Universe in a Black Hole from Spin and Torsion

Nikodem Popławski

9th KIAS Workshop on Cosmology and Structure Formation
Seoul, South Korea
November 3, 2020
Universe in a black hole

• The conservation law for total angular momentum in curved spacetime, consistent with Dirac equation, requires that the affine connection has antisymmetric part: torsion. In the simplest theory with torsion, Einstein-Cartan gravity, the torsion tensor is generated by spin of fermions.

• Gravitational collapse of a spherically symmetric sphere of a spin fluid creates an event horizon. The matter within the horizon collapses to extremely high densities, at which torsion acts like gravitational repulsion.

• Without shear, torsion prevents a singularity and replaces it with a nonsingular bounce. With shear, torsion prevents a singularity if the number of fermions increases during contraction via quantum particle production.

• Particle production during expansion produces enormous amounts of matter and can generate a finite period of inflation. The resulting closed universe on the other side of the event horizon may have several bounces. Such a universe is oscillatory, with each cycle larger in size than the previous cycle, until it reaches the cosmological size and expands indefinitely.
Einstein-Cartan-Sciama-Kibble gravity

- Action variation with respect to metric and torsion. $S^k_{ij} = \Gamma^k_{[i \ j]}$

- Covariant derivative of metric is zero. Lagrangian density is proportional to Ricci scalar (as in GR).

- Cartan equations:
 Torsion is proportional to **spin** density of fermions. ECSK differs significantly from GR at densities $> 10^{45} \text{ kg/m}^3$; passes all tests.

 \[S_{jik} - S_{igjk} + S_{kgji} = -\frac{1}{2}\kappa s_{ikj} \]

- Einstein equations: torsion terms moved to RHS. **Curvature** is proportional to **energy and momentum** density.
Gravitational collapse of spin fluid sphere

Dirac particles can be averaged macroscopically as a spin fluid.

\[s^{\mu\nu\rho} = s^{\mu\nu} u^\rho \quad s^{\mu\nu} u_\nu = 0 \quad s^2 = s^{\mu\nu} s_{\mu\nu} / 2 \]

Collapse can be parametrized by the closed FLRW metric. Einstein-Cartan equations become Friedmann equations for scale factor \(a \).

\[\frac{\dot{a}^2}{c^2} + 1 = \frac{1}{3} \kappa \left(\epsilon - \frac{1}{4} \kappa s^2 \right) a^2 \]
\[\frac{\dot{a}^2 + 2a\ddot{a}}{c^2} + 1 = -\kappa \left(p - \frac{1}{4} \kappa s^2 \right) a^2 \]

Spin and torsion modify the energy density and pressure with a negative term proportional to the square of the fermion number density \(n \), which acts like repulsive gravity.

Torsion generating nonsingular bounce

For relativistic matter, Friedmann equations can be written in terms of temperature: $\epsilon \approx 3\rho \sim T^4$, $n \sim T^3$, and put in nondimensional form with temperature x and scale factor y:

\[
\frac{\dot{a}^2}{c^2} + 1 = \frac{1}{3} \kappa (h_* T^4 - \alpha n T^6) a^2
\]
\[
\frac{\dot{a}}{a} + \frac{\dot{T}}{T} = 0 \quad \alpha = \kappa (\hbar c)^2 / 32
\]
\[
\dot{y}^2 + 1 = (3x^4 - 2x^6)y^2
\]
\[
x y = C > 0
\]

Two turning points ($\dot{y} = 0$) for a closed Universe with torsion exist if $C > (8/9)^{1/2}$. They are positive – **no cosmological singularity**!

Particle production generating inflation

Near a bounce, particle production enters through a term \(\sim H^4 \), with \(\beta \) as a production parameter.

\[
\frac{\dot{a}}{a} \left[1 - \frac{3\beta}{c^3 h n_1 T^3 \left(\frac{\dot{a}}{a} \right)^3} \right] = -\frac{\dot{T}}{T}
\]

To avoid eternal inflation: the \(\beta \) term < 1, so \(\beta < \beta_{cr} \approx 1/929 \).

For \(\beta \approx \beta_{cr} \) and during an expansion phase, when \(H = \dot{a}/a \) reaches a maximum, the \(\beta \) term is slightly lesser than 1 and:

\(T \sim \text{const}, \quad H \sim \text{const} \).

Exponential expansion lasts about \(t_{\text{Planck}} \) then \(H \) and \(T \) decrease. Inflation ends when torsion weakens. No scalar fields needed. Dynamics similar to plateau-like inflation & consistent with CMB. S. Desai & NP, PLB 755, 183 (2016).
Torsion & particle production: opposing shear and generating matter & entropy

Shear opposes torsion in Raychaudhuri equation. Shear and torsion terms grow with decreasing scale factor according to a^{-6}. To avoid singularity, fermion number density must grow faster than a^{-3}. This condition during a contracting phase can happen because of particle production.

If quantum effects in the gravitational field near a bounce do not produce enough matter, then the closed Universe reaches the maximum size and then contracts to another bounce, beginning the new cycle. Because of matter production, a new cycle reaches larger size and last longer than the previous cycle.

<table>
<thead>
<tr>
<th>β/β_{cr}</th>
<th>Number of bounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.996</td>
<td>1</td>
</tr>
<tr>
<td>0.984</td>
<td>2</td>
</tr>
<tr>
<td>0.965</td>
<td>3</td>
</tr>
<tr>
<td>0.914</td>
<td>5</td>
</tr>
<tr>
<td>0.757</td>
<td>10</td>
</tr>
</tbody>
</table>

When the Universe reaches a size at which the cosmological constant is dominating, then it avoids another contraction and starts expanding to infinity.