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Gauss curvature flow (GCF)

Let X0 : Mn → Rn+1 be a smooth immersion.

Gauss curvature flow If X : Mn × [0,T )→ Rn+1 satisfies

∂

∂t
X (p, t) = −K (p, t)ν(p, t)

with X (·, 0) = X0, then the one-parameter family of hypersurfaces
Σt = X (Mn, t) is said to be the Gauss curvature flow.
Here, K (p, t) is the Gauss-Kronecker curvature of Σt at X (p, t)
and ν(p, t) is the outward unit normal vector to Σt at X (p, t).

One of the higher dimensional versions of the curve shortening flow.
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Tumbling stone on a beach - phenomena in nature - Firey
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Modeling

A stone is subject to wear under impact from any random angle by
the sea.

Erosion is heuristically proportion to the measure of image of the
Gauss map.
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Example

Theorem (Hamilton ’94)

If a hypersurface has flat sides then the flat sides still exist under
the Gauss curvature flow for some time.

If the cube evolves under the mean curvature flow, then the flat
sides will disappear immediately. (SMP, heat exchange)
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Volume change with a constant speed

Under GCF, the volume V (t) enclosed by Σt satisfies

∂

∂t
V (t) = −

∫
Σt

KdσΣt = −|Sn|

by an analogy of Gauss-Bonnet theorem.

Apply maximum principle to ∂
∂tK = K (h−1)ij∇i∇jK + K 2H

GCF must shrink to a point at T∗ = V (0)/|Sn|.
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Relation to (Lp-)Minkowski problem

Given a Borel measure µ ≥ 0 on Sn−1, find a convex body K such
that SK ,p = µ. (Existence and uniqueness?)

convex body K ←→ Lp-surface area measure SK ,p = h1−p
K dSK

By the Brunn-Minkowski inequality, solutions to (classical)
Minkowski problem can be given by

inf

{∫
Sn−1

hL(X )dµ(X ), L ∈ Kn,V (L) ≥ 1

}
and the uniqueness follows from the equality condition on the
Brunn-Minkowski inequality.

The self-similar solution to the Gauss curvature flow is the solution
to L0-Minkowski problem (p = 0, so called logarithmic Minkowski
problem).
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Preservation of flat sides

Λ: flat sides. Γ = ∂Λ: free boundary, the interface between flat
parts and non-flat parts.

• [Daskalopoulos–Hamilton ’99] short time; [Daskalopoulos–Lee
’04] long time.

• Chopp–Evans–Ishii showed that if X0 is smooth, free
boundaries does not move during some waiting time period.

• Choi found that the optimal rate of movement is C 1, 1
n−1 .

Therefore, regularity near free boundary is key to understand how
the stone evolves.
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Flat sides = one phase problem

GCF with flat sides can be formulated as obstacle problem (ψ ≡ 0).
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Membrane with obstacle

Obstacle problem for membrane (variational inequality):

minimize
u≥ψ

∫
D

1

2
|∇u|2dx

Then ∆u = 0 in {u > ψ} and ∆u ≤ 0 in D.

Linear operator → “flat side” = “obstacle”
Nonlinear operator → “flat side” 6= “obstacle”

GCF with flat side 6= GCF with obstacle

Question: What is “obstacle problem” for GCF?
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Model for the flow with an obstacle

When a stone have a hard core, the hypersurface cannot penetrate
the hard core.

Difference with the flat sides problem:

growing contact set vs shrinking flat sides

Focus on the neighborhood of the free boundary since this part is
important as in flat sides problem.
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Main results - stationary obstacle

Theorem (Lee–L. ’18, n = 2, α ≤ 1, stationary)

Let X0 and Ψ be smooth strictly convex closed hypersurfaces.
Then GCF with an obstacle has a unique solution for t ∈ [0,∞)
with the optimal C 1,1-regularity. In particular,

1 0 ≤ λi ≤ C, λi : principal curvature.

2 On the non-coincidence set X (x , t) 6∈ Φ,

0 < c(d(X ,Λ)) ≤ λi (X ) ≤ C ,

where d(X ,Λ) denotes the distance from x to {X ∈ Φ}.
3 There is a finite time T∗ such that Σt = Φ for all t ≥ T∗.

K becomes zero on the free boundary.
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Main results - moving obstacle

Theorem (Lee–L., all n and α > 0, varying obstacle)

Let X0 and Ψ be smooth strictly convex closed hypersurfaces.
Assume that Ψ is a slowly contracting obstacle. Then the Gauss
curvature flow with an obstacle has a unique solution for
t ∈ [0,∞) with the optimal C 1,1-regularity. In particular,

1 The principal curvatures λi satisfy c(X0,Φ) ≤ λi ≤ C (X0,Φ).

2 There is a finite time T∗ such that Σt = Φ for all t ≥ T∗.
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Free boundary in various fields

Physical phenomena
rolling stones, melting of ice (Stefan problem)

Geometry
collapsed geometry, degenerate solution to Minkowski problem

Economics and Finance
portfolio selection, American option pricing, transaction cost
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Thank you!
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