Baryon Acoustic Oscillations in DES-Y3 data

Juan Mena-Fernández ${ }^{1}$

(juan.mena@ciemat.es)

Collaborators:
A. Carnero ${ }^{2}$, E. Sánchez ${ }^{1}$, J. Asorey ${ }^{1}$, D. Sánchez ${ }^{1}$, M. Rodríguez ${ }^{1}$, I. Sevilla ${ }^{1}$, J. de Vicente ${ }^{1}$
${ }^{1}$ Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT)
${ }^{2}$ Instituto de Astrofísica de Canarias (IAC)
Wednesday $4^{\text {th }}$ November, 2020

The DES-Y3 BAO sample

The DES-Y3 BAO sample is a photometric red galaxy sample selected using the griz bands and a photometric redshift estimate. It is built looking for a good compromise between photo-z accuracy and number density. It is selected with the cuts

$$
\begin{array}{lr}
1.7<i-z+2(r-i) & \text { (color selection) } \\
17.5<i<19+3 z_{p h} & \text { (flux selection) }, \tag{1}\\
0.6<z_{p h}<1.1 & \text { (photo-z range) }
\end{array}
$$

- The DES-Y3 BAO sample is divided in 5 redshift bins with bounds $[0.6,0.7,0.8,0.9,1.0$, 1.1].
- We will focus on how the BAO is measured from the Angular Correlation Function (ACF).
- Since the ACF of the DES-Y3 data is still blinded, we will measure the BAO in a set of 1000 lognormal mocks (simulated galaxy catalogs) instead.

Methodology

(1) Generate the 1000 lognormal mocks. Firstly, we have to fix an input cosmology (in this case, MICE cosmology) and the redshift distributions of the galaxies (we will use the ones of the DES-Y3 BAO sample).
(2) Calculate the ACFs of each mock and their full covariance matrix, $(\operatorname{cov})_{\theta_{i}, \theta_{j}}^{z_{b i n_{1}}, z_{b i n_{2}}}$.
(3) Obtain the BAO scale of each mock by minimizing the χ^{2}

$$
\begin{align*}
\chi_{\text {mock }}^{2}(\vec{p})=\sum_{z_{\text {bin }_{1,2}}} & \sum_{i, j}\left[\omega_{\text {mock }}^{z_{\text {bin }}}\left(\theta_{i}\right)-\omega_{\text {model }}^{z_{\text {bin }}}\left(\theta_{i} ; \vec{p}^{z_{\text {bin }_{1}}}\right)\right]\left(\operatorname{cov}^{-1}\right)_{\theta_{i}, \theta_{j}}^{z_{b_{j}}, z_{b_{b i i_{2}}}} \\
& \times\left[\omega_{\text {mock }}^{z_{\text {bin }_{2}}}\left(\theta_{j}\right)-\omega_{\text {model }}^{z_{\text {bin }}}\left(\theta_{j} ; \vec{p}^{z_{b_{i i_{2}}}}\right)\right], \tag{2}
\end{align*}
$$

where

$$
\begin{equation*}
\omega_{\text {model }}^{z_{\text {bin }}}\left(\theta, \vec{p}^{z_{b i n}}\right)=A^{z_{b i n}} \omega_{\text {template }}^{z_{\text {bin }}}(\alpha \cdot \theta)+B^{z_{b i n}}+\frac{C^{z_{b i n}}}{\theta}+\frac{D^{z_{b i n}}}{\theta^{2}} . \tag{3}
\end{equation*}
$$

$\omega_{\text {template }}^{z_{\text {bin }}}(\theta)$ is the theoretical ACF computed for a given cosmology. The BAO scale is given in terms of the shift α with respect to the template cosmology, $\alpha=\theta_{B A O}^{\text {template }} / \theta_{B A O}^{\text {mock }}$.
(9) Calculate the mean and the standard deviation of the 1000α values. We will use two different template cosmologies in order to compare the results.

Results(I)

Correlation functions calculated from the mocks

ACFs of the 1000 mocks

Template ACFs: two different cosmologies

	Ω_{b}	Ω_{c}	h	A_{s} or σ_{8}	n_{s}
MICE cosm.	0.044	0.206	0.7	$\sigma_{8}=0.8$	0.95
Planck cosm.	0.0494	0.2656	0.6727	$A_{s}=2.101 \cdot 10^{-9}$	0.9649

Results(II)

Fit results

1) Using the MICE template

2) Using the Planck template

Summary of the results

	MICE t.	Planck t.
$\langle\alpha\rangle$	1.0040	0.9572
$\operatorname{std}(\alpha) /\langle\alpha\rangle$	1.9%	1.74%
$\alpha_{\text {th }}\left(z_{\text {eff }}\right)$	1	0.9528

Conclusions

- We have obtained that $\operatorname{std}(\alpha) /\langle\alpha\rangle \sim 2 \%$. Also, $\langle\alpha\rangle / \alpha_{t h} \approx 1.004$.
- The results do not depend on the cosmology of the template used to do the fits. This allows us to use this method with real data (for which we don't know the exact cosmology).

References

TMC Abbott, FB Abdalla, A Alarcon, S Allam, F Andrade-Oliveira, J Annis, S Avila, Mandakranta Banerji, N Banik, K Bechtol, et al.
Dark Energy Survey Year 1 Results: Measurement of the Baryon Acoustic Oscillation scale in the distribution of galaxies to redshift 1.
Monthly Notices of the Royal Astronomical Society, 483(4):4866-4883, 2019.
Martín Crocce, Anna Cabré, and Enrique Gaztañaga.
Modelling the angular correlation function and its full covariance in photometric galaxy surveys.
Monthly Notices of the Royal Astronomical Society, 414(1):329-349, 2011.
:
N Aghanim, Yashar Akrami, M Ashdown, J Aumont, C Baccigalupi, M Ballardini, AJ Banday, RB Barreiro, N Bartolo, S Basak, et al.
Planck 2018 results. VI. Cosmological parameters.
arXiv preprint arXiv:1807.06209, 2018.

