃𝒉𝒉𝟐𝟐 of order 𝝃𝝃~𝟏𝟏𝟏𝟏.

⇒ A realistic model can be constructed.

Higgs inflation

Higgs potential may be flat around the string scale.
It suggests that the Higgs field can play the role of inflaton.
Here I will introduce two attempts.



non-minimal coupling 𝝃𝝃𝝃𝝃𝒉𝒉𝟐𝟐

𝜉𝜉 can be small as ~10.  

We can make a realistic model of inflation.
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In the Einstein frame the 
effective potential becomes
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(2) General bounds
Hamada, Nakanish, Oda and HK: arXiv: 1709.9035

We trust the effective potential only below the string
scale,  and try to make bounds on the physical parameters.

We assume
a) Higgs field is the inflaton, and the inflation occurs  

beyond the string scale 𝒎𝒎𝒔𝒔 ∼ 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝐆𝐆𝐆𝐆𝐆𝐆 . 
b) We can trust field theory below the string scale.

We then have a lower bound on the vacuum energy at the 
inflation. 



Because 𝒉𝒉 should roll down to 0, we have an equality
𝑽𝑽𝐢𝐢𝐢𝐢𝐢𝐢 > 𝑽𝑽𝒉𝒉<𝒎𝒎𝒔𝒔

𝒎𝒎𝒎𝒎𝒎𝒎 .  
Because 𝑽𝑽𝐢𝐢𝐢𝐢𝐢𝐢 is proportional to the tensor perturbation as

𝑨𝑨𝒕𝒕 =0.068 𝑽𝑽𝐢𝐢𝐢𝐢𝐢𝐢 (in Planck unit),
using the value 𝑨𝑨𝒔𝒔 = 𝟐𝟐. 𝟐𝟐 × 𝟏𝟏𝟏𝟏−𝟗𝟗, we have 

𝒓𝒓 = 𝑨𝑨𝒕𝒕
𝑨𝑨𝒔𝒔

> 𝑽𝑽𝒉𝒉<𝒎𝒎𝒔𝒔
𝒎𝒎𝒎𝒎𝒎𝒎 / 𝟑𝟑. 𝟐𝟐 × 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝐆𝐆𝐆𝐆𝐆𝐆 𝟒𝟒.

𝒎𝒎𝒔𝒔 Higgs field value 𝒉𝒉

𝐺𝐺𝐢𝐢𝐢𝐢𝐢𝐢

slow roll

inflation

𝐺𝐺𝐢𝐢𝐢𝐢𝐢𝐢

Effective Higgs potential

Field theory can be trusted.

𝐺𝐺ℎ<𝑚𝑚𝑠𝑠



This gives a rather strong constraint.
⇒ We can obtain bounds on possible modifications of SM.

ℒ~ −
𝜅𝜅
2

𝑆𝑆2𝐻𝐻2

𝑚𝑚𝐷𝐷𝐷𝐷 = 𝜅𝜅 × 3.2 TeV

(Ex.) SM + Higgs portal scalar dark matter



• Desert
SM is valid to the string scale at least theoretically. 
SM might be directly connected to string theory without 
large modification.

• Marginal stability
Higgs field is near the stability bound. 

• Zero bare mass
The bare Higgs mass is close to zero at the string scale. 
It implies that Higgs is a massless state of string theory.

• Flat potential and Higgs inflation
Higgs self coupling and its beta function become zero at the
string scale. 
Higgs potential can be flat around the string scale, which
suggests the Higgs inflation.

SM around Planck scale



2. Fine tunings by nature itself



There are several attempts to extend the 
conventional framework of the local field theory 
in order to solve the fine tuning problem.
• asymptotic safety

Shaposhnikov, Wetterich
• multiple point criticality principle

Froggatt, Nielsen.
• classical conformality

Bardeen
Meissner, Nicolai,
Foot, Kobakhidze, McDonald, Volkas
Iso, Okada, Orikasa.

• baby universe and multi-local action
Coleman
Okada, Hamada, Kawana, Sakai, HK 

They are related.



Imagine a system that is described by the path 
integral of not the canonical ensemble

MPP of Froggatt and Nielsen

[ ] [ ]( )exp ,d Sϕ ϕ−∫
but the micro canonical ensemble

[ ] [ ]( ) ,d S Cϕ δ ϕ −∫
or an even more general ensemble  (next slide)

[ ] [ ] [ ]( )1 2, , .d f S Sϕ ϕ ϕ∫ 

Still the system is equivalent to the ordinary field 
theory in the large space-time volume limit.
But the parameters of the corresponding field theory 
are automatically fixed such that the vacuum is at a 
(multiple) criticality point.



In fact we can show that the low energy effective 
theory of QG / string theory is given by the 
multi-local action:

( )eff 1 2, ,

,

( ) ( ).
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Here 𝑶𝑶𝒊𝒊 are local scalar operators such as    
𝟏𝟏 , 𝝃𝝃 , 𝝃𝝃𝝁𝝁𝝁𝝁𝝃𝝃𝝁𝝁𝝁𝝁 , 𝑭𝑭𝝁𝝁𝝁𝝁 𝑭𝑭𝝁𝝁𝝁𝝁, 𝝍𝝍𝜸𝜸𝝁𝝁𝑫𝑫𝝁𝝁𝝍𝝍 , ⋯ .

Integrating coupling constants

Coleman ‘89
Tsuchiya-Asano-HK



Because 𝑺𝑺𝐆𝐆𝐢𝐢𝐢𝐢 is a function of 𝑺𝑺𝒊𝒊’s , we can express 
𝐆𝐆𝐞𝐞𝐞𝐞(𝒊𝒊𝑺𝑺𝐆𝐆𝐢𝐢𝐢𝐢) by a Fourier transform as

( )( ) ( )1 2 1 2exp , , , , exp ,eff i i
i

iS S S d w i Sλ λ λ λ 
= 

 
∑∫ 

where 𝝀𝝀𝒊𝒊’s are Fourier conjugate variables to 𝑺𝑺𝒊𝒊’s, 
and 𝒘𝒘 is a function of 𝝀𝝀𝒊𝒊’s .

[ ] ( ) ( ) [ ]effexp exp .i i
i

dZ d iS Sd w iφ λ λ φ λ 
= = 

 
∫ ∫ ∑∫

Then the path integral for 𝑺𝑺𝐆𝐆𝐢𝐢𝐢𝐢 becomes 

Because 𝑶𝑶𝒊𝒊 are local operators, ∑𝒊𝒊 𝝀𝝀𝒊𝒊 𝑺𝑺𝒊𝒊 is an ordinary 
local action where 𝝀𝝀𝒊𝒊 are regarded as the coupling 
constants.

Therefore the system is the ordinary field theory, 
but we have to integrate over the coupling constants
with some weight 𝒘𝒘(𝝀𝝀).



If a small region 𝝀𝝀~𝝀𝝀(𝟏𝟏)dominates the 𝝀𝝀 integral,
it means that the coupling constants are fixed to 𝝀𝝀(𝟏𝟏).      

Nature does fine tunings

[ ] ( ) ( ) [ ]

( )

effexp exp
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∑∫ ∫ ∫

∫ = 𝑍𝑍 𝜆𝜆
Ordinary field theory



We can give some explanation to MPP.  
Essence:
We can approximate  𝒁𝒁 𝝀𝝀 = 𝐆𝐆𝐞𝐞𝐞𝐞 −𝒊𝒊𝑽𝑽𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗 𝝀𝝀 ,
because our universe has been cooled down for long time.

1) extremum
If 𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗 𝝀𝝀 is smooth and has an extremum at 𝝀𝝀𝑪𝑪 , the 

stationary point dominates and we have

𝐆𝐆𝐞𝐞𝐞𝐞 −𝒊𝒊𝑽𝑽𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗 𝝀𝝀 ~ 𝟐𝟐𝟐𝟐
𝒊𝒊 𝑽𝑽|𝑽𝑽′′ 𝝀𝝀𝒗𝒗 |

𝜹𝜹 𝝀𝝀 − 𝝀𝝀𝒗𝒗 + 𝑶𝑶(𝟏𝟏
𝑽𝑽

).

Thus 𝝀𝝀 is fixed to 𝝀𝝀𝑪𝑪 in the limit 𝑽𝑽 → ∞ .

λ

vacE

Cλ

’14 ’15 Hamada, Kawana, HK

space-time volume



2)  Kink (need not be an extremum)

If 𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗 𝝀𝝀 has a kink (first order phase transition), 
𝒁𝒁 𝝀𝝀 = 𝐆𝐆𝐞𝐞𝐞𝐞 −𝒊𝒊𝑽𝑽𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗 𝝀𝝀

~
𝒊𝒊
𝑽𝑽

𝟏𝟏
𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗′(𝝀𝝀𝒗𝒗 + 𝟏𝟏)

−
𝟏𝟏

𝑽𝑽𝒗𝒗𝒎𝒎𝒗𝒗′(𝝀𝝀𝒗𝒗 − 𝟏𝟏)
𝜹𝜹 𝝀𝝀 − 𝝀𝝀𝒗𝒗 + 𝑶𝑶(

𝟏𝟏
𝑽𝑽𝟐𝟐)

Thus 𝝀𝝀 is fixed to 𝝀𝝀𝑪𝑪 in the limit 𝑽𝑽 → ∞ . ⇒  original MPP

∫𝑎𝑎
𝑏𝑏 dx exp 𝑖𝑖𝐺𝐺𝑖𝑖 𝜑𝜑 𝑖𝑖

=
1
𝑖𝑖𝐺𝐺

exp 𝑖𝑖𝐺𝐺𝑖𝑖 𝜑𝜑 𝑖𝑖
a

b

+ O(
1

V2)

∫𝑎𝑎
𝑏𝑏 dx exp 𝑖𝑖𝐺𝐺𝑓𝑓(𝑖𝑖) 𝜑𝜑 𝑖𝑖

=
1
𝑖𝑖𝐺𝐺

exp 𝑖𝑖𝐺𝐺𝑓𝑓(𝑖𝑖 )
1

𝑓𝑓′(𝑖𝑖)
𝜑𝜑 𝑖𝑖

a

b

+ O(
1

V2)

(𝑓𝑓is monotonic)
λ

vacE

Cλ

monotonic



If we consider the time evolution of universe, 
the definition of 𝒁𝒁(𝝀𝝀) is not a priori clear.
For example, we need to specify the initial and 
final sates.

Generalization

However, even if we do not know the precise form 
of 𝒁𝒁(𝝀𝝀), we expect that 𝒁𝒁(𝝀𝝀)is determined by the 
late stage of the universe, because most of the 
space-time volume comes from the late stage.

From this we can make some predictions on 𝝀𝝀’s
under some circumstances. 
Here we consider two cases.



QCDθ

Z

1. It becomes important only after the QCD phase
transition.

2. The masses and life-times of hadrons are 
invariant under

𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 → −𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 .

⇒ We expect that 𝒁𝒁 is even in 𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫.
⇒ 𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 is tuned to 0 if 𝒁𝒁 behaves like

(1) Symmetry example 𝜽𝜽𝑸𝑸𝑪𝑪𝑫𝑫 Nielsen, Ninomiya



Conditions:
1. Physics changes drastically at some 

value of the couplings.
2.  𝒁𝒁 is monotonic elsewhere.

⇒ The couplings are tuned to the value,
as we have seen for kink.

(2) Edge or drastic change

Hλ

Z

Cλ

Examples:
Cosmological constant,
Higgs inflation,
Classical conformality, 
…

∞finite

V



In this way we may introduce 
the generalized MPP,
“ Coupling constants, which are relevant in low 
energy region, are tuned to values that 
significantly change the history of the universe 
when they are changed.”



Many open questions

• Degenerate vacuum or flat potential?
• Origin of the weak scale? 
• Small cosmological constant?
• How many parameters are tuned? 

Too much big fix?

⇒ We need the precise form of 𝒁𝒁(𝝀𝝀).

⇒ We should investigate the wave function 
of multiverse.                          Okada-HK

V



3. Emergence of weak scale 
from 

Planck scale
arXiv:1905.05656

J. Haruna, HK
arXiv:2008.08700

Y. Hamada, K. Oda, K. Yagyu , HK



Weak scale as a non-perturbative effect
Basic assumptions:
(1) SM is directly connected to the string theory 

without large modification. 

(2) The fundamental scale is only the Planck/string 
scale, which appears as the cut-off of the field 
theory that we are considering.

Question:
How does the weak scale appear?

SM+

string 

ms

(3) Relevant operators (couplings with positive 
mass dimensions) are tuned by nature itself 
through the generalized MPP.



Everybody’s guess:
Weak scale should appear as a non-perturbative 
effect.

Then it is related to the Planck scale as
𝒎𝒎𝑯𝑯 = 𝑴𝑴𝑷𝑷 𝒆𝒆−𝐜𝐜𝐜𝐜𝐢𝐢𝐜𝐜𝐜𝐜./𝒈𝒈𝒔𝒔 .

And the large hierarchy is naturally understood.

Problem:
Find a phenomenologically acceptable mechanism.



Various possibilities:

1. QCD like dimensional transmutation.
𝚲𝚲𝐐𝐐𝐐𝐐𝐐𝐐 = 𝚲𝚲 𝒆𝒆−𝐜𝐜𝐜𝐜𝐢𝐢𝐜𝐜𝐜𝐜./𝒈𝒈𝟏𝟏

𝟐𝟐

Not compatible with weakly coupled Higgs.

2. Coleman-Weinberg mechanism.
a) Original idea is to explain SSB of SM from   

the massless Higgs. 
Not acceptable.  𝒎𝒎𝑯𝑯 ≪ 𝒗𝒗𝑯𝑯

b) Additional gauge + complex scalar
Make a mass scale independently to SM 
sector. Then transfer it to SM through VEV.
Possible to make an acceptable model.



3. Even simpler (simplest) model.

ℒ𝝓𝝓𝑺𝑺 =
𝟏𝟏
𝟐𝟐

𝝏𝝏𝝓𝝓 𝟐𝟐 +
𝟏𝟏
𝟐𝟐

𝝏𝝏𝑺𝑺 𝟐𝟐 − 𝐆𝐆

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒

For a while we assume the 𝒁𝒁𝟐𝟐× 𝒁𝒁𝟐𝟐 invariance.
𝐙𝐙𝟐𝟐: 𝝓𝝓 → −𝝓𝝓
𝐙𝐙𝟐𝟐: 𝑺𝑺 → −𝑺𝑺

More important assumption is the classical 
conformality.

Two real scalars. Bornholdt,Tetradis, Wetterich‘94
Adams, Tetradis ‘95



What is classical conformality?

This sounds nonsense for normal fields theorists: 
There is no quantum mechanical symmetry that 
guarantees masslessness of scalars except SUSY.

Classical conformality
= “renormalized masses are 0” 

On the other hand, once we accept the existence of 
self-tuning mechanism, classical conformality is 
one of the natural choices.

More concretely, we can take the MPP:
“Coupling constants are fixed to critical points.”
But there are some variations in the meaning of 
“critical points”.



𝒎𝒎𝟐𝟐 > 𝟏𝟏 ⇒ 𝝓𝝓 = 𝟏𝟏 is metastable.
⇒ Universe remains in that state for a while.

𝒎𝒎𝟐𝟐 < 𝟏𝟏 ⇒ 𝝓𝝓 = 𝟏𝟏 is unstable.
⇒ Universe transitions quickly to another state. 

So the time evolution of the universe changes 
drastically at the point 𝒎𝒎𝟐𝟐= 𝟏𝟏 .

Suppose that the universe starts from 𝝓𝝓 = 𝟏𝟏.

(1) Critical points for cosmological evolution
Critical values that the time evolution of universe 
changes drastically when they are changed.

This is nothing but the classical conformality.



We will see that this actually happens when 
𝒎𝒎𝟐𝟐 = 𝒎𝒎𝒗𝒗

𝟐𝟐 .

(2) Critical points for the vacuum energy
Critical values that the phase of the vacuum 
changes when they are changed.

As we will see, there are various types of critical 
points.
In any case, renormalized masses are fixed to 
some values, and we have similar predictions.

For a while, we concentrate on the case (1) of 
classical conformality.



3-1 SSB of the 2 scalar model



Two real scalar model

ℒ𝝓𝝓𝝓𝝓 =
𝟏𝟏
𝟐𝟐

𝝏𝝏𝝓𝝓 𝟐𝟐 +
𝟏𝟏
𝟐𝟐

𝝏𝝏𝑺𝑺 𝟐𝟐 − 𝐆𝐆

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒

Classical conformality:
𝝏𝝏𝟐𝟐

𝝏𝝏𝝓𝝓𝟐𝟐 𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢|𝝓𝝓=𝑺𝑺=𝟏𝟏 = 𝟏𝟏, 𝝏𝝏𝟐𝟐

𝝏𝝏𝑺𝑺𝟐𝟐 𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢|𝝓𝝓=𝑺𝑺=𝟏𝟏 = 𝟏𝟏.

Basic feature
For a large region of the parameter space, one of 
the fields has non-zero vacuum expectation value.



RG analysis

Assumption:  cut off at Planck scale,
𝝆𝝆𝟏𝟏, 𝝆𝝆𝟏𝟏

′ , 𝜿𝜿𝟏𝟏 > 𝟏𝟏.

Beta functions:

𝜷𝜷𝝆𝝆′ =
𝟑𝟑

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 𝝆𝝆′𝟐𝟐 + 𝜿𝜿𝟐𝟐

𝜷𝜷𝜿𝜿 =
𝟏𝟏

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 𝝆𝝆𝜿𝜿 + 𝝆𝝆′𝜿𝜿 + 𝟒𝟒𝜿𝜿𝟐𝟐

𝜷𝜷𝝆𝝆 =
𝟑𝟑

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 𝝆𝝆𝟐𝟐 + 𝜿𝜿𝟐𝟐

When we decrease the renormalization point, 
one of the couplings becomes zero.  

SM +
small modifications string 

𝒎𝒎𝒔𝒔~𝑴𝑴𝑷𝑷

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒



We assume 𝝆𝝆 becomes zero first at 𝝁𝝁 = 𝝁𝝁∗ .

𝑀𝑀𝑃𝑃
𝜇𝜇∗

𝜌𝜌0′

𝜇𝜇

𝜌𝜌0

𝜅𝜅0

This is possible if 𝜿𝜿𝟏𝟏 ≫ 𝝆𝝆𝟏𝟏
′ > 𝝆𝝆𝟏𝟏 .

Then it is expected 
𝝓𝝓 ≠ 𝟏𝟏 ⇒ 𝑺𝑺 becomes massive through 𝜿𝜿

𝟒𝟒
𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐

⇒ 𝑺𝑺 = 𝟏𝟏

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒



One-loop effective potential

Effective potential for 𝑺𝑺 = 𝟏𝟏 :  

If we take 𝝁𝝁 = 𝝁𝝁∗ , this becomes  

=
𝝆𝝆(𝝁𝝁)

𝟒𝟒!
𝝓𝝓𝟒𝟒 +

𝝆𝝆 𝝁𝝁 𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝝆𝝆 𝝁𝝁 𝝓𝝓𝟐𝟐

𝝁𝝁𝟐𝟐

𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢 𝝓𝝓, 𝑺𝑺 = 𝟏𝟏

=
𝜿𝜿 𝝁𝝁∗

𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁∗ 𝝓𝝓𝟐𝟐

𝝁𝝁∗
𝟐𝟐

+
𝜿𝜿 𝝁𝝁 𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁 𝝓𝝓𝟐𝟐

𝝁𝝁𝟐𝟐

𝜙𝜙 loop 𝑆𝑆 loop

𝜙𝜙

𝐺𝐺eff

𝜇𝜇∗

𝜅𝜅(𝜇𝜇∗)

𝒗𝒗
⇒ 𝝓𝝓 = 𝒗𝒗 = 𝐜𝐜𝐜𝐜𝐢𝐢𝐜𝐜𝐜𝐜. 𝜇𝜇∗

𝜅𝜅(𝜇𝜇∗)

A mass scale 𝒗𝒗 emerges.

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒



Relation between 𝒗𝒗 𝐚𝐚𝐢𝐢𝐚𝐚 𝑴𝑴𝑷𝑷

For simplicity we consider the case 
𝝆𝝆𝟏𝟏 < 𝝆𝝆𝟏𝟏

′ ≪ 𝜿𝜿𝟏𝟏 ≪ 𝟏𝟏.

Then for 𝝁𝝁∗ ≤ 𝝁𝝁 ≤ 𝑴𝑴𝑷𝑷

𝜿𝜿 𝝁𝝁 ~𝜿𝜿𝟏𝟏, 𝜷𝜷𝝆𝝆~ 𝟑𝟑𝜿𝜿𝟏𝟏
𝟐𝟐

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 . 

⇒ 𝝆𝝆 𝝁𝝁 ~𝝆𝝆𝟏𝟏 + 𝟑𝟑𝜿𝜿𝟏𝟏
𝟐𝟐

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 𝐥𝐥𝐜𝐜𝐥𝐥 𝝁𝝁
𝑴𝑴𝑷𝑷

𝝆𝝆 𝝁𝝁∗ = 𝟏𝟏 ⇒ 𝝁𝝁∗~𝑴𝑴𝑷𝑷 𝐆𝐆𝐞𝐞𝐞𝐞 − 𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐

𝟑𝟑
𝝆𝝆𝟏𝟏
𝜿𝜿𝟏𝟏

𝟐𝟐

Thus we have

⇒ 𝒗𝒗~𝑴𝑴𝑷𝑷
𝟏𝟏
𝜿𝜿𝟏𝟏

𝐆𝐆𝐞𝐞𝐞𝐞 − 𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐

𝟑𝟑
𝝆𝝆𝟏𝟏
𝜿𝜿𝟏𝟏

𝟐𝟐

Non-perturbative

𝜷𝜷𝝆𝝆 =
𝟑𝟑

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 𝝆𝝆𝟐𝟐 + 𝜿𝜿𝟐𝟐

𝜷𝜷𝜿𝜿 =
𝟏𝟏

𝟏𝟏𝟏𝟏𝟐𝟐𝟐𝟐 𝝆𝝆𝜿𝜿 + 𝝆𝝆′𝜿𝜿 + 𝟒𝟒𝜿𝜿𝟐𝟐



Masses of the particles

mass of 𝝓𝝓 : 𝑴𝑴𝝓𝝓
𝟐𝟐 =

𝝏𝝏𝟐𝟐

𝝏𝝏𝝓𝝓𝟐𝟐 𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢 �
𝝓𝝓=𝒗𝒗

=
𝜿𝜿 𝝁𝝁∗

𝟐𝟐

𝟑𝟑𝟐𝟐𝟐𝟐𝟐𝟐 𝒗𝒗𝟐𝟐

mass of 𝑺𝑺: 𝑴𝑴𝑺𝑺
𝟐𝟐 =

𝜿𝜿(𝝁𝝁∗)
𝟐𝟐

𝒗𝒗𝟐𝟐

If 𝜿𝜿 ≪ 𝟏𝟏, 𝐜𝐜he general pattern is
𝒗𝒗 ≫ 𝑴𝑴𝑺𝑺 ≫ 𝑴𝑴𝝓𝝓 .

For example,
𝜿𝜿 𝝁𝝁∗ = 𝟏𝟏.1  ⇒ 𝒗𝒗 ∶ 𝑴𝑴𝝓𝝓 ∶ 𝑴𝑴𝝓𝝓 = 𝟏𝟏 ∶ 𝟏𝟏. 𝟐𝟐 ∶ 𝟏𝟏. 𝟏𝟏𝟏𝟏𝟏𝟏 .

𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢 𝝓𝝓, 𝑺𝑺 = 𝟏𝟏 =
𝜿𝜿 𝝁𝝁∗

𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁∗ 𝝓𝝓𝟐𝟐

𝝁𝝁∗
𝟐𝟐

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒



3-2 Coupling to SM



Incorporating two real scalar model into SM

ℒ = ℒ𝑺𝑺𝑴𝑴 + ℒ𝝓𝝓𝑺𝑺 − 𝑽𝑽𝑯𝑯𝝓𝝓𝑺𝑺

We assume that ℒ𝑺𝑺𝑴𝑴 does not contain the Higgs 
mass term because of the classical conformality.

In general, we should consider the mixing 
between Higgs and 𝝓𝝓:

Total action:

𝑽𝑽𝑯𝑯𝝓𝝓𝑺𝑺 = −
𝜼𝜼
𝟐𝟐

𝝓𝝓𝟐𝟐 𝐇𝐇 𝟐𝟐 +
𝜼𝜼′

𝟐𝟐
𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐

𝐜𝐜𝐚𝐚𝐢𝐢 𝜽𝜽 ~ 𝒗𝒗𝑯𝑯
𝒗𝒗

, 𝒗𝒗𝑯𝑯~𝟐𝟐𝟐𝟐𝟏𝟏𝐆𝐆𝐆𝐆𝐆𝐆, 𝒗𝒗 = 𝝓𝝓 .

If 𝒗𝒗 ≫ 𝒗𝒗𝑯𝑯 , the mixing is small.

Farzinnia-He-Ren, Sannino-Virkajarvi.

K.Ghorbani-H.Ghorbani, Jung-Lee-Nam.



In that case, the Higgs potential is given by

𝒎𝒎𝑯𝑯
𝟐𝟐 = 𝜼𝜼 𝒗𝒗𝟐𝟐,

which means
𝝀𝝀 𝑯𝑯 𝟒𝟒 − 𝜼𝜼

𝟐𝟐
𝝓𝝓 𝟐𝟐|H|𝟐𝟐,

and the rest is the same as SM:

𝑯𝑯 = 𝟐𝟐𝒎𝒎𝑯𝑯
𝝀𝝀

.

Weak scale is generated non-perturbatively
from the Planck scale, as

𝑴𝑴𝑷𝑷 → 𝝓𝝓 → 𝑯𝑯 .

𝐆𝐆𝐇𝐇𝝓𝝓𝑺𝑺 = −
𝜼𝜼
𝟐𝟐

𝝓𝝓𝟐𝟐 𝐇𝐇 𝟐𝟐 +
𝜼𝜼′

𝟐𝟐
𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐



𝑺𝑺 as dark matter

no vev: 𝑺𝑺 = 𝟏𝟏
heavy but not too heavy: 𝑴𝑴𝑺𝑺

𝟐𝟐 = 𝜿𝜿(𝝁𝝁∗)
𝟐𝟐

𝒗𝒗𝟐𝟐

couples to Higgs: 𝜼𝜼′

𝟐𝟐
𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐

It is natural to regard 𝑺𝑺 as the Higgs portal scalar 
dark matter.

Property of 𝑺𝑺



Two scalar model has 3 parameters 𝝆𝝆, 𝝆𝝆′, 𝜿𝜿 in 
addition to 𝑴𝑴𝑷𝑷.

𝝆𝝆 is replaced by 𝝓𝝓 = 𝒗𝒗.
𝜿𝜿 gives the ratios of 𝑴𝑴𝝓𝝓, 𝑴𝑴𝑺𝑺, 𝒗𝒗 .
𝝆𝝆′ is the self coupling of 𝑺𝑺.

Coupling to the Higgs has 2 parameters.
𝜼𝜼 is determined by  𝒎𝒎𝑯𝑯

𝟐𝟐 = 𝜼𝜼 𝒗𝒗𝟐𝟐.
𝜼𝜼′ gives coupling between Higgs and 𝑺𝑺 .

Parameters of the model

⇒ Only 𝜿𝜿 is new compared with the simple  
Higgs portal scalar dark matter scenario.

𝐆𝐆𝐇𝐇𝝓𝝓𝑺𝑺 = −
𝜼𝜼
𝟐𝟐

𝝓𝝓𝟐𝟐 𝐇𝐇 𝟐𝟐 +
𝜼𝜼′

𝟐𝟐
𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐

𝐆𝐆 =
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒



3-3 Other criticalities than 
classical conformality



Two real scalar model revisited

ℒ𝝓𝝓𝑺𝑺 =
𝟏𝟏
𝟐𝟐

𝝏𝝏𝝓𝝓 𝟐𝟐 +
𝟏𝟏
𝟐𝟐

𝝏𝝏𝑺𝑺 𝟐𝟐 − 𝐆𝐆

𝐆𝐆 = 𝒎𝒎𝟏𝟏
𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝝆𝝆

𝟒𝟒!
𝝓𝝓𝟒𝟒 + 𝜿𝜿

𝟒𝟒
𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 + 𝝆𝝆′

𝟒𝟒!
𝑺𝑺𝟒𝟒

As we have discussed,
classical conformality is the assumption that the 
bare mass should be tuned so that the 
renormalized mass becomes zero:

𝐦𝐦𝟐𝟐 = 𝟏𝟏.
This is a critical point in that the time evolution of 
universe drastically changes at 𝐦𝐦𝟐𝟐 = 𝟏𝟏.
But there is another kind of critical point, that is, 
the 1-st order phase transition point.



𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢 𝝓𝝓, 𝑺𝑺 = 𝟏𝟏 =

𝜿𝜿 𝝁𝝁∗
𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁∗ 𝝓𝝓𝟐𝟐

𝝁𝝁∗
𝟐𝟐

𝜙𝜙

𝐺𝐺eff

𝜇𝜇∗

𝜅𝜅(𝜇𝜇∗)

𝒗𝒗

Classical conformality 1-st order phase transition 

𝒎𝒎𝑪𝑪
𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 +

𝜿𝜿 𝝁𝝁∗
𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁∗ 𝝓𝝓𝟐𝟐

𝝁𝝁∗
𝟐𝟐

𝜙𝜙

𝐺𝐺eff

𝒗𝒗𝑪𝑪

𝒗𝒗𝑪𝑪 = 𝒗𝒗/ 𝒆𝒆
𝑴𝑴′𝝓𝝓 = 𝑴𝑴𝝓𝝓/ 𝟐𝟐

CP 1-1 CP 1-2 



1-st order phase transition point is as plausible 
as classically conformality.

At any rate,
the generated mass scales 𝒗𝒗, 𝑴𝑴𝝓𝝓, 𝑴𝑴𝑺𝑺 change only 
by numerical factors.
Again we can say that the weak scale emerges from 
the Planck scale.

We can not tell which one is favored by nature 
unless we know the precise mechanism of MPP.



Further generalization

We can set 𝒈𝒈 = 𝟏𝟏 by shifting 𝝓𝝓.
⇒ 4 relevant parameters.

So far we have assumed 𝒁𝒁𝟐𝟐 × 𝒁𝒁𝟐𝟐 symmetry.
Here we assume 𝒁𝒁𝟐𝟐 only for 𝑺𝑺 .
Then the action has 5 parameters with positive 
mass dimensions (relevant parameters):

ℒ𝝓𝝓𝑺𝑺 =
𝟏𝟏
𝟐𝟐

𝝏𝝏𝝓𝝓 𝟐𝟐 +
𝟏𝟏
𝟐𝟐

𝝏𝝏𝑺𝑺 𝟐𝟐 − 𝐆𝐆

𝐆𝐆 = 𝒈𝒈𝝓𝝓 + 𝒎𝒎𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝒉𝒉

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝈𝝈

𝟐𝟐
𝝓𝝓𝑺𝑺𝟐𝟐 + 𝒎𝒎′𝟐𝟐

𝟐𝟐
𝑺𝑺𝟐𝟐

+
𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 +
𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 +
𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒



Here we assume that all the relevant parameters 
are fixed by the generalized MPP.

Instead of seeking the general solutions, here we 
construct two special solutions. 
First we take the conditions 𝒎𝒎𝟐𝟐 = 𝒎𝒎′𝟐𝟐 = 𝟏𝟏 .
In fact these are criticality conditions because  
the behavior of 𝐆𝐆𝐆𝐆𝐢𝐢𝐢𝐢~ 𝒎𝒎𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝒎𝒎′𝟐𝟐

𝟐𝟐
𝑺𝑺𝟐𝟐

around 𝝓𝝓 = 𝑺𝑺 = 𝟏𝟏 changes drastically depending 
on the signs of 𝒎𝒎𝟐𝟐 and 𝒎𝒎′𝟐𝟐 .

The problem is to find tetra critical points in the 
space of 4 parameters 𝒎𝒎𝟐𝟐, 𝒉𝒉, 𝝈𝝈, 𝒎𝒎′𝟐𝟐 .

𝐆𝐆 = 𝒎𝒎𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝒉𝒉

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝈𝝈

𝟐𝟐
𝝓𝝓𝑺𝑺𝟐𝟐 + 𝒎𝒎′𝟐𝟐

𝟐𝟐
𝑺𝑺𝟐𝟐+…



Then we take the condition 𝝈𝝈 = 𝟏𝟏 .
Again this is a criticality condition because 
the behavior of 𝐆𝐆𝐆𝐆𝐢𝐢𝐢𝐢~ 𝒉𝒉

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝈𝝈

𝟐𝟐
𝝓𝝓𝑺𝑺𝟐𝟐 changes 

drastically depending on the signs of 𝝈𝝈 .

Then the only remaining parameter is 𝒉𝒉.
We determine it by the criticality condition of
the effective potential as in the case of 1-st 
order phase transition:

𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢 𝝓𝝓, 𝝓𝝓 = 𝟏𝟏 =
𝒉𝒉
𝟏𝟏

𝝓𝝓𝟑𝟑 +
𝜿𝜿 𝝁𝝁∗

𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁∗ 𝝓𝝓𝟐𝟐

𝝁𝝁∗
𝟐𝟐

𝐆𝐆 = 𝒎𝒎𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝒉𝒉

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝈𝝈

𝟐𝟐
𝝓𝝓𝑺𝑺𝟐𝟐 + 𝒎𝒎′𝟐𝟐

𝟐𝟐
𝑺𝑺𝟐𝟐+…



𝑽𝑽𝐆𝐆𝐢𝐢𝐢𝐢 𝝓𝝓, 𝝓𝝓 = 𝟏𝟏 =
𝒉𝒉
𝟏𝟏

𝝓𝝓𝟑𝟑 +
𝜿𝜿 𝝁𝝁∗

𝟐𝟐

𝟐𝟐𝟐𝟐𝟏𝟏𝟐𝟐𝟐𝟐 𝝓𝝓𝟒𝟒 𝐥𝐥𝐜𝐜𝐥𝐥
𝜿𝜿 𝝁𝝁∗ 𝝓𝝓𝟐𝟐

𝝁𝝁∗
𝟐𝟐



ℎ1 = 0.71
𝜅𝜅2𝑣𝑣

32𝜋𝜋2 , 𝜙𝜙1 = 0.47𝑣𝑣

ℎ2 = 0.74
𝜅𝜅2𝑣𝑣

32𝜋𝜋2 , 𝜙𝜙2 = 0.37𝑣𝑣

CP 2-1 

CP 2-2 



Mass scales 𝒗𝒗, 𝑴𝑴𝝓𝝓, 𝑴𝑴𝑺𝑺 are similar to the 
previous ones.
Again the weak scale emerges from the Planck 
scale non-perturbatively.

These do not have 𝒁𝒁𝟐𝟐 symmetry for 𝝓𝝓.
⇒ No cosmological domain wall problem.



3-4 Phenomenological analyses   
of 

the four critical points



We examine the phenomenological validity 
of the 2-scalar model coupled to SM.

The model we consider is

ℒ𝝓𝝓𝑺𝑺 = 𝟏𝟏
𝟐𝟐

𝝏𝝏𝝓𝝓 𝟐𝟐 + 𝟏𝟏
𝟐𝟐

𝝏𝝏𝑺𝑺 𝟐𝟐 − 𝑽𝑽𝝓𝝓𝑺𝑺

𝑽𝑽𝝓𝝓𝑺𝑺 = 𝒎𝒎𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝒉𝒉

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝈𝝈

𝟐𝟐
𝝓𝝓𝑺𝑺𝟐𝟐 + 𝒎𝒎′𝟐𝟐

𝟐𝟐
𝑺𝑺𝟐𝟐

+ 𝝆𝝆
𝟒𝟒!

𝝓𝝓𝟒𝟒 + 𝜿𝜿
𝟒𝟒

𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 + 𝝆𝝆′
𝟒𝟒!

𝑺𝑺𝟒𝟒

ℒ = ℒ𝑺𝑺𝑴𝑴 + ℒ𝝓𝝓𝑺𝑺 − 𝑽𝑽𝑯𝑯𝝓𝝓𝑺𝑺

𝑽𝑽𝑯𝑯𝝓𝝓𝑺𝑺 = − 𝜼𝜼
𝟐𝟐

𝝓𝝓𝟐𝟐 𝑯𝑯 𝟐𝟐 + 𝜼𝜼′
𝟐𝟐

𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐 .

We assume that ℒ𝑺𝑺𝑴𝑴 does not contain the Higgs 
mass term because of the classical conformality.



We assume 𝒁𝒁𝟐𝟐-invariance for 𝑺𝑺. 
⇒ 𝑺𝑺 is dark matter.

We do not necessarily assume 𝒁𝒁𝟐𝟐-invariance for 𝝓𝝓. 
Instead we consider the four critical points.

Strictly speaking,  𝝉𝝉
𝟐𝟐

𝝓𝝓|𝑯𝑯|𝟐𝟐 may exist in the 
potential. However, the condition 𝝉𝝉 = 𝟏𝟏 is 
again a condition of criticality. Here we only 
consider this case.

CP 1-1  classical conformality
CP 1-2  1-st order phase transition
CP 2-1  𝒁𝒁𝟐𝟐-noninvariant degenerate false vacuum
CP 2-2  𝒁𝒁𝟐𝟐-noninvariant saddle point



This time we take the mixing of Higgs and 𝝓𝝓
into account.

We impose the following conditions and examine 
the allowed region in the parameter space:
(1) Higgs mass and vev are correctly reproduced.
(2) The relic abundance of DM is 𝜴𝜴𝑺𝑺𝒉𝒉𝟐𝟐 = 𝟏𝟏. 𝟏𝟏𝟐𝟐.
(3) Perturbativity:

Absence of Landau pole up to 𝝁𝝁 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝐆𝐆𝐆𝐆𝐆𝐆.
(4) DM direct search bound (XENON1T).
(5) LHC bound for scalar particles.

micrOMEGAs version5 has been  used 
for numerical calculations for (2) and (4).

Conditions to check



(1) 𝝆𝝆 is replaced by 𝝓𝝓 = 𝒗𝒗𝝓𝝓.
(2) 𝝆𝝆′has a small effect in low energy. ⇒ ignore
(3) Higgs mass is obtained after diagonalizing the    

mixing between 𝝓𝝓 and 𝑯𝑯. ⇒ one constraint
(4) DM mass: 𝒎𝒎𝒔𝒔

𝟐𝟐 = 𝜼𝜼′

𝟐𝟐
𝒗𝒗𝑯𝑯

𝟐𝟐 + 𝜿𝜿
𝟐𝟐

𝒗𝒗𝝓𝝓
𝟐𝟐

(5) 𝜴𝜴𝑺𝑺𝒉𝒉𝟐𝟐 = 𝟏𝟏. 𝟏𝟏𝟐𝟐 gives 𝟒𝟒𝜼𝜼′𝟐𝟐 + 𝜿𝜿𝟐𝟐 ≃ 𝒎𝒎𝑺𝑺
𝟏𝟏.𝟐𝟐𝟗𝟗 𝐓𝐓𝐆𝐆𝐆𝐆

𝟐𝟐
.

We have 5 extra dimensionless parameters 𝝆𝝆, 𝜿𝜿, 𝝆𝝆′, 𝜼𝜼, 𝜼𝜼′

compared with SM.
𝑽𝑽𝝓𝝓𝑺𝑺 = 𝒎𝒎𝟐𝟐

𝟐𝟐
𝝓𝝓𝟐𝟐 + 𝒉𝒉

𝟑𝟑!
𝝓𝝓𝟑𝟑 + 𝝈𝝈

𝟐𝟐
𝝓𝝓𝑺𝑺𝟐𝟐 + 𝒎𝒎′𝟐𝟐

𝟐𝟐
𝑺𝑺𝟐𝟐 + 𝝆𝝆

𝟒𝟒!
𝝓𝝓𝟒𝟒 + 𝜿𝜿

𝟒𝟒
𝝓𝝓𝟐𝟐𝑺𝑺𝟐𝟐 + 𝝆𝝆′

𝟒𝟒!
𝑺𝑺𝟒𝟒

𝑽𝑽𝑯𝑯𝝓𝝓𝑺𝑺 = − 𝜼𝜼
𝟐𝟐

𝝓𝝓𝟐𝟐 𝑯𝑯 𝟐𝟐 + 𝜼𝜼′
𝟐𝟐

𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐 .
The dimensionful parameters 𝒎𝒎𝟐𝟐, 𝒉𝒉, 𝝈𝝈, 𝒎𝒎′𝟐𝟐are fixed by 
MPP. 

Number of independent parameters 

⇒ 2 parameters are left. 



𝑣𝑣𝜙𝜙 = 2.5TeV (red), 3TeV (magenda), 4TeV (green), 5TeV (blue), 10TeV (black) 
(Black dotted: Stronger perturbativity = All couplings < 10 for 𝜇𝜇 < 1018GeV.)

𝜂𝜂′

𝜂𝜂′

𝜂𝜂′
= CP2- 1

𝜼𝜼′
𝟐𝟐

𝑺𝑺𝟐𝟐 𝑯𝑯 𝟐𝟐



= CP2- 1



In wide classes of quantum gravity or string theory, 
the low energy effective action has the multi local form:

The fine tuning problem might be solved by the 
dynamics of such action. 

eff .i i i j i j i j k i j k
i i j i j k

S c S c S S c S S S= + + +∑ ∑ ∑ 

Summary

We need a good definition of the path integral for such 
action, but as an ad hoc assumption we can consider 
the generalized MPP and make non-trivial predictions.

By considering minimum modification of SM based on 
MPP, we might reach the right low energy theory.



Appendix A
Low energy effective theory of
quantum gravity/string theory



Consider Euclidean path integral which involves 
the summation over topologies,

We consider the low energy effective theory after 
integrating out the short-distance configurations.

Among such configurations there should be a wormhole-
like configuration in which a thin tube connects two points 
on the universe.  Here, the two points may belong to either 
the same universe or different universes.

[ ] ( )
topology

exp .dg S−∑ ∫

If we see such configuration from the side of the large 
universe(s), it looks like two small punctures. 

But the effect of a small puncture is equivalent to an 
insertion of a local operator.

Coleman (‘89)



Summing over the number of wormholes, we have

bifurcated wormholes  
⇒ cubic terms, quartic terms, …

[ ] ( )4 4

,
( ) ( ) ( ) ( ) exp .i j

i j
i j

c d xd d y g x g y O x O yg S−∑∫ ∫

Therefore, a wormhole contributes to the path 
integral  as

[ ] 4 4

,
( ) ( ) ( ) ( )exp .i j

i j
i j

c d x d y g x g y O xg yS Od
 
− + 
 

∑ ∫∫

x

y

4 4

0 ,

4 4

,

1 ( ) ( ) ( ) ( )
!

exp ( ) ( ) ( ) ( ) .

n

i j
i j

N i j

i j
i j

i j

c d x d y g x g y O x O y
n

c d x d y g x g y O x O y

∞

=

 
 
 
 

=  
 

∑ ∑ ∫

∑ ∫

Thus wormholes contribute to the path integral as



The effective action becomes a multi-local form

.)()(

,eff

xOxgxdS

SSScSScScS

i
D

i

kji
kji

kjij
ji

iji
i

ii

∫

∑∑∑

=

+++= 

By introducing the Laplace transform 

[ ] ( ) ( ) [ ]effexp exp .i i
i

Z d S d w d Sφ λ λ φ λ 
= − = − 

 
∑∫ ∫ ∫

Coupling constants are not merely constant, but 
they should be integrated.

( )( ) ( )eff 1 2 1 2exp , , , , exp ,i i
i

S S S d w Sλ λ λ λ − = − 
 
∑∫ 

we can express the path integral as 



( ) [ ] ( )( )expZ d w d Sλ λ φ λ= −∫ ∫

including multiverse

( )

( ) ( )
single

0

single

1
!

exp .

n

n

d w Z
n

d w Z

λ λ

λ λ

∞

=

=

=

∑∫

∫

n



Coleman’s “solution” to the cosmological constant problem

( ) [ ] ( )exp .Z d w dg gR g= Λ Λ − −Λ∫ ∫ ∫ ∫

dominates irrespectively of  

4Sr

( ) ( )( )
( ) ( )

2 4exp

exp 1/ , 0
no solution, 0

d w dr r r

d wλ

Λ Λ − − + Λ

Λ Λ >
Λ 

Λ <

∫ ∫

∫





r

S

1
−
Λ

0Λ  ( ) .w Λ



Difficulty 
Problem of the Wick rotation 

WDW eq.

←wrong sign

“Ground state” does not exist.    

total 0H Ψ =

total universe matter graviton

2
universe

1
2 a

H H H H

H p

= + + +

= − + 
 





Wick rotation is not well defined.     t

matter ,H 

universeH

: radius of the universea

matterH is bounded from below.    

universeH is bounded from above.    



We expect that the physics with gravity should 
be expressed in Lorentzian signature, but the 
low energy effective theory is still given by the 
multi local action.

In fact we obtain the same effective Lagrangian in 
the IIB matrix model with Lorentzian signature.



Y. Kimura, 
M. Hanada and HK

The basic question :
In the large-N reduced model, a background 
of simultaneously diagonalizable matrices 
𝑨𝑨𝝁𝝁

(𝟏𝟏) = 𝑷𝑷𝝁𝝁 corresponds to the flat space,
if the eigenvalues are uniformly distributed.
In other words, the background 𝑨𝑨𝝁𝝁

(𝟏𝟏) = 𝒊𝒊𝝏𝝏𝝁𝝁
represents the flat space.
How about curved space? 
Is it possible to consider some background  
like

𝑨𝑨𝝁𝝁
(𝟏𝟏) = 𝒊𝒊𝛁𝛁𝝁𝝁 ?

Covariant derivatives as matrices 



Actually, there is a way to express the covariant 
derivatives on any D-dim manifold by D matrices.
More precisely, we consider 

𝑴𝑴: any D-dimensional manifold, 
𝝓𝝓𝜶𝜶: a regular representation field on 𝑴𝑴. 

Here the index 𝜶𝜶 stands for the components of 
the regular representation of the Lorentz group 
𝑺𝑺𝑶𝑶(𝑫𝑫 − 𝟏𝟏, 𝟏𝟏).
The crucial point is that for any representation 𝒓𝒓,
its tensor product with the regular representation 
is decomposed into the direct sum of the regular 
representations:

.r reg reg regV V V V⊗ ≅ ⊕ ⊕



In particular the Clebsh-Gordan coefficients for 
the decomposition of the tensor product of the 
vector and the regular representaions

vector reg reg regV V V V⊗ ≅ ⊕ ⊕

are written as ,
( ) , ( 1,.., ).b
aC a Dβ
α =

Here 𝒃𝒃 and β are the dual of the vector and the 
regular representation indices on the LHS.
(𝒎𝒎) indicates the 𝒎𝒎-th space of the regular 
reprezentation on the RHS, and 𝜶𝜶 is its index.



Then for each 𝒎𝒎 (𝒎𝒎 = 𝟏𝟏. . 𝑫𝑫)
,

( )
b

a bC β
α α βψ ϕ= ∇

is a regular representation field on 𝑴𝑴.

In other words, if we define 𝛁𝛁(𝒎𝒎) by 
( ) ,

( ) ( ) ,b
a a bC β

α βα
ϕ ϕ∇ = ∇

each 𝛁𝛁(𝒎𝒎) is an endomorphism on the space of the 
regular representation field on 𝑴𝑴. 

Thus we have seen that the covariant 
derivatives on any D dimensional manifold 
can be expressed by D matrices.



Therefore any D-dimensional manifold 𝑴𝑴
with 𝑫𝑫 ≤ 𝟏𝟏𝟏𝟏 can be realized in the space 
of the IIB matrix model as

( ) ( )
( )

0 ( ) , 1, ,
,

0, 1, ,10
a

a

a D
A

a D

・・ ﾑ=・= ・
・ = +・・

L
K

where 𝛁𝛁(𝒎𝒎) is the covariant derivative on 𝑴𝑴
multiplied by the C-G coefficients. 



A. Tsuchiya,  Y. Asano and HK

Low energy effective action of IIB matrix model 

We have seen that any D-dim manifold is 
contained in the space of D matrices.
Therefore IIB matrix model should contain the 
effects of the topology change of space-time.

As was pointed out by Coleman some years 
ago, such effects give significant corrections 
to the low energy effective action.

It is interesting to consider the low energy 
effective action of the IIB matrix model.
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Actually we can show that if we integrate out the heavy 
states in the IIB matrix model, the remaining low 
energy effective action is not a local action but has a 
special form, which we call the multi-local action:

Here 𝑶𝑶𝒊𝒊 are local scalar operators such as    
𝟏𝟏 , 𝝃𝝃 , 𝝃𝝃𝝁𝝁𝝁𝝁𝝃𝝃𝝁𝝁𝝁𝝁 , 𝑭𝑭𝝁𝝁𝝁𝝁 𝑭𝑭𝝁𝝁𝝁𝝁, 𝝍𝝍𝜸𝜸𝝁𝝁𝑫𝑫𝝁𝝁𝝍𝝍 , ⋯ .

𝑺𝑺𝒊𝒊 are parts of the conventional local actions.
The point is that 𝑺𝑺𝐆𝐆𝐢𝐢𝐢𝐢 is a function of 𝑺𝑺𝒊𝒊’s.



0 .a a aA A φ= +

This is essentially the consequence of the well-
known fact that the effective action of a matrix 
model contains multi trace operators.

Then we integrate over 𝝓𝝓 to obtain the low energy 
effective action.

Here we assume that the background 𝑨𝑨 𝒎𝒎
𝟏𝟏 contains 

only the low energy modes, and 𝝓𝝓 contains the rest.
We also assume that this decomposition can be 
done in a SU(N) invariant manner.

More precisely, we first decompose the matrices 𝑨𝑨𝒎𝒎
into the background 𝑨𝑨 𝒎𝒎

𝟏𝟏 and the fluctuation 𝝓𝝓 :



Substituting the decomposition into the action of 
the IIB matrix model, and dropping the linear 
terms in 𝝓𝝓, we obtain

(
[ ]

[ ] [ ] )

20 0 0 0

0

0

2

20

0

1
4

2 , , , 2 , ,

4 , , , fermion

,

.

a b a b a b a b b a

a b a

a

b

b

a b

S Tr

A A

A

A

A

A A

A

φ φ φ φ φ

φ φ φ φ φ

  =

       + + −       

 + + + 

In principle, the 0-th order term ( )20 0
0 ( ) ( )

1 ,
4 a bS Tr A A =  

can be evaluated with some UV regularization, 
which should give a local action.



The one-loop contribution is obtained by the Gaussian 
integral of the quadratic part. 

Then the result is given by a double trace operator as 
usual:

𝑾𝑾 = � 𝑲𝑲𝒎𝒎𝒃𝒃𝒗𝒗⋯ , 𝒑𝒑𝒑𝒑𝒓𝒓⋯ 𝑻𝑻𝒓𝒓 𝑨𝑨𝒎𝒎
𝟏𝟏𝑨𝑨𝒃𝒃

𝟏𝟏𝑨𝑨𝒗𝒗
𝟏𝟏 ⋯ 𝑻𝑻𝒓𝒓(𝑨𝑨𝒑𝒑

𝟏𝟏𝑨𝑨𝒑𝒑
𝟏𝟏𝑨𝑨𝒓𝒓

𝟏𝟏 ⋯ )

The crucial assumption here is that both of the 
diffeomorphism and the local Lorentz invariance are 
realized as a part of the SU(N) symmetry.
Then each trace should give a local action that is 
invariant under the diffeomorphisms and the local 
Lorentz transformations:

1-loop
eff

1 , ( ) ( ).
2

D
i j i j i i

i j

S c S S S d x g x O x= =∑ ∫



In the two loop order, from the planar 
diagrams we have a cubic form of local
actions

2-loop Planar
eff

, ,

1 ,
6 i jk i j k

i j k

S c S S S= ∑
while non-planar diagrams give a local 
action

2-loop NP
eff .i i

i

S c S′= ∑

z y

x

x

Similar analyses can be applied for higher loops.



the low energy effective theory of the IIB matrix 
model is given by the multi-local action:
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We have seen that

This reminds us of the theory of baby universes 
by Coleman.



Appendix B
Multiverse and naturalness



3-1. Partition function of 
the  multiverse



[ ] ( ) ( ) [ ]effexp exp .i i
i

Z d i S d w d i Sφ λ λ φ λ = =  
 
∑∫ ∫ ∫

It is natural to apply this action to the multiverse. 

[ ]

[ ]

1
0

1 single universe

1exp
!

exp

n
i i

i n

i i
i

d i S Z
n

Z d i S

φ λ

φ λ

∞

=

  = 
 

 =  
 

∑ ∑∫

∑∫

n
( ) ( )( )1exp .d w Zλ λ λ= ∫



Path integral for a universe

( ) [ ] ( )

[ ] ( )( )
( )

( )

1

1

0

0 0

exp

exp

ˆexp

ˆ

E E

Z d i S

f dadpdN i dt pa NH i

f dT iTH i

f H i

f i

λ

λ

λ

λ φ

δ

φ φ

∞

−∞

= =

=

= −

= −

=

=

∫
∫ ∫

∫



i

f

2 31 1 1ˆ ( )
2

H p a U a
a aλ = − −

:  radius of the universea
Question:

Is there a natural choice for them?

T

If the initial and final states are given, the path 
integral is evaluated as usual: (mini superspace)

( )E E E Eφ φ δ′ ′= −
2 3 4

1( ) matt radC CU a
a a a

= − Λ − −

S3 topology



Initial state

For the initial state, we assume that the universe 
emerges with a small size ε. 

,
: probability amplitude of a universe emerging.

i a matterµ ε

µ

= = ⊗ 

a ε=



Evolution of the universe

Λ～curvature   
～energy density

with

S3 topology

( )
( )

( )( )0 1 0

1, sin ,
,

z

E a da p a
a p a

φ λ λ α
λ

= −
′ ′ +∫

( ) 4, 2 ( ).p a a U aλ = −

2 3 4
1( ) matt radC CU a
a a a

= − Λ − −

WKB solution ( )4S d x g R matter= − − Λ +∫
a

crΛ < Λ crΛ = Λ crΛ < Λ

( )U a ( )U a ( )U a
*a



Final state: case 1

For the final state, we have two possibilities. 

finite

The universe is closed.
We assume the final state is 

.f a matterµ ε′= = ⊗ 

The path integral

( ) ( )
( )

1

2
0

ˆ

.E

Z f H i

const

λλ δ

φ ε=

=



crΛ < Λ



Final state: case 2 

∞
The universe is open. 
It is not clear how to define the 
path integral for the universe:

lim . 
IR

IR IRa
f c a a matter

→∞
= ⊗ 

a

( ) [ ] ( )1 exp .Z d i Sλ φ= ∫

As an ad hoc assumption we consider 

crΛ > Λ



( ) ( ) ( )

( ) ( )

( ) ( )

*
1 0 0

3 *
04

3 *
04

1 sin

1 sin .

IR E IR E

IR IR E
IR

IR E

Z c a a

c a a
a

c a

λ µ φ φ ε

µ α φ ε

µ α φ ε

= =

=

=

=

′Λ +
Λ

′Λ +
Λ





Then the partition function becomes

mat rad
2 3 4

1( ) C CU a
a a a

= − Λ − −

( )
( )

( )( )0 1 0

1 sin
z

E a da p a
a p a

φ α= −
′ ′ +∫

The result does not depend on       except for the phase 
which come from the classical action.

( ) 4, 2 ( )p a a U aλ = −

IRa

(cont’d) 



Thus we have 
the path integral for a universe

∞

finite

( )1Z λ

crfor Λ < Λ  of order 1 ,const

crfor Λ > Λ ( )3
4

1 sin .IRconst a α′⋅ Λ +
Λ

Then the      integration for the multiverse 

( ) ( )( )1exp .Z d w Zλ λ λ= ∫
has a large peak at                 , which means that 
the cosmological constant at the late stages of the 
universe almost vanishes. 

λ

( ) crλΛ Λ



3-2. Maximum Entropy Principle



Maximum entropy principle

Then the multiverse partition function is given by

cr rad1/ CΛ 

Maximum entropy principle (MEP) 

The low energy couplings are determined in such a way that 
the entropy at the late stages of the universe is maximized.

For simplicity we assume the      topology of the space and 
that all matters decay to radiation at the late stages.

rad
2 4

1( ) CU a
a a

= − Λ −

( ) ( )( )

( )( )
1

4
rad4

exp

1exp const exp const .
cr

Z d w Z

C

λ λ λ

λ

=

 
  Λ 

∫

 

3S

crΛ = Λ

( )U a



There are many ways to obtain MPP:
Suppose that we pic up a universe randomly from the 
multiverse. Then the most probable universe is 
expected to be the one that has the maximum entropy.  

Okada and HK ’11



We may understand the flatness of the Higgs 
potential as a consequence of MEP.

If we accept the inflation scenario in which universe 
pops out from nothing and then inflates, most of the 
entropy of the universe is generated at the stage of 
reheating just after the inflation stops. Therefore the 
potential of the inflaton should be tuned in such a way 
that inflation occurs.

Furthermore, if the Higgs field plays the role of inflaton, 
the above analysis asserts that the SM parameters are 
tuned such that the Higgs potential becomes flat at high 
energy scale.

Flatness of the Higgs potential



3-3. Probabilistic interpretation
of 

multiverse wave function



Probabilistic interpretation (1)

postulate

T : age of the universe

( ) 2
probability of finding a universe of size z dz zψ ∝

( ) ( )0Ez zψ µ φ ==

( )
2

0
1
( )

1

Edz z dz
z p

z d

z

d
z

T

φ =

= = ∫

∫ ∫

∫
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2
HH z p z zp
p

∂ = − + → = = −  ∂ 


( ) ( )( )0
1 exp

( )
z

E z i dz p z
z p z

φ = ′ ′∫

meaning of this measure

z

T

( ) 2 2z dz dTψ µ⇒

2  probability of a universe emerging in unit timeµ =

the time that has passed  
after the universe is created



Probabilistic interpretation (2)

ψ is a superposition of the universe with various age,
z

T

+

z

T

z
T+ +…

ψ =

T T dT+
gives the probability of finding a
universe of age                  .

( ) 2 2z dz dTψ µ



infrared cutoff

We introduce an infrared cutoff  
for the size of universes.

IRz

ceases 
to exist

bounces 
back

or

( ) ( )2 2 2 life time of the universez dz dTψ µ µ= ×∫ ∫

dimensionless

∞finite

Lifetime of the universe



Wave Function of the multiverse (1)

Multiverse appears naturally in quantum gravity / string theory. 

matrix model

・

b
b

aC ∇β
α

,
)(

b
b

aC ∇β
α

,
)(

Each block 
represents 
a universe.

・

quantum gravity

Okada, HK



Wave Function of the multiverse (2)

The multiverse sate is a superposition of N-verses.

( )multi
0

,N
N

d wλ λ λ λ
∞

=

Ψ = Ψ ⊗∑∫
( ) ( ) ( )1 1, , , , ,N N Nz z z zλ ψ λ ψ λΨ = 

,ψ λ ,ψ λ⊗ ⊗

( )multi
N

d wλ λΨ = ∑∫

( ) [ ]exp i i
i

Z d w d i Sλ λ φ λ ← =  
 
∑∫ ∫



Wave Function of the multiverse (3)

Probabilistic interpretation

( )multi
0

,N
N

d wλ λ λ λ
∞

=

Ψ = Ψ ⊗∑∫
( ) ( ) ( )1 1, , , , ,N N Nz z z zλ ψ λ ψ λΨ = 

1 1 1, , N N Nz z dz z z dz+ +  

the probability of finding N universes with size 

( ) ( )2 2
1 1, , ,N N Nz z dz dz w dλ λ λΨ  

and finding the coupling constants in 
.dλ λ λ+

represents 



Probability distribution of 

( ) ( ) ( )1 1, , , , ,N N Nz z z zλ ψ λ ψ λ←Ψ = 

λ

( ) ( ) ( )

( )( ) ( )

( )( ) ( )

2 21
1

0

2 2

2 2

, , ,
!

exp ,

exp

N
N N

N

dz dzP z z w
N

dz z w

w

λ λ λ

ψ λ λ

µτ λ λ

∞

=

= Ψ

=

=

∑∫

∫




( ) ( ) 2
0 , (life time of the universe)Edz zτ λ φ λ== ∫ 

0Eψ µ φ =← =

is chosen in such a way that           is maximized,λ ( )τ λ

can be very large. ( )τ λ

irrespectively of ( ).w λ



If we accept the probabilistic interpretation of the 
multiverse wave function, the coupling constants 
are chosen in such a way that the lifetime of the 
universe becomes maximum.



WKB sol with

Cosmological constant

Λ～curvature～energy density

(extremely small)

What value of Λ maximizes

0Λ <

?

S3 topology

The cosmological constant in 
the far future is predicted to be 
very small. 

IRz

( )
( )0
1,

,E z
z p z

φ λ
λ

=  ( ), 2 ( ).p z U zλ = −

assuming all matters decay to radiation

( ) 2
0 ,Edz zµφ λ=∫

0Λ = cr0 < Λ < Λ crΛ = Λ crΛ < Λ



The other couplings (Big Fix) 

( ) ( )( ) ( )2 2
expP wλ µτ λ λ=

The exponent is divergent, and regulated by the IR cutoff :

( ) 2
0 rad0

cr

1, log .IR

E IR

z
dz z C z

z
φ λ= Λ∫ ∫  cr rad1/ C←Λ 

( ) ( ) 2
0 ,Edz zτ λ φ λ=← = ∫

λ
MEP 

are determined in such a way that 
is maximized.
Again we have MEP.

( )radC λ

assuming all matters decay to radiation
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