Deformations of Kähler-Einstein metrics and Kähler-Ricci flows

Sungmin Yoo (IBS-Center for Geometry and Physics)

The 16th KIAS Winter School on Geometry

2021.01.26

Let X: compact Kähler manifold

Theorem (Aubin/Yau 1978)

If $c_1(X) < 0$, then $\exists ! \omega_{KE}$ s.t. $\operatorname{Ric}(\omega_{KE}) = -\omega_{KE}$

Let X: general type and fix $\omega_0 \in -c_1(X)$.

 $\partial \overline{\partial}$ -lemma $\Rightarrow \operatorname{Ric}(\omega_0) + \omega_0 = i \partial \overline{\partial} F$ for some $F \in C^{\infty}(X)$.

Definition (Elliptic MA eqn)

Find a solution $\varphi \in C^{\infty}(X)$ satisfying

$$\begin{cases} (\omega_0 + i\partial\overline{\partial}\varphi)^n = e^{\varphi + F}\omega_0^n\\ \omega_0 + i\partial\overline{\partial}\varphi > 0. \end{cases}$$

Then $\omega_{KE} = \omega_0 + i\partial\overline{\partial}\varphi$.

Theorem (Cao, 1985)

For all t > 0, there exists a family of Kähler metrics $\omega(t)$ on X satisfying

$$\left\{ egin{array}{l} rac{\partial}{\partial t}\omega(t)=-{
m Ric}(\omega(t))-\omega(t),\ \omega(t)ert_{t=0}=\omega_0. \end{array}
ight.$$

Moreover, $\lim_{t\to\infty} \omega(t) = \omega_{KE}$. This is called the Kähler-Ricci flow (KRF).

Definition (Parabolic MA eqn)

Find a solution $\varphi \in C^{\infty}(X \times [0,\infty))$ satisfying

$$\begin{cases} (\omega_0 + i\partial\overline{\partial}\varphi)^n = e^{\frac{\partial}{\partial t}\varphi + \varphi + F}\omega_0^n, \\ \varphi(t)|_{t=0} = 0. \end{cases}$$

Define $\omega(t) := \omega_0 + i \partial \overline{\partial} \varphi(t)$.

Setting

Let $\pi: \mathcal{X}^{n+1} \to Y^1$ be a family of canonically polarized mfds, i.e.,

• $\pi: \mathcal{X} \to Y$: proper holomorphic surjective submersion

• $X_y := \pi^{-1}(y)$: general type, i.e., $c_1(X_y) < 0$

Theorem (Ehresmann's fibration theorem)

Let $\pi : \mathcal{X} \to Y$: proper surjective submersion Then $X_{y} \cong X_{y'}$ (diffeomorphic) for all $y, y' \in Y$

Let ω : *d*-closed (1,1)-form on \mathcal{X} s.t. $\omega_y := \omega|_{X_y} > 0$ and $[\omega_y] = -c_1(X_y)$.

$$\Rightarrow \omega_{y}^{KE} = \omega_{y} + i\partial\overline{\partial}\psi_{y}: \text{ KE metric on } X_{y} \text{ (Aubin/Yau)}$$
$$\omega_{y}(t) = \omega_{y} + i\partial\overline{\partial}\varphi_{y}(t): \text{ KRF on } X_{y} \text{ (Cao)}$$

$$\Rightarrow \exists \ \rho := \omega + i\partial \overline{\partial} \psi : \ d\text{-closed} \ (1,1)\text{-form on } \mathcal{X} \text{ s.t. } \rho|_{X_y} = \omega_y^{KE}$$
$$\exists \ \omega(t) := \omega + i\partial \overline{\partial} \varphi : \ d\text{-closed} \ (1,1)\text{-form on } \mathcal{X} \text{ s.t. } \omega(t)|_{X_y} = \omega_y(t)$$

Remark

- ρ is called the fiberwise KE.
- $\omega_{WP} = \int_{\mathcal{X}/Y} \rho^{n+1}$ Weil-Petersson metric.
- $\omega(t)$ is called the fiberwise KRF.
- $\lim_{t\to\infty}\omega(t)=\rho$

Theorem (Schumacher, 2012)

- $\rho \geq 0$ on \mathcal{X} .
- $\rho > 0$ on \mathcal{X} if $\pi : \mathcal{X} \to Y$ is effectively parametrized.

Theorem (Paun, 2018)

 ρ extends across the singularities of the map π as a positive current.

Theorem (Berman, 2013)

- $\omega(t) \ge 0$ on \mathcal{X} if $\omega \ge 0$.
- $\omega(t) > 0$ on \mathcal{X} if $\omega > 0$ and $\pi : \mathcal{X} \to Y$ is effectively parametrized.

Goal: Study a holomorphic family of non-compact complete Kähler mfds!

Question: Which non-compact mfd admits a complete KE metric?

Definition (Bounded geometry)

We say that (X, ω) has bounded geometry of order k if for each $p \in X$ there exists a holomorphic chart (U_p, ξ_p) centered at p and constants $r, C, C_k > 0$ independent of p satisfying (i) $\mathbb{B}_r(0) \subset V_p := \xi_p(U_p) \subset \mathbb{C}^n$, (ii) $\frac{1}{C} \left(\delta_{\alpha \overline{\beta}} \right) \leq \left(g_{\alpha \overline{\beta}} \right) \leq C \left(\delta_{\alpha \overline{\beta}} \right)$, (iii) $\left\| g_{\alpha \overline{\beta}} \right\|_{C^k(V_p)} \leq C_k$. where $\omega = ig_{\alpha \overline{\beta}} d\xi^{\alpha} \wedge d\overline{\xi^{\beta}}$ for the coordinates $\xi_p = (\xi^1, \dots, \xi^n)$.

For any functions $u \in C^{\infty}(X)$, we define a norm by

$$||u||_{k+\epsilon} := \sup_{p \in X} \{ ||u \circ \xi_p^{-1}||_{C^{k+\epsilon}(V_p)} \},$$

 $ilde{\mathcal{C}}^{k+\epsilon}(X) := ext{Banach completion of } \{ u \in \mathcal{C}^\infty(X) : \|u\|_{k+\epsilon} < \infty \}.$

Theorem (Cheng-Yau, 1980)

• (X, ω) : complete Kähler mfd with bounded geometry

•
$$\operatorname{Ric}(\omega) + \omega = i\partial\overline{\partial}F$$
 for some fn $F \in \widetilde{\mathcal{C}}^{\infty}(X)$

 $\implies \exists!$ complete KE metric ω_{KE} with $\operatorname{Ric}(\omega_{KE}) = -\omega_{KE}$

Theorem (Chau, 2004)

- (X, ω) : complete Kähler mfd with bounded curvatures
- $\operatorname{Ric}(\omega) + \omega = i\partial\overline{\partial}F$ for some smooth bounded in F on X

 $\Longrightarrow \exists$ Kähler-Ricci flow $\omega(t)$ for all t > 0 and $\lim_{t \to \infty} \omega(t) = \omega_{KE}$

Theorem (Wu-Yau, 2020)

Let (X, ω) : complete Kähler mfd with $-C_1 < Hol(\omega) < -C_2 < 0$

 $\implies \exists! \text{ complete KE metric } \omega_{KE} \text{ with } \operatorname{Ric}(\omega_{KE}) = -\omega_{KE}$

Definition

A smooth bdd domain $\Omega \subset \mathbb{C}^n$ is called a strongly pseudoconvex domain if \exists a smooth strictly plurisubharmonic defining function r on $\overline{\Omega}$, i.e.,

•
$$\Omega = \{r(z) < 0\}, \quad \partial \Omega = \{r(z) = 0\}, \quad dr \neq 0 \text{ on } \partial \Omega \text{ (def. fn)}$$

• $i\partial\overline{\partial}r > 0$ on $\overline{\Omega}$ (str. psh)

Remark

- {strongly convex domains} \subset {strongly pseudoconvex domains}
- bdd pcx. domain = increasing union of str. pcx. domains

Proposition (Cheng-Yau)

Let Ω be a bounded strongly peudoconvex domain in \mathbb{C}^n .

 $\omega := i\partial\overline{\partial}(-\log(-r))$ has bdd geometry, $\operatorname{Ric}(\omega) + \omega = i\partial\overline{\partial}F$, $F \in \tilde{C}^{\infty}(\Omega)$.

Proposition (Cheng-Yau)

Let (X, ω_0) be a Kähler manifold with $\operatorname{Ric}(\omega_0) < 0$

Let Ω be a bounded strongly peudoconvex domain in X.

Then $\omega := -\operatorname{Ric}(\omega_0) + i\partial\overline{\partial}(-\log(-r))$ has bdd geometry and satisfies $\operatorname{Ric}(\omega) + \omega = i\partial\overline{\partial}F$ for some $F \in \tilde{C}^{\infty}(\Omega)$.

Remark

In the above case, we have asymptotic boundary estimates of ω_{KE} (Cheng-Yau, Lee-Melrose)

Definition

 $\pi: D \rightarrow S$ is a holomorphic family of str. pcx. domains if

- $\pi: \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}$: coordinate projection map $\pi(z_1, \dots, z_n, s) = s$
- D: smooth domain in \mathbb{C}^{n+1} , $S := \pi(D)$
- $D_y := D \cap \pi^{-1}(y)$: smooth str. pcx. domain in \mathbb{C}^n , $\forall y \in S$

⇒ $\exists \omega$: *d*-closed smooth (1, 1)-forms on *D* such that $\omega_y := \omega|_{D_y}$ is a complete Kähler metric with bounded geometry.

 $\Rightarrow \exists \rho$: fiberwise KE on D

Theorem (Choi, 2015)

- $\rho > 0$ on D if D is strongly pseudoconvex in \mathbb{C}^{n+1} .
- $\rho \ge 0$ on D if D is pseudoconvex in \mathbb{C}^{n+1} .

Setting

- $\pi: X \to Y$: holomorphic surjective submersion
- ω_X : Kähler form on X satisfying $\operatorname{Ric}(\omega_y) < 0$, where $\omega_y := \omega_X|_{X_y}$
- D: C^{∞} -domain in X, $S := \pi(D)$
- $D_y := D \cap \pi^{-1}(y)$: C^{∞} -bdd. str. pcx. domain in X_y , $\forall y \in S$
- $\pi:\overline{D} \to S$: proper ($\Rightarrow \overline{D_y} := \overline{D} \cap \pi^{-1}(y)$: diffeomorphic, $\forall y \in S$)

Theorem 1 (Choi, Y-)

If D is strongly pseudoconvex in X, ρ is positive definite on D.

Setting

- $\pi: X \to Y$: holomorphic surjective
- W: \exists analytic set containing all singular values of π and $\pi|_{\partial D}$ in S
- For all regular fibers, the assumptions of Theorem 1 hold.

Theorem 2 (Choi, Y-)

If D admits a complete Kähler metric $\tilde{\omega}_D$ satisfying $Scal(\tilde{\omega}_y) > C$,

then ρ extends to D as a positive current.

On the other hand, we also have $\omega(t)$: fiberwise KRF

Theorem 3 (Choi, Y-)

Suppose that $\omega \ge 0$ on D and strictly positive at least one point on each fiber D_y . Then $\omega(t) > 0$ on D for all t > 0

Proposition

If D is pseudoconvex in \mathbb{C}^{n+1} , there exist a defining function r of D s.t. $\omega := i\partial\overline{\partial}(-\log(-r))$ satisfies the above assumption.

Corollary

• $\rho \ge 0$ on D if D is pseudoconvex in \mathbb{C}^{n+1} .

 $\pi:\mathcal{X}
ightarrow Y$ with $\dim_{\mathbb{C}}(Y)=1$

au: a *d*-closed smooth real (1,1)-form on $\mathcal X$ s.t. $au|_{X_{\mathcal V}}>0$

 $v := \frac{\partial}{\partial s} \in T'_y(Y)$

Definition

v_τ: horizontal lift of v is a (1,0) vector field satisfying
(1) dπ(v_τ) = v
(2) < v_τ, w >_τ= 0 for ∀w ∈ T'X_y

•
$$c(\tau)$$
: geodesic curvature of τ is defined by $c(\tau) = < v_{\tau}, v_{\tau} >_{\tau}$

Remark

•
$$\tau^{n+1} = c(\tau) \cdot \tau^n \wedge \pi^*(ids \wedge d\overline{s})$$

• $\tau \ge 0 \iff c(\tau) \ge 0 \quad (\tau > 0 \iff c(\tau) > 0$

For each fiber D_y , consider geodesic curvatures $c(\rho)$ and $c(\omega(t))$.

Proposition (Schumacher)

$$(-\Delta + id) c(\rho) = \|\overline{\partial} v_{\rho}\|^2,$$

where Δ is the Laplace-Beltrami operator of ω_{v}^{KE} .

Proposition (Berman)

$$\left(rac{\partial}{\partial t}-\Delta_t+\mathit{id}
ight)c(\omega(t))=\|\overline{\partial}v_{\omega(t)}\|^2,$$

where Δ_t is the Laplace-Beltrami operator of $\omega_y(t)$.

Use a non-compact version of elliptic and parabolic maximum principle!

Theorem (Almost Maximum Principle)

Let (X, g) be a complete Riemannian manifold

Let f be a bounded from above smooth function on X.

(Omori, 1967) If sectional curvatures are bounded from below, there exists a sequence of points {x_k} ∈ X satisfying

$$f(x_k) > \limsup f - \frac{1}{k}, \quad |df(x_k)| < \frac{1}{k}, \quad and \quad \operatorname{Hess} f(x_k) < \frac{1}{k}g.$$

(Yau, 1975) If Ricci curvatures are bounded from below, there exists a sequence of points {x_k} ∈ X satisfying

$$f(x_k) > \limsup f - rac{1}{k}, \quad |df(x_k)| < rac{1}{k}, \quad and \quad \Delta f(x_k) < rac{1}{k}$$

Let (X, g) be a complete Riemannian manifold with bounded curvatures

Theorem (Weak maximum principle (Shi))

Let f be a smooth bounded function on $X \times [0, T)$ satisfying

$$\left(rac{\partial}{\partial t}-\Delta_t
ight)f\geq 0$$
 whenever $f\leq 0.$

If $f \ge 0$ on X at t = 0, then $f \ge 0$ on $X \times [0, T)$.

Theorem (Strong maximum principle)

Suppose that $\sup_{X \times [0,T)} f(x,t) \ge 0$ and f(x,0) > 0 at some point $x \in X$.

Then f(x, t) > 0 on $X \times [0, T)$.

Theorem (Weak maximum principle (Ni))

Let f be a smooth function on $X \times [0, T)$ satisfying

$$\left(rac{\partial}{\partial t}-\Delta_t
ight)f\geq 0$$
 whenever $f\leq 0.$

Assume that $\exists c > 0$ such that $f_{-} := -\min\{f, 0\}$ satisfies

$$\int_0^T \int_X (-r)^c (f_-)^2 \ dV_t dt < \infty.$$

If $f \ge 0$ on X at t = 0, then $f \ge 0$ on $X \times [0, T)$.

Thank you for your attention.