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Kahler-Einstein metric

Let X: compact Kahler manifold

Theorem (Aubin/Yau 1978)

If Cl(X) < 0, then lwkg s.t. Ric(wKE) = —WKE

Let X: general type and fix wg € —c1(X).
00-lemma = Ric(wp) + wo = iOIF for some F € C°(X).

Definition (Elliptic MA eqn)
Find a solution ¢ € C°°(X) satisfying

(wo + i00p)" = e¥*+Fuwl
wo + /85(,0 > 0.

Then wike = wo + i00p.
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Theorem (Cao, 1985)

For all t > 0, there exists a family of Kahler metrics w(t) on X satisfying
{ (1) = ~Ric(w(t)) - w(t),
w(t)|t:0 = wp-.

Moreover, tILm w(t) = wke. This is called the Kahler-Ricci flow (KRF).

Definition (Parabolic MA eqn)
Find a solution ¢ € C*°(X x [0,00)) satisfying

| \

{ (wo + 90" = eBeeterFup,
@(t)]t=0 = 0.

Define w(t) := wo + i00p(t).
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Fiberwise KE and KRF

Let w: X1 — Y1 pe a family of canonically polarized mfds, i.e.,

o m: X — Y: proper holomorphic surjective submersion

o X, :=m1(y): general type, i.e., c1(X,) <0

Theorem (Ehresmann’s fibration theorem)

| A\

Let m: X — Y: proper surjective submersion

Then X, = X, (diffeomorphic) for all y,y' € Y

v

Let w: d-closed (1,1)-form on X' s.t. wy 1= w|x, > 0 and [w,] = —c1(X)).

= wfF = w, +i00vy,: KE metric on X, (Aubin/Yau)

wy(t) = w, +i00p,(t): KRF on X, (Cao)
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Fiberwise KE and KRF

= 3 p:=w+i00y: d-closed (1,1)-form on X s.t. p|x, = wiE

Fw(t) :=w + i00¢: d-closed (1,1)-form on X s.t. w(t)|x, = w,(t)

@ p is called the fiberwise KE.

° wwp = [y Iy p"t1 Weil-Petersson metric.
@ w(t) is called the fiberwise KRF.

o lim w(t)=p

t—00
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Schumacher and Berman’s results

Theorem (Schumacher, 2012)
e p>0o0nk.
@ p>0o0nX ifm: X — Y is effectively parametrized.

Theorem (Paun, 2018)
p extends across the singularities of the map 7 as a positive current.

Theorem (Berman, 2013)

@ w(t)>0o0n X ifw>0.
o w(t)>0o0n X ifw>0and7: X — Y is effectively parametrized.

Goal: Study a holomorphic family of non-compact complete Kahler mfds!
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Generalization to noncompact manifolds

Question: Which non-compact mfd admits a complete KE metric?

Definition (Bounded geometry)

We say that (X,w) has bounded geometry of order k if for each p € X
there exists a holomorphic chart (Up,&p) centered at p and constants
r, C, Cx > 0 independent of p satisfying

(i) B/(0) C V, :=&p(Up) C C7,
) & (3.5) < (8:5) < € (43)
(i) ‘ Ck(Vp) =

where w = ig,5d€* A d&P for the coordinates &= (&...,¢&m).

8aj Ck-

For any functions u € C*°(X), we define a norm by

e = sup e & cuneqyy

Ck+¢(X):= Banach completion of {u € C>®(X) : |l jqe < 00}
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KE and KRF on complete Kahler manifolds
Theorem (Cheng-Yau, 1980)

o (X,w): complete Kihler mfd with bounded geometry
e Ric(w) +w = iBIF for some fn F € C(X)
= 3! complete KE metric wke with Ric(wke) = —wke

| A,

Theorem (Chau, 2004)
o (X,w): complete Kahler mfd with bounded curvatures
@ Ric(w) + w = i@F for some smooth bounded fn F on X
— 3 Kahler-Ricci flow w(t) for all t >0 and tILngo w(t) = wke

A\

Theorem (Wu-Yau, 2020)

Let (X,w): complete Kihler mfd with —C; < Hol(w) < —C, <0

= 3! complete KE metric wke with Ric(wkg) = —wke
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Concrete and Fundamental Examples

A smooth bdd domain Q CC C" is called a strongly pseudoconvex domain
if 3 a smooth strictly plurisubharmonic defining function r on €, i.e.,

o Q={r(z) <0}, 9Q={r(z) =0}, dr+#0on0Q (def. fn)
@ i90r >0 0nQ (str. psh)

o {strongly convex domains} C {strongly pseudoconvex domains}

@ bdd pcx. domain = increasing union of str. pcx. domains
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Concrete and Fundamental Examples

Proposition (Cheng-Yau)

Let Q be a bounded strongly peudoconvex domain in C".

w = i89(— log(—r)) has bdd geometry, Ric(w) 4+ w = idIF, F € C®(Q).

Proposition (Cheng-Yau)

Let (X,wp) be a Kahler manifold with Ric(wp) < 0

Let Q2 be a bounded strongly peudoconvex domain in X.

Then w := —Ric(wo) + i09(— log(—r)) has bdd geometry and satisfies
Ric(w) 4+ w = iIF for some F € C>(RQ).

In the above case, we have asymptotic boundary estimates of wxg
(Cheng-Yau, Lee-Melrose)

A\
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Family of bounded strongly peudoconvex domains

Definition

w: D — S is a holomorphic family of str. pcx. domains if
o m:C" x C — C: coordinate projection map 7w(z1,...,2n,S) =5
e D: smooth domain in C"t1, S := (D)

e D, :=DnNnY(y): smooth str. pcx. domain in C", Vy € S

= J w: d-closed smooth (1,1)-forms on D such that w, := wlp, is a

complete Kahler metric with bounded geometry.

= 3 p: fiberwise KE on D
Theorem (Choi, 2015)

e p >0 on D if D is strongly pseudoconvex in C"+1.

@ p>0on D if D is pseudoconvex in Cntl,
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Results

o 7w : X — Y: holomorphic surjective submersion
@ wx: Kahler form on X satisfying Ric(wy) < 0, where wy, := wx|x,
@ D: C>®-domain in X, S :=m(D)

e D, :=DnnaYy): C®-bdd. str. pcx. domain in X,, Vy € S

e m:D — S: proper (= D, := DN 7 (y): diffeomorphic, Vy € S)

Theorem 1 (Choi, Y-)

If D is strongly pseudoconvex in X, p is positive definite on D.
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o m: X — Y: holomorphic surjective

o W: 3 analytic set containing all singular values of w and |sp in S

@ For all regular fibers, the assumptions of Theorem 1 hold.

Theorem 2 (Choi, Y-)

If D admits a complete Kahler metric Wp satisfying Scal(@,) > C,

then p extends to D as a positive current.

15/23



On the other hand, we also have w(t): fiberwise KRF

Theorem 3 (Choi, Y-)

Suppose that w > 0 on D and strictly positive at least one point on each
fiber D,,. Then w(t) >0 on D for all t > 0

Proposition

If D is pseudoconvex in C"™t1, there exist a defining function r of D s.t.
w := i00(— log(—r)) satisfies the above assumption.

@ p >0 on D if D is pseudoconvex in C"t1,
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Horizontal lift and Geodesic curvature

m: X — Y with dimg(Y) =1
7: a d-closed smooth real (1,1)-form on X' s.t. 7[x, >0
vi= % e T,(Y)

Definition

@ v, horizontal lift of v is a (1,0) vector field satisfying
(1) dn(v;)=v
(2) <vp,w>,=0forVwe T'X,
@ c(7): geodesic curvature of T is defined by
(1) =< Ve, v >,

o 7" = ¢(7) - 7" A w*(ids A d3)
07>0<=¢(r)>0 (1>0<=¢(r)>0)
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PDE of geodesic curvatures

For each fiber D,, consider geodesic curvatures c(p) and c(w(t)).

Proposition (Schumacher)

(=4 +id) c(p) = 9w, 1%,

where A is the Laplace-Beltrami operator of w}',(E .

| A\

Proposition (Berman)

0 . 3
(a At Id) c(w (1)) = v 1%,

where A; is the Laplace-Beltrami operator of w(t).

Use a non-compact version of elliptic and parabolic maximum principle!
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Almost Maximum principle

Theorem (Almost Maximum Principle)

Let (X, g) be a complete Riemannian manifold

Let f be a bounded from above smooth function on X.

@ (Omori, 1967) If sectional curvatures are bounded from below, there
exists a sequence of points {xi} € X satisfying

1 1 1
f(xk) > limsupf — Pt |df (xk)| < Pt and Hessf(xx) < P

@ (Yau, 1975) If Ricci curvatures are bounded from below, there exists a
sequence of points {xx} € X satisfying

e > lmsupf — % 1 ()| < % and Af(xe) < %
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Parabolic Maximum principle for KRF

Let (X, g) be a complete Riemannian manifold with bounded curvatures

Theorem (Weak maximum principle (Shi))
Let f be a smooth bounded function on X x [0, T) satisfying

(% = At) f >0 whenever f <0.

Iff >00n X att=0, thenf >0o0n X x[0,T).

Theorem (Strong maximum principle)

Suppose that sup f(x,t) >0 and f(x,0) > 0 at some point x € X.
Xx[0,T)

Then f(x,t) >0o0n X x [0, T).
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Parabolic Maximum principle for KRF

Theorem (Weak maximum principle (Ni))

Let f be a smooth function on X x [0, T) satisfying

<% — At> f >0 whenever f <O0.

Assume that 3¢ > 0 such that f_ := — min{f,0} satisfies

-
/ /(—r)c(f_)z dVidt < oo.
0 X

Iff >00n X att=0, thenf >0 o0n X x[0,T).
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Thank you for your attention.
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