9th KIAS Workshop on Cosmology & Structure Formation

Prospects of observing reionization MAPS using SKA-Low

Abinash Kumar Shaw

Under the supervision of

Prof. Somnath Bharadwaj

Department of Physics Indian Institute of Technology Kharagpur

Abinash K. Shaw (IIT Kharagpur)

Introduction

Prospects of measuring EoR MAPS using SKA-Low

Cosmic history

- Epoch of Reionization (EoR) is a window when the universe changes its phase from completely neutral to completely ionized.
- Indirect observations (high-z QSOs, CMB Thomson scattering optical depth, UV-LF of high-z galaxies etc.) suggest the window is in the range 6≤ z≤ 12.

Introduction

Prospects of measuring EoR MAPS using SKA-Low

EoR 21-cm Signal

The brightness temperature of 21-cm radiation is a proxy for the neutral hydrogen distribution which has potential to tell us about the astrophysical process and the sources during EoR.

Abinash K. Shaw (IIT Kharagpur)	3 rd November, 2020

Introduction

Prospects of measuring EoR MAPS using SKA-Low

Challenges

- Strong foregrounds (10⁴-10⁵ times), system noise, RFI etc. keeps us at bay from direct mapping.
- First detection through statistical estimator (e.g. **power spectrum**, variance, bispectrum)

Measurement of the spherically averaged 3D power spectrum is a major goal of the EoR observations.

Abinash K. Shaw (IIT Kharagpur)

lssue

Light Cone Effect

- The EoR signal evolves significantly within the observed volume along the LoS direction as the light speed is finite. This is called Light-cone effect.
- The LC effect makes the signal non-homogeneous and aperiodic along the LoS axis of the box.
- This makes Fourier basis an inappropriate choice for the signal along LoS, and thus the spherically averaged PS becomes a biased statistic.

 The light-cone effect is severe for the EoR 21-cm signal due to rapid evolution of neutral fraction (x_{HI}) of the IGM that modulates the signal.

Abinash K. Shaw (IIT Kharagpur)

Issue

Prospects of measuring EoR MAPS using SKA-Low

Visual Illustration

Issue

Prospects of measuring EoR MAPS using SKA-Low

Impact on 3D Power spectrum

Abinash K. Shaw (IIT Kharagpur)

Remedies

Prospects of measuring EoR MAPS using SKA-Low

Solutions....?

- 1. Divide the obs. volume into thin slices along LoS direction where LC effect can be neglected safely. (e.g. **Shaw** et. al. 2019; Ewall-Wice et al. 2016; Pober et al. 2014)
- 2. Use **MAPS** statistic which need not assume homogeneity and ergodicity along LoS. (e.g. Mondal et. al. 2018; La Plante et al. 2014; Zawada et al.2014; Datta et al. 2012)

Estimator

Prospects of measuring EoR MAPS using SKA-Low

Multi-frequency Angular PS (MAPS)

Signal is ergodic and periodic on the plane of sky.

Assumption : Flat sky

We can do 2D FT on the sky plane and correlate the transformed signal across the different frequency channels.

$$C_{\ell}(v_1, v_2) \equiv C_{2\pi U}(v_1, v_2) = \Omega^{-1} \langle \tilde{T}_{b2}(U, v_1) \tilde{T}_{b2}(-U, v_2) \rangle$$

U is Fourier conjugate of 2D vector *θ* on the sky plane

Here also we have binned the ℓ plane into several anuuli and define **binned MAPS estimator**

$$\begin{split} \hat{C}_{\ell i}^{t}(v_{1},v_{2}) &= \frac{1}{2\Omega} \sum_{U_{g_{i}}} w(U_{g_{i}}) \left[\tilde{T}_{b2}^{t}(U_{g_{i}},v_{1}) \tilde{T}_{b2}^{t}(-U_{g_{i}},v_{2}) \right. \\ &+ \tilde{T}_{b2}^{t}(U_{g_{i}},v_{2}) \tilde{T}_{b2}^{t}(-U_{g_{i}},v_{1}) \right]. \end{split}$$

Simulation

Reionization Model

- Inside-out reionization model.
- Assumptions :
 - Hydrogen follows underlying dark matter field.
 - Sources from within the collapsed DM halos.
 - Ionizing radiation rate, leaking out of a halo, is proportional to the halo mass above a certain lower cut-off.

$$\dot{N}_{\gamma} = g_{\gamma} \frac{M \Omega_{\rm b}}{\mu m_{\rm p} (10 \,{\rm Myr}) \Omega_0}$$

Parameters :

$$g_{\gamma} = f_* f_{\rm esc} N_{\rm i} \left(\frac{10 \text{ Myr}}{t_{\rm s}}\right)$$
$$M_{\rm min} = 10^9 M_{\odot} \qquad (lliev et al. 2012)$$

We also include the atomically cooled mini-halos in our model.

Abinash K. Shaw (IIT Kharagpur)

Simulation

Prospects of measuring EoR MAPS using SKA-Low

Simulation details

- 1) Density field and halo catalogues from **PRACE4LOFAR** simulation within [700 Mpc]³ box (Giri et al. 2019)
- 2) Reionization process is simulated using the C²-RAY code (Mellema et al. 2006) on $[300]^3$ grids.
- 3) The LC boxes are generated using coeval boxes from Dixon et al. 2016.
- 4) We have generated two LC boxes with the details as follows

<u>LC1</u>	LC2
$z_{ m c}=7.09$	$z_{\rm c} = 8.04$
$\nu_{\rm c} = 175.58 \text{ MHz}$	$\nu_{\rm c} = 157.08 \text{ MHz}$
$\bar{x}_{\rm HI} \approx 0.50$	$\bar{x}_{\rm HI} pprox 0.75$
Range : $6.15 \le z \le 8.25$	Range : $6.92 \le z \le 9.40$

**** I shall focus on LC1 results. LC2 results are qualitatively similar.

Abinash K. Shaw	(IIT Kharagpur)
-----------------	-----------------

Results

Prospects of measuring EoR MAPS using SKA-Low

Signal MAPS

Methodology

Prospects of measuring EoR MAPS using SKA-Low

MAPS Error Variance

Considering system noise and assuming the Gaussian signal, we compute the error variance of the MAPS to be

$$\begin{split} \mathbf{X}_{12,12}^{\ell_{i}} &= \left[\boldsymbol{\sigma}_{12}^{\ell_{i}}\right]^{2} = \left\langle \left[\delta \mathcal{C}_{\ell_{i}}^{t}(\nu_{1},\nu_{2})\right]^{2} \right\rangle \\ &= \frac{1}{2} \sum_{U_{gi}} w_{gi}^{2} \left[\mathcal{C}_{\ell_{gi}}^{t}(\nu_{1},\nu_{1})\mathcal{C}_{\ell_{gi}}^{t}(\nu_{2},\nu_{2}) + \left\{\mathcal{C}_{\ell_{gi}}^{t}(\nu_{1},\nu_{2})\right\}^{2}\right] \\ &= \frac{1}{2} \sum_{U_{gi}} w_{gi}^{2} \left[\left\{\mathcal{C}_{\ell_{gi}}(\nu_{1},\nu_{1}) + \mathcal{C}_{\ell_{gi}}^{N}(\nu_{1},\nu_{1})\right\} \\ &\times \left\{\mathcal{C}_{\ell_{gi}}(\nu_{2},\nu_{2}) + \mathcal{C}_{\ell_{gi}}^{N}(\nu_{2},\nu_{2})\right\} \\ &+ \left\{\mathcal{C}_{\ell_{gi}}(\nu_{1},\nu_{2}) + \delta_{\nu_{1}\nu_{2}}^{K} \mathcal{C}_{\ell_{gi}}^{N}(\nu_{1},\nu_{2})\right\}^{2}\right] \end{split}$$
 Where the weight which extremizes SNR is
 &+ \left\{\mathcal{C}_{\ell_{gi}}(\nu_{1},\nu_{2}) + \delta_{\nu_{1}\nu_{2}}^{K} \mathcal{C}_{\ell_{gi}}^{N}(\nu_{1},\nu_{2})\right\}^{2}\right] \\ &= \frac{1}{\left\{\mathcal{C}_{\ell_{gi}}(\nu_{1},\nu_{2}) + \mathcal{C}_{\ell_{gi}}^{N}(\nu_{1},\nu_{2})\right\}^{2}} \\ &+ \left\{\bar{\mathcal{C}}_{\ell_{g}}(\nu_{1},\nu_{2}) + \delta_{\nu_{1}\nu_{2}}^{K} \mathcal{C}_{\ell_{gi}}^{N}(\nu_{1},\nu_{2})\right\}^{2}\right]^{-1}. \end{split}

Abinash K. Shaw (IIT Kharagpur)

Methodology (Instrument)

Prospects of measuring EoR MAPS using SKA-Low

Mock Observation (SKA-Low)

Methodology

Prospects of measuring EoR MAPS using SKA-Low

System Noise

- Considering observations with SKA-Low (8 hrs/night) we generate the respective baselines distribution.
- Fill every frequency channel with the uv distribution
- Grid the $(\boldsymbol{U}, \boldsymbol{v})$ space and count the baselines contributing to each grid.
- Estimate the noise MAPS at the **U** grids and at the same frequency channel.

$$\mathcal{C}_{\ell_{g}}^{\mathrm{N}}(\nu,\nu) = \frac{T_{\mathrm{sys}}^{2}\lambda^{4}}{N_{\mathrm{p}}N_{\mathrm{t}}\Delta t\,\Delta\nu\,a^{2}\,\tau(\boldsymbol{U}_{\mathrm{g}})} \times \frac{1}{\int d\boldsymbol{U}' \mid \tilde{A}(\boldsymbol{U}-\boldsymbol{U}')\mid^{2}}$$

$$T_{\text{sys}} = T_{\text{sky}} + T_{\text{rec}}$$
 $T_{\text{sky}} = 60\lambda^{2.55} \text{ K} \text{ (Fixsen et al. 2011)}$

Noise PS decreases for large t_{obs} and denser baseline sampling.

Results

Prospects of measuring EoR MAPS using SKA-Low

5**σ** Error Estimates

*** These results are free from any Foreground contamination.

Abinash K. Shaw	(IIT Kharagpur
-----------------	----------------

Foregrounds

Prospects of measuring EoR MAPS using SKA-Low

Foreground Avoidance

Foregrounds are typically restricted within a wedge shaped region in $(\mathbf{k}_{\perp}, \mathbf{k}_{\parallel})$ plane whose boundary is given by, (Morales et al. 2012)

$$k_{\parallel} = \left[\frac{r_c \, \sin(\theta_{\rm L})}{r'_c \, \nu_c}\right] \times k_{\perp}$$

Foreground scenarios :

- 1) Optimistic (no foregrounds, i.e. $\theta_1 = 0^\circ$)
- 2) Mild (significant foregrounds within $\theta_1 = 3 \times FWHM/2$)
- 3) Moderate (significant foregrounds within $\theta_1 = 9 \times FWHM/2$)
- 4) Pessimistic (foregrounds from all sky i.e. $\theta_1 = 90^\circ$)

Foregrounds

Prospects of measuring EoR MAPS using SKA-Low

Foreground Avoidance

Here also we avoid foregrounds in $(\mathbf{k}_{\perp}, \mathbf{k}_{\parallel})$ plane.

We estimate the MAPS corresponding to the avoided wedge spherically averaged power spectrum and subtract it from our complete MAPS estimates.

This basically assumes the ergodicity along the LoS direction.

$$C_{\ell}^{\rm EP}(\Delta \nu) = \frac{1}{\pi r_{\rm c}^2} \int_0^\infty \mathrm{d}k_{\parallel} \cos\left(k_{\parallel} r_{\rm c}' \Delta \nu\right) P(k_{\perp}, k_{\parallel})$$

$$\mathcal{C}_{\ell}^{\mathrm{FA}}(\nu_1,\nu_2) = \mathcal{C}_{\ell}(\nu_1,\nu_2) - \mathcal{C}_{\ell}^{\mathrm{EP}}(\Delta\nu)$$

Results

Prospects of measuring EoR MAPS using SKA-Low

SNR Plots

Abinash K. Shaw (IIT Kharagpur)

Summary

- Light cone effects are severe for the EoR 21-cm signal which shows rapid evolution with time (along LoS direction).
- LC effects breaks the ergodicity and periodicity along LoS direction which make spherically averaged PS a biased statistic of the signal.
- MAPS provides the complete information of the EoR 21-cm signal incorporating the signature variation in signal. It can potentially tell us about time evolution of the properties of the ionizing source.
- SKA-Low is able to detect the 21-cm MAPS at > 5σ with 1000 hrs of observations in the intermediate ℓ values (~1300) across the full 44 MHz bandwidth. However this decreases at larger ℓ values.
- Incorporating foregrounds decreases the MAPS signal and hence reduces the bandwidth accessible for > 5σ detection gradually from Optimistic to Mild, Moderate and finally Pessimistic scenario where the bandwidth reduces to ~ 20 MHz.

Thank You...