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Abstract

We in our earlier series of papers have used the two-mode for-
malism of squeezed vacuum state to represent the massive scalar
field in the FRW Universe using the semiclassical theory of grav-
ity and successfully explained the phenomenon of particle pro-
duction and thus the concept of preheating/reheating after in-
flation. Therefore, it turns out necessary to examine whether
the two-mode quantized squeezed vacuum state of the scalar
field exhibits classical or non-classical nature in the cosmolog-
ical context. We in our present article, have made use of the
criterion suggested by CT Lee [1], for the existence of nonclas-
sical effects in two-mode states and calculated a cosmological
D parameter with the associated cosmological parameters, to
examine the non-classical nature of the two-mode squeezed vac-
uum state |ξ2〉 after inflation during the oscillatory phase of the
scalar field.

Introduction

At present, in-spite of the numerous efforts to reconcile General
Relativity and Quantum Mechanics, we still do not have a com-
plete conclusive theory of Gravity. Hence, as an approximation
to quantum gravity, the gravitational effects of quantum mat-
ter fields are often described by a semiclassical theory wherein
the gravitational field is given a classical definition (not quan-
tised) in harmony with the axioms of GTR as curvature in the
geometry of spacetime and the field which is present in space-
time are treated quantum mechanically in agreement with the
notions of QFT. The semiclassical theory is usually formulated
as a semiclassical Einstein field equation:

Gαβ = 8π
m2
p

〈ϕ|Tαβ|ϕ〉, (1)

where Gαβ, is the Einstein tensor and Tαβ denotes the renor-
malized expectation value of the energy-momentum tensor of
the matter field (acting as the source of gravity) under consid-
eration. Thus, the semiclassical theory of gravity (SG) seems to
be a viable method to understand quantum effects and quan-
tum phenomenon in the early universe where quantum gravity
effects are considered to be negligible.

SG and Scalar Field Dynamics in
|ξ2〉 State

In the chaotic inflationary scenario, the source of the gravita-
tional field is the massive scalar field ϕ defined on a quadratic

potential, governed by the time-dependent Schrödinger equation
formulated as:

i
∂

∂t
|ξ2(ϕ, t)〉 = Ĥm(ϕ, t)|ξ2(ϕ, t)〉, (2)

where |ξ2 > is the matter field quantum state (TMSV) repre-
sented as:

|ξ2〉 = Zab(rs,Φ)|0, 0〉, (3)
Zab(rs,Φ) = exp rs

2
(
e−iΦâb̂− eiΦâ†b̂†

)
, (4)

here, rs and Φ are the corresponding squeezing parameter and
squeezing angle and Ĥm is the Hamiltonian for the matter field.
As a concrete model, we shall consider a massive inflaton ϕ0,
the homogeneous and isotropic field corresponding to the space
average of the massive scalar field ϕ(x, τ ). Now, the scalar
field can be decomposed into the inflaton and fluctuations; the
inhomogeneous and anisotropic field as:

ϕ(τ,x) = ϕ0(τ ) + ζ(τ,x). (5)
In keeping the analogy with point mechanics and upon quanti-
sation the mode-decomposition yields the corresponding Hamil-
tonian (a collection of time-dependent harmonic oscillators) for
the massive scalar field as obtained as:

Hm(ϕ) =
∑
k

 π̂2
k

2S3(τ )
+ S

3(τ )
2

(
m2 + k2

S2(τ )

)
ζ̂2
k

. (6)

The Friedmann equation in the semiclassical approximation in
|ξ2〉, takes the following form:(

Ṡ(τ )
S(τ )

)2

= 8π
3m2

p

1
S3(τ )

〈ξ2|Ĥm|ξ2〉. (7)

The eigenstates of the Hamiltonian are Fock states
â†i(t) âi(t)|ni, φi, t〉 = ni|ni, φi, t〉, i = 1, 2 (8)

where âi† is the modes creation operators and âi is the associated
annihilation operators. These ladder operators for two-mode
states can be defined as:
â(t) = ζ∗1 (t) π̂ − S3 ζ̇∗1 (t) ζ̂ , â†(t) = ζ1(t) π̂ − S3 ζ̇1(t) ζ̂ ,
b̂(t) = ζ∗2 (t) π̂ − S3 ζ̇∗2 (t) ζ̂ , b̂†(t) = ζ2(t) π̂ − S3 ζ̇2(t) ζ̂ ,

(9)
where, ζ1 and ζ2 are mode functions of field corresponding to

two different modes of the scalar field. It was found that the
semiclassical Einstein quantum gravity equation in |ξ2〉 state
leads to the same power-law expansion t2/3 as that of the matter
dominated era in an oscillatory phase of the scalar field after
inflation [2]. Moreover, the particle created due to the quantum
fluctuation of the scalar field in |ξ2〉 was obtained as [3]:

N|ξ2〉(t, t0) =(1 + 2 sinh2 r)(t− t0)2

4m2τ 4
0

+ sinh2 r + sinh 2r
4m2t40

(t− t0)2 (10)
Since, we used the |ξ2〉 state to study particle creation during
the oscillatory phase of scalar field, it is important to examine
the nature of this quantum optical state in the cosmological
context (whether the state exhibit classical or nonclassical

feature) with associated cosmological parameters.

Criterion for nonclassical effects in
|ξ2〉 state

We made use of the criterion put forward by Ching Tsung Lee
[1] for the existence of nonclassical effects in two-mode states
given as:

D(2)
12 = C(2)

1 + C(2)
2 − C

(2)
12 + (〈n1〉 + 〈n2〉)2 < 0 (11)

where we call theD parameter as the cosmologicalD parameter.
Here, C(2)

1 measures the degree of correlation between two par-
ticles from the same mode and is given by following expression
for the two modes as:
C(2)

1 = 〈â†â†ââ〉 − 〈â†â〉2; C(2)
2 = 〈b̂†b̂†b̂b̂〉 − 〈b̂†b̂〉2, (12)

and can be rewritten in terms of particle-number moments as:
C(2)
i = 〈n(2)

i 〉 − 〈ni〉2, i = 1, 2 (13)
We have C(2)

i = 0, for a coherent state; C(2)
i > 0 ⇒ intramode

particle bunching, which is always true for classical states and, in
contrast, we have intramode particle antibunching when C(2)

i <
0, which is possible only for nonclassical states. Analogously,
C(2)

12 the correlation function between two particles from different
modes is defined as:
C(2)

12 = 〈â†b̂†b̂â〉 − 〈â†â〉 〈b̂†b̂〉; C(2)
12 = 〈n1n2〉 − 〈n1〉〈n2〉 (14)

C(2)
12 > 0 ⇒intermode particle bunching and C(2)

12 < 0 ⇒ in-
termode particle antibunching. Now, in the case where the in-
dividual modes are coherent states of equal intensity; so that
C(2)

1 = C(2)
2 = 0 and 〈n1〉 = 〈n2〉. Then, Eq. (11) reduces to:

D(2)
12 = −2C(2)

12 ; (15)
and the criterion for the existence nonclassical effects becomes
C(2)

12 > 0, which implies intermode particle bunching.

Using the above criterion, we examined the |ξ2〉 state and ob-
tained the expression for correlations functions in the oscillatory
phase of the scalar field as: (using |ξ2〉 state definition, identities
refer Eq. (3), (4) and (9) along with the approximation ansatz
with x=mt)

C(2)
1 = C(2)

2 =
[

32x4x4
0 sinh4(r) + 2x2x2

0 (x− x0) 2(−4 cosh(2r) + 3 cosh(4r) + 3)

−
(
4x2x2

0 sinh2(r) + (x− x0) 2 cosh(2r)
) 2 + 3 (x− x0) 4 cosh2(2r)

]
1

16x8
0
> 0;

(16)
C(2)

12 = (x4 + (2x4 + 1)x4
0 − 4x0x

3 + 6x2
0x

2 − 4x3
0x) sinh2(2r)

8x8
0

> 0 (17)
and on substituting in the criterion Eq.(11), we obtain:

D(2)
12 = 1

4x8
0

[
2x2

0x
2 (x2(cosh(4r)− cosh(2r)) + x2 + 3

)
− 4x3

0x(x2(cosh(4r)

− cosh(2r)) + x2 + 1) + x4
0(2x2 cosh(4r)− 2

(
2x4 + x2) cosh(2r) + 4x4

+ 2x2 + 1) + x4 − 4x0x
3] ≤ 0 (18)

Figure 1: Variation of C(2)
1 with r and mt.

Figure 2: Variation of C(2)
12 with r and mt.

Figure 3: Variation of D(2)
12 with r and mt.

Discussion

From Eq. (18) we see that the |ξ2〉 state are always nonclassical,
except when r = 0. But from Eq. (16), we see that each mode
by itself is definitely a classical state. Therefore, the correlation
between particles from two different modes plays the exclusive
role in overcoming the classical effects in individual modes and
rendering the two-mode squeezed vacuum states nonclassical.
Furthermore, from Eq. (17), we see clearly that the intermode
correlation signifies particle bunching. Thus we conclude that,
the analysis done with cosmological D parameter shows that
the |ξ2〉 is consistent with its nonclassical nature with the asso-
ciated cosmological parameters during the oscillatory phase of
the scalar field in the semiclassical theory of gravity.
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