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Introduction

What does it mean that two Riemannian manifolds are “close”?

In other words, what is a suitable topology to equip a class of Riemannian
manifolds with?

Does the closure under that topology include spaces that are no longer
Riemannian manifolds, but have singularities?

These fundamental questions appear in various circumstances in geometric
analysis. In the first talk, I will survey some of the convergence results for classes
of manifolds with bound(s) on Ricci curvature or scalar curvature, including
Gromov compactness theorem, some aspects of Cheeger-Colding theory, and
Sormani-Wenger compactness theorem.
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Curvatures in Riemannian geometry

Let (M, g) be a Riemannian manifold and ∇ its Levi-Civita connection. The
Riemannian curvature tensor R is a (1, 3)-tensor defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ +∇[X,Y ]Z

for vector fields X,Y, Z.
Let p ∈M and u, v ∈ TpM be linearly independent tangent vectors. The
sectional curvature of {u, v} is defined to be

K(u, v) =
g(R(u, v)v, u)

g(u, u)g(v, v)− g(u, v)2
.

Space forms: manifolds of constant sectional curvature.
Let ei be an orthonormal basis of TpM . The Ricci curvature Ric is a 2-tensor
defined at p by

Ric(X,Y ) =

n∑
i=1

g(R(ei, Y )X, ei).

Ric is the trace of the curvature tensor with respect to g.
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Curvatures in Riemannian geometry

The scalar curvature R is defined by

R =

n∑
i=1

Ric(ei, ei) =

n∑
i,j=1

g(R(ei, ej)ej , ei).

Scalar curvature is the trace of Ricci curvature with respect to g.
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Gromov-Hausdorff Distance

Definition
The Gromov-Hausdorff distance between two metric spaces X,Y is denoted
by dGH(X,Y ) and defined to be

dGH(X,Y ) = inf dZH(φX(X), φY (Y ))

where the infimum is taken over all embeddings φX : X → Z, φY : Y → Z into
a complete metric space Z, and dZH is the Hausdorff distance in Z.
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Gromov-Hausdorff Distance

The following definition is an extension of tangent space at a point of a
Riemannian manifold to a metric space.

Definition
Let X be a metric space.

1 Let p ∈ X. A pointed metric space (Y, q) is a tangent cone at p of X if
there exists a sequence ri → 0 such that

lim
i→∞

r−1
i dGH (Bp(ri) ⊂ X,Bq(ri) ⊂ Y ) = 0.

2 A pointed metric space (Y, q) is a tangent cone at infinity of X if there
exists a sequence ri →∞ such that

lim
i→∞

r−1
i dGH (Bp(ri) ⊂ X,Bq(ri) ⊂ Y ) = 0.
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Gromov-Hausdorff Distance

Gromov Compactness Theorem

If (Mi, gi) is a sequence of compact Riemannian manifolds such that
Ricgi ≥ κgi and diam(Mi, gi) ≤ L for some fixed κ, L ∈ R, then there exists a
subsequence which converges in Gromov-Hausdorff topology to a metric space.
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Convergence for sectional curvature: Alexandrov spaces

Let k ∈ R. Denote by Mk the 2-dimensional simply connected space form of
curvature k.
Let X be a length space, i.e. a metric space such that for any p, q ∈ X, there
exists a continuous path γ from p to q that realizes the distance between p and
q, so that |γ| = d(p, q).

Definition
X is Alexandrov space of curvature ≥ k if for any triangle ∆pqr in X, there
exists a comparison triangle ∆p̄q̄r̄ in Mk such that d(p, q) = dMk

(p̄, q̄),
d(q, r) = dMk

(q̄, r̄), d(r, p) = dMk
(r̄, p̄), so that for any s ∈ qr and s̄ ∈ q̄r̄ with

d(q, s) = dMk
(q̄, s̄),

d(p, s) ≥ dMk
(p̄, s̄).

The class of Alexandrov spaces of curvature ≥ k is closed with respect to
Gromov-Hausdorff convergence.
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Convergence for sectional curvature: Alexandrov spaces

Theorem (convergence for sectional curvature)

If (Mi, gi) is a sequence of Riemannian manifolds of dimension n with sectional
curvature ≥ k that converges in Gromov-Hausdorff topology to a metric space
X, then X is a locally compact Alexandrov space of curvature ≥ k.

(However, not all locally compact Alexandrov spaces are limits of Riemannian
manifolds.)

Alexandrov spaces of curvature ≥ k what arise as limit of manifolds with
sectional curvature ≥ k share many properties with Riemannian manifolds, for
example:

One can define the tangent space at each point, i.e. the “space of angles”,
and that notion coincides with the Gromov-Hausdorff tangent cone at that
point. The tangent cone of an Alexandrov space of Hausdorff dimension n
is an Alexandrov space of nonnegative curvature of Hausdorff dimension n.
Moreover, every point has a neighborhood homeomorphic to its tangent
space.
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Convergence for sectional curvature: Alexandrov spaces

On Alexandrov spaces of curvature bounded below and Hausdorff
dimension 2, one can prove a generalization of Gauss-Bonnet theorem.

One can define parallel transport along a minimizing path, harmonic maps,
etc.

Theorem (splitting theorem for Alexandrov spaces)

If a locally compact Alexandrov space X of nonnegative curvature contains a
line, i.e. a minimizing path defined on all of R, then X is isometric to a metric
product R× Y for some nonnegatively curved Alexandrov space Y .
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Cheeger-Colding theory

Cheeger-Colding theory contains information on the structure of and
convergence to Ricci limit spaces.

In geometry, a “rigidity theorem” says that if a geometric quantity such as
volume or diameter attains the possible maximal value for the given curvature
conditions, then the metric is a certain warped product.

Theorem (Cheeger-Gromoll splitting theorem)

Let (M, g) be a complete Riemannian manifold of dimension n of nonnegative
Ricci curvature. If M contains a line, then M is isometric to a product R×N
for some Riemannian manifold N of dimension (n− 1) of nonnegative Ricci
curvature.
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Cheeger-Colding theory

An “almost rigidity theorem” says that if the quantity is close to being maximal,
the metric is close (in a suitable distance) to a warped product.

Let (X, dX) be an arbitrary metric space, and f : (a, b)→ R a positive function.
The warped product (a, b)×f X is the topological space (a, b)×X equipped
with the metric d′ given by

d′((r1, x1), (r2, x2)) = inf

ˆ dX(x1,x2)

0

(
r′(t)2 + f(r(t))2

)1/2
dt,

where the infimum is taken over continuous paths r : [0, dX(x1, x2)]→ [r1, r2]
with r(0) = r1, r(dX(x1, x2)) = r2.

Suppose that x1, x2 ∈ X and r1 < r2, r3 < r4. Then d′((r2, x1), (r4, x2)) is
determined only by r1, r2, r3, r4, dX(x1, x2), that is, for some function Q,

d′((r2, x1), (r4, x2)) = Q(r1, r2, r3, r4, d
′((r1, x1), (r3, x2))). (1)
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Cheeger-Colding theory

Define F by

F(r) = −
ˆ b

r

f(u) du. (2)

If X is an (n− 1)-dimensional Riemannian manifold with metric gX , then on
(a, b)×f X,

HessF = (F
′′
◦ F−1)g(a,b)×fX .

Conversely, the existence of a function whose Hessian is conformal to the metric
implies that the manifold is a warped product.
Let (M, g, p) be a complete pointed Riemannian manifold, r the distance
function from p, and Aa,b the annulus Aa,b = {a ≤ r ≤ b}. If there is an “almost

warping” function F̃ , then the distance d induced by g on M is close to d′.

Theorem (Cheeger-Colding [2])

Suppose that
Ricg ≥ (n− 1)Λ. (3)

Let R > 0 and ε > 0. There exists δ = δ(R, ε,Λ) > 0 with the following effect.
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Cheeger-Colding theory

Theorem (continued) (Cheeger-Colding [2])

Let 0 < a < b < R. Suppose that there exists F̃ : Aa,b → R such that

range F̃ ⊂ rangeF , (4)

|∇F̃ − ∇F| < δ, (5)

1

vol(Aa,b)

ˆ
Aa,b

|∇F̃ − ∇F| < δ, (6)

1

vol(Aa,b)

ˆ
Aa,b

|HessF̃ − (H ◦ F̃)g| < δ, (7)

where F is defined on Aa,b by F(x) = F(r(x)) and H = F ′′ ◦ F−1.
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Cheeger-Colding theory

Theorem (continued) (Cheeger-Colding [2])

Let x1, x2, y1, y2 ∈ BR(p) be such that

r(y1)− r(x1) = d(x1, y1), (8)

r(y2)− r(x2) = d(x2, y2). (9)

Then,
|d(y1, y2)−Q (r(x1), r(y1), r(x2), r(y2), d(x1, x2))| < ε. (10)
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Cheeger-Colding theory

How can one find an almost warping function on a given manifold of
nonnegative Ricci curvature? If M has large volume growth, then harmonic
functions on annuli can be used. The key is finding a good cutoff function φ so
that |∇φ| and |∆φ| are bounded above.

Theorem (Cheeger-Colding [2])

Let 0 < a, b and 0 < ω < 1. Suppose that M has nonnegative Ricci curvature,

vol(Aa,b)

Area(r−1(a))
≥ (1− ω)

´ b
a
fn−1(r) dr

fn−1(a)
, (11)

and

(n− 1)
f ′(a)

f(a)
≥ ∆r on r−1(a). (12)

Then there exists F̃ defined on Aa,b so that the equations (4)–(7) in Theorem
0.1 are satisfied on Aa+ε,b−ε, where ε can arbitrarily small if ω is sufficiently
small.
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Cheeger-Colding theory

Instead of solving the Dirichlet problem on annuli, one can also work on the
whole manifold by considering the Green function defined on all of M\{p}.

Definition

A smooth symmetric function G : M ×M\D → R, where D is the diagonal, is
said to be a Green function (for the Laplacian) if it is the fundamental solution
of the Laplace equation, that is,

∆yG(x, y) = −n(n− 2)ωnδx(y),

where ωn is the volume of the unit ball in the n-dimensional Euclidean space.

The normalization is chosen so that G = r2−n on Rn if n > 3. If M is complete
then a Green function always exists (Malgrange-Ehrenpreis theorem).

Definition
A complete Riemannian manifold M is said to be nonparabolic if it possesses a
positive Green function G for the Laplacian. M is said to be parabolic otherwise.
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Cheeger-Colding theory

Nonparabolicity can be characterized in terms of the volume growth.

Theorem (Varopoulos [25])

If M is complete and has nonnegative Ricci curvature, and of dimension greater
than 2, then M is nonparabolic if and only if

ˆ ∞
1

t

vol(Bp(t))
dt <∞

for some p ∈M .

It is possible to choose the minimal positive Green function (Li-Tam [17]).

Definition

M is said to have maximal volume growth if lim
r→∞

vol(Bp(r))

ωnrn
> 0.

If n ≥ 3, then maximal volume growth implies nonparabolicity.
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Cheeger-Colding theory

We focus on the convergence at infinity of M to a cone, so we will take the
warping function f to be f(x) = |x|. Note that if (M, g) is the Euclidean space
Rn, then G = r2−n. It is very useful to define the function b by

b = G
1

2−n , (13)

so that b = r on Rn.

When the sectional curvature K is nonnegative outside of a compact set D, Li
[16] proved that if M is moreover Kähler, then M\D is isometric to a product
of a compact Kähler manifold of nonnegative sectional curvature and a
connegatively curved Riemann surface with boundary, based on the estimates in
Li-Tam [17].
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Theorem (Colding-Minicozzi [7])

Let R > 0 and Ω > 1. Suppose that M has nonnegative Ricci curvature and
maximal volume growth, so that

VM := lim
r→∞

vol(Bp(r))

ωnrn
> 0. (14)

Then there exists R0 > 0 and δ > 0, depending only on Ω, VM so that whenever
R > R0,

sup
r∈(R,ΩR)

∣∣∣∣ br − V 1
n−2

M

∣∣∣∣ < δ, (15)

1

vol(AR,ΩR)

ˆ
AR,ΩR

∣∣∣∣|∇b| − V 1
n−2

M

∣∣∣∣ < δ, (16)

1

vol(AR,ΩR)

ˆ
AR,ΩR

∣∣∣∣Hessb2 − ∆b2

n
g

∣∣∣∣ < δ. (17)

δ can be arbitrarily small if VM is sufficiently close to 1.
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Cheeger-Colding theory

One can estimate the Gromov-Hausdorff distance between an annulus and a
discrete approximation of it by picking out points along the geodesic rays:

Theorem (Cheeger-Colding [2])

Let Ω > 1 and ε > 0. Suppose that (M, g, p) is complete and has nonnegative
Ricci curvature and maximal volume growth, and of dimension n ≥ 3. Then
there exists R0 = R0(ε,Ω) > 0 and a compact metric space X so that,
whenever R > R0,

dGH

(
(AR,ΩR, p), (A

C(X)
R,ΩR, o)

)
< ε, (18)

where C(X) = [0,∞)×r X is the cone over X.

The diameter of X can be bounded from above by a factor determined by the
volume growth and the decay rate of the integrals of the gradient of b and
trace-free Hessian of b2.
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Cheeger-Colding theory

An important corollary of the above theorem is the following “volume cone is
metric cone” theorem.

Theorem (Cheeger-Colding [2], [3])

1 Let r > 0. Suppose that (Mi, gi, pi) is a sequence of complete Riemannian
manifolds with Ricgi ≥ −(n− 1)Λ, diam(Mi, gi) ≤ L, and
vol(BMi

pi
(r)) ≥ V. Suppose that this sequence converges in

Gromov-Hausdorff topology to a metric space (X, d, p). Then the tangent
cone at p is a metric cone: it is isometric to a warped product
C(X) = [0,∞)×rX, where the cross section X is a compact metric space.

2 Suppose that (M, g) is a complete Riemannian manifold with Ricci
curvature bounded below and maximal volume growth. Then the tangent
cone at infinity of (M, g) is a metric cone.
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Cheeger-Colding theory

In light of this theorem, one may consider the distance to the nearest cone.

Definition (Colding [6])

Let (M, g) be a complete manifold. We define Θr to be the scale-free distance
to the nearest cone, that is,

Θr = inf
dGH

(
(BM

p (r), p), (B
C(X)
o (r), o)

)
r

(19)

where the infimum is taken over all complete metric space X. (Θr is allowed to
be ∞ depending on (M, g) and r.)

The preceding results give that Θr can be bounded by the weighted L2-integral
of the trace-free Hessian on scale r. In fact, the proofs of the theorems above
give a precise relationship between Θr and the integral:
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Cheeger-Colding theory

Theorem (Colding [6], Theorem 4.7, Corollary 4.8)

Let ε > 0. Let (M, g, p) be a pointed complete manifold of dimension n ≥ 3
with nonnegative Ricci curvature and maximal volume growth, so that

lim
r→∞

vol(Bp(r))

ωnrn
= VM > 0.

Then there exists C = C(ε, n, VM ) so that

Θ2+ε
r ≤ Cr−n

ˆ
b≤Cr

∣∣∣∣Hessb2 − ∆b2

n
g

∣∣∣∣ dvol, (20)

and

Θ2+ε
r ≤ Cr−n

ˆ
b≤Cr

∣∣∣∣Hessb2 − ∆b2

n
g

∣∣∣∣2 dvol. (21)
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Ricci limit spaces

Let X be a noncollapsed Ricci limit space, i.e. (Mn
i , gi, pi)→ (X, d, p) in

Gromov-Hausdorff topology where RicMn
i
≥ n− 1 and vol(B1(pi)) > v > 0.

[3] The volume measure of (Mn
i , gi) converges to a unique measure on X which

is absolutely continuous with respect to the Hausdorff measure.

A point in X is called regular if any tangent cone at p is isometric to Rn;
otherwise it is called singular. Let R be the regular set and S the singular set.
Even for points in S, every tangent cone is a metric cone. Define the k-th
stratum Sk to be the set of points where tangent cones split in at most k
directions, that is,

Sk(X) = {x ∈ X : no tangent cone atx is isometric to Rk+1 × C(Z)}.

Then X is a stratified space: S0 ⊂ S1 ⊂ · · · ⊂ Sn−2 = S ⊂ Sn−1 = X, so that
Sn−1\Sn−2 = R. Moreover, dimSk ≤ k, where dimension is the Hausdorff
dimension.
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Ricci limit spaces

Theorem (codimension 4 conjecture [4])

If moreover |RicMn
i
| ≤ n− 1, then dim(S) ≤ n− 4. Here the dimension can be

taken to be Hausdorff or Minkowski dimension. Equivalently,
Sn−4 = Sn−3 = Sn−2 = S.

On a n-dimensional manifold of Ricci curvature bounded below, Ric ≥ (n− 1)k,

Bishop-Gromov volume monotonicity says that the volume ratio
vol(Bp(r))

BMk (r)
is

monotone nonincreasing in r.
The limit space has nonnegative Ricci curvature in the sense that the volume
monotonicity holds on the limit space when one replaces volume with the limit
measure of Cheeger-Colding.
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