Cosmology with Type Ia supernovae

Searching for systematics and model independent reconstructions

Hanwool Koo (KASI/UST), Arman Shafieloo (KASI/UST) et al. hkoo@kasi.re.kr, shafieloo@kasi.re.kr

2 November 2020 The 9th KIAS Workshop on Cosmology and Structure Formation

For more detail, see the online poster and Koo et al. 2020, ApJ, 899, 9 (arXiv:2001.10887) Kazantzidis et al. 2020, arXiv:2010.03491 Koo et al. 2020, arXiv:2009.12045

Introduction

- Type Ia supernovae (SN Ia) are used as standardizable candles for distance measurement and have become one of important portion of modern cosmology
- The standardization is purely empirical and requires SN Ia light curve fitting model with the number of parameters and hyperparameters
- The light-curve hyperparameters are usually constrained based on assumption of cosmological model

Introduction

- To search for systematics in the SN Ia data, model independent reconstruction is required
- After reconstruction, we can look for features in the data which can be a hint for systematics or new physics
- Also perform model selection and parameter estimation without comparing models

Light-curve hyperparameters

 The Joint Light-curve Analysis (JLA) compilation have light-curve parameters information based on SALT2 fitter Betoule et al. 2014 Guy et al. 2007; Mosher et al. 2014

•
$$\mu = m_B^{\star} - (M_B - \alpha X_1 + \beta C)$$

Tripp.1998

- m_B^{\star} , X_1 , C are provided light-curve parameters
- α , β , M_B^1 , Δ_M are light-curve hyperparameters $M_B = M_B^1$ if $M_{\text{stellar}} < 10^{10} M_{\text{sun}}$ (M_{stellar} : Stellar mass of host galaxy) $M_B = M_B^1 + \Delta_M$ otherwise

Iterative smoothing method

- The non-parametric method to reconstruct the distance modulus and expansion history of the universe Shafieloo et al. 2006, 2018; Shafieloo. 2007; Shafieloo & Clarkson 2010
- Starts from initial guess of distance modulus, but generates model-independent reconstruction of distance modulus with lower χ^2 value after numerous iterations

$$\hat{\mu}_{n+1}(z) = \hat{\mu}_n(z) + \frac{\delta \mu_n^{T} \cdot \mathbf{C}^{-1} \cdot W(z)}{\mathbf{1}^T \cdot \mathbf{C}^{-1} \cdot W(z)} \quad (\mathbf{C}^{-1}: \text{ inverse of the covariance matrix from JLA})$$
$$\mathbf{1}^T = (1, \dots, 1), \quad W_i(z) = \exp\left(-\frac{\ln^2(\frac{1+z}{1+z_i})}{2\Delta^2}\right), \quad \delta \mu_n|_i = \mu_i - \hat{\mu}_n(z_i)$$

$$\chi_n^2 = \delta \mu_n^{T} \cdot \mathbf{C}^{-1} \cdot \delta \mu_n$$
⁵

Constraints

- Assume 3 models for comparison
- Contours are all consistent (No dependence on model)

Constraints (Reconstructions)

Looking for features in SN la data

- Pantheon: Based on SALT2 fitter, more recent than JLA, includes more SNe Ia, considers more uncertainties Scolnic et al. 2018
- Oscillating features in Pantheon data at z<0.5 around the best-fit ACDM model
- See how generic such behavior is found at many Monte Carlo realizations of the data (using full covariance matrix of the Pantheon data)

Looking for features in SN la data

Bin	z Range	$\mathcal{M} \pm 1\sigma$ error	$\Delta \sigma_{\mathcal{M}}$	$\Omega_{0m} \pm 1\sigma$ error	$\Delta \sigma_{\Omega_{0m}}$
Full Data	0.01 < z < 2.26	23.81 ± 0.01	-	0.29 ± 0.02	-
1 st	0.01 < z < 0.13	23.78 ± 0.03	1.14	0.07 ± 0.17	1.35
2nd	0.13 < z < 0.25	23.89 ± 0.06	1.48	0.56 ± 0.19	1.34
3 rd	0.25 < z < 0.42	23.75 ± 0.06	0.99	0.18 ± 0.11	1.05
$4 \mathrm{th}$	0.42 < z < 2.26	23.85 ± 0.06	0.69	0.33 ± 0.06	0.50

Kazantzidis. Koo. Nesseris. Shafieloo. Perivolaropoulos. 2020

- Large σ deviation of the redshift binned best-fit parameter values from their full dataset best-fit values
- Such features occur in 4-5% of Pantheon-like simulations
- Might be a hint to possible systematic or new physics

Direct model testing

- Model testing using bayesian evidence depends on comparing models
- We try to test consistency of a model and the data without comparing different models
- Estimate likelihood distribution of $\Delta\chi^2$ using iterative smoothing method for model selection and parameter estimation

Model selection

- 1000 Pantheon-like mock realizations
- No dependence on cosmological models that are used for simulation

Parameter estimation

1000 Pantheon-like mock realizations

Parameter estimation

Based on previous 95% CLs from Pantheon

Model selection with future data

- 1000 WFIRST mock realizations, ACDM fiducial model
- Estimated Type II errors:

Type II	>95%	>99%	
PEDE	24.7%	10.5%	
Kink	70.1%	49.5%	

Summary

- No model dependence nor redshift evolution of lightcurve hyperparameters have found
- 4-5% of Pantheon-like simulations have similar oscillatory features with that in Pantheon data (systematics or new physics?)
- Model selection and parameter estimation using iterative smoothing method works well (confronting with Bayesian analysis)

Supplementary slides

Test models for constraining hyperparameters

- ACDM: Lambda-cold dark matter model w(z) = -1 (*w*: equation-of-state parameter)
- CPL: Chevallier-Polarski-Linder parameterization $w(z) = w_0 + w_a \frac{z}{1+z}$ Chevallier. Polarski. 2001; Linder. 2003
- PEDE: Phenomenologically Emergent Dark Energy model $w(z) = -\frac{1}{3\ln 10}(1 + \tanh[\log_{10}(1 + z)]) - 1$ Li. Shafieloo. 2019

Test data and models for model selection

- WFIRST (simulated): Forecasted peak luminosity values of SNe Ia in WFIRST
- 'kink' model $w(z) = w_0 + (w_{\infty} - w_0) \frac{1 + \exp(\frac{a_c}{d_m})}{1 + \exp(-\frac{a - a_c}{d_m})} \frac{1 - \exp(-\frac{a - 1}{d_m})}{1 - \exp(\frac{1}{d_m})}$

Corasaniti. Copeland. 2003

•
$$w_0 = -1$$
, $w_\infty = -0.5$, $a_c = \frac{2}{3}$, and $d_m = 1$

Holsclaw et al. 2010; Shafieloo et al. 2012