The 9th KIAS Workshop on Cosmology and Structure Formation

Phase-space Analysis of Halos around the Large-scale Filamentary Structures

Hannah Jhee¹, Hyunmi Song², Rory Smith³, Jihye Shin³ and Inkyu Park¹

¹Department of Physics, University of Seoul, Seoul 02504, Republic of Korea ²Department of Astronomy, Yonsei University, Seoul 03722, Republic of Korea ³Korea Astronomy and Space Science Institute, Daejeon 34055, Republic of Korea

1. Motivation

- ✓ By Oman et al.(2013) and Rhee et al.(2017), halos falling into the clusters are shown to have typical trajectories on the normalized phase-space.
- So, phase space analysis can be a tool to understand the evolutionary steps of a galaxy.
- ✓ Can similar work be done for halos around the filaments too?

2. Data and Method

N-Cluster Run - Cosmological N-body Simulation

- (Gadget-3)
- Cosmology: Ω_{Λ} 0.7

$Ω_m$ 0.3 $σ_8$ 0.816 $Ω_b$ 0.047 n_{spec} 0.967

0.684

- Box size : 120 Mpc
- Resolution : $1.072 \times 10^9 M_{\odot}/h$

Amiga Halo Finder(AHF)

 Finds gravitationally bound systems in the cosmological simulations

DisPErSE

- Discrete Persistent Structures Extractor
- Applied to $R < 20R_{vir}$ around each cluster in order to find the filament structures

$$\begin{aligned} r_{perp} &= \left| \hat{u} \cdot \vec{D}_{halo} \right| \\ v_{perp} &= \left| \hat{u} \cdot \vec{v}_{3D} \right| \\ v_{par} &= \left| \vec{v}_{3D} - \hat{u} v_{perp} \right| \end{aligned}$$

3.1. Examples of Phase-space Diagrams

- ✓ Halos typically gain velocities linearly until they reach their peaks and then shows turn-around motion after falling into the filaments.
- ✓ The position on the phase-space at z = 0 is relevant to t_{peri} , and the gradient in the figure disappears as halos spend a long time inside the filaments. → Virialization
- ✓ Body(blue) & Tail(orange) objects in the last bin

2. Results

3.2. Parameter Correlations

Parameter	Configuration	
acc (a)	Acceleration right after hitting the $1^{st} v_{max}$	
vratio (Γ_v)	$\Gamma_{v} = v_{min}/v_{max}$	
vmax (v _{max})	1 st maximum velocity	
vmin (v _{min})	The absolute value of 1 st minimum velocity	'
fml (<i>f_{ML}</i>)	$f_{ML} = 1 - M_{now} / M_{peak}$	240
rmin (r _{min})	r_{perp} at 1 st pericenter($v_{perp} = 0$)	100
r0 (r ₀)	Initial r _{perp}	[s/m
v0 (v ₀)	Initial v_{perp}	<u>א</u>] хес
nass (<i>M_{halo}</i>)	Halo mass at $z = 0$	20
tperi (t _{peri})	Time since the 1 st pericenter	

✓ Lower mass halos have higher velocity peaks under the same condition of the initial distances to the filaments.

2. Results

0.20 0.15 0.10 0.05 0.00

0.00

0.20 0.15 0.10 0.05 0.00

0

2

3.3. Mass Evolution of Halos

Normalized Frequency 0.0 0.0

0.2

0.1

1.00

0.25

Frequ 0.75

malized 0.50

₽ 0.00 0

0

 $10^{12} M_{\odot}$

Fperp

 $10^{13} M_{\odot}$

Fperp

- ✓ Are the trajectories relevant to the mass evolutions?
- Observational Fact (Chen et al. 2015).: \checkmark Higher mass halos are closer to the filaments at z = 0

at formation

12

12

at formation

--- at z=0

10

--- at z=0

10

 $1.5 \times 10^{10} M_{\odot}$

6

Fperp

 $10^{11} M_{\odot}$

Fperp

Thank you!