
Geometric inequalities and inverse mean
curvature flow

Beomjun Choi

University of Toronto

KIAS Geometry Winter School

Beomjun Choi Inverse Mean Curvature Flow



How much area a fixed lenghted curve could contain?

Theorem (Isoperimetric inequality)

Let C = ∂Ω be a closed and embedded curve in R2. Then

4πA ≤ L2

and the equality holds iff C is a round circle.

Long history with many different proofs.

Today we focus on a proof which uses the curvature flow and its
implications on the concept of mass in general relativity.
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Curve shortening flow

Each point on a curve moves with the velocity of its curvature
vector.

More precisely, 1-parameter family of immersions

F : S1 × [0, T ] → R2

is a solution to the CSF if

∂

∂t
F (p, t) = #k(p, t).
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Theorem (Gage-Hamilton ’86)

Convex embedded curve shrinks to a point and becomes round.

Theorem (Grayson ’87)

Embedded curve becomes convex in finite time.

Computer simulations
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If #k = k#n with the inner unit normal #n,

∂tA = −
!

kds = −2π

and by the first variation formula of area (length)

∂tL = −
!

k2ds.

More generally, Mn
t = ∂Ωt in Rn+1 evolves by the velocity S#n,

∂tVol(Ωt) = −
!

Mt

SdVg

∂t|Mn
t | = −

!

Mt

SHdVg.
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Proof of isoperimetric inequality

Let C0 be given curve and Ct be the CSF which converges to a
round point as t → tmax.

∂t(L
2 − 4πA) = −2L

!
k2ds+ 8π2

≤ −2

"!
kds

#2

+ 8π = 0

Since L2 − 4πA → 0 as t → tmax by Grayson,

L2 ≥ 4πA at t = 0

and the equality case easily follows.
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Generalizations into two directions

• Non-Euclidean ambient space

• Higher dimensions

Theorem

For simply connected manifold (M2, g) w/ Gaussian curvature
K ≤ K0,

L2 ≥ 4πA−K0A
2

and the equality is attained for geodesic spheres which enclose
constant curvature K0 regions.

The more curved, the more area could be bounded. This suggests
an idea that the isoperimetric constant or profile could be used to
measure how much space is curved.
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Higher dimensions

Theorem

Let Mn be the boundary of the region Ω ⊂ Rn+1. Then,

Vol(Ω) ≤ Cn|Mn|
n+1
n

and the equality holds iff Ω is a round ball.

Let Mn
t = ∂Ωt ⊂ Rn+1 be a solution to the mean curvature flow.

i.e. velocity = H#n, H = λ1 + . . .+ λn.

∂t(CnA
n+1
n − V ) = −n+ 1

n
CnA

1
n

!

Mt

H2 +

!

Mt

H

≤
$
1− (n+ 1)Cn

n

%
Mt

H

A
n−1
n

&!

Mt

H
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Suppose we have the following:

1
%
M H ≥ n

(n+1)Cn
|M |

n−1
n

2 |Mt| → 0 and Vol(Ωt) → 0 as t → Tmax.

Then we have the isoperimetric inequality

Cn|M0|
n+1
n −Vol(Ω0) ≥ lim

t→Tmax

CnA
n+1
n − V = 0.

Note we have n
(n+1)Cn

= n|∂B1|
1
n and (1) is called the Minkowski

inequality in Rn+1.
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Theorem (Minkowski 1903, Alexandrov ’37 and others)

For convex hypersurfaces,

!

M
H ≥ n|∂B1|

1
n |M |

n−1
n

with the equality iff round spheres.

• For mean convex star-shaped hypersurfaces, by Guan-Li ’09

• For outward area minimizing hypersurfaces, by Huisken
(unpublished)

• Open for general mean convex hypersurfaces

Theorem (Huisken ’84)

Compact convex embedded hypersurface shrinks to a point and
becomes round in finite time.
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Another approach Hk-flow by F. Schulze (’08)

Consider the flow with the velocity Hk#n.

∂t(CnA
n+1
n − V ) = −n+ 1

n
CnA

1
n

!

Mt

Hk+1 +

!

Mt

Hk

Meanwhile we play with Hölders

!
Hk ≤ A

1
k+1

"!
Hk+1

# k
k+1

and (if k + 1 ≥ n)

"!
Hn

# 1
n

≤ A
1
n
− 1

k+1

"!
Hk+1

# 1
k+1

imply

!
Hk ≤ A

1
n

"!
Hn

#− 1
n
!

Hk+1
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∂t(CnA
n+1
n − V ) ≤ A

1
n

!
Hk+1

'"!
Hn

#− 1
n

− n+ 1

n
Cn

(

Theorem (Willmore inequality)

For immersed hypersurfaces

! "
H

n

#n

≥ A(∂B1)

and the equality iff round spheres.

implies

∂t(CnA
n+1
n − V ) ≤ 0
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Level set weak flow

Let Mt = ∂Ω0 ⊂ Rn+1 be a solution to Hk-flow with H > 0.
If u(x) := the time t when Mt arrives at x, then

)
*

+
div

"
∇u

|∇u|

#
= −|∇u|−

1
k on Ω0

u = 0 on ∂Ω0

• Weak formulation of flows defined through singularities

• Evans-Spruck and Chen-Giga-Goto at ’91
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Inverse mean curvature flow - definition

• A one-parameter family of mean convex embeddings
F (Mn, t) = Mn

t = ∂Ωt

F : Mn × [0, T ] → (M̄n+1, ḡ)

is a solution to the inverse mean curvature flow if

∂

∂t
F =

#ν

H
on Mn × [0, T ].

Here #ν(p, t) := outward unit normal.

H > 0

H−1ν
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Simple observations

• Expanding sphere solutions ∂BR(t) ⊂ Rn+1, R(t) = e
t
nR(0)

• ∂tdvol = dvol → ∂t|Mt| = |Mt|, |Mt| = et|M0|

• In Rn+1, Mt → λMt produce another solution
(unlike the mean curvature flow: Mt → λM t

λ2
)
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IMCF on compact hypersurfaces - background

• C. Gerhardt ’90 and J. Urbas ’90:
If M0 compact, smooth, star-shaped (〈F, ν〉 > 0) and strictly
mean convex, then smooth solution exists for t ∈ (0,∞) and
converges to a spherical solution after a rescaling.

• For non star-shaped case, singularities may develop.
e.g. mean convex torus in R3.

• G. Huisken, T. Ilmanen ’97
Defined a variational weak solution of the flow using level
sets, which allows jumps of the surfaces. They use this to
prove Riemannian Penrose inequality in General Relativity for
a single black hole case.
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The Geroch monotonicity formula

Geroch- the Hawking quasi-local mass of a connected 2-surface in
a manifold of nonnegative scalar curvature is non-decreasing under
the IMCF. For 2-surface M in (M̄3, ḡ),

mH(M) :=
|M |1/2

(16π)3/2

"
16π −

!

M
H2

#
.

Proof: Since |Mt| = et|M0|, ∂t|Mt|1/2 = 1
2 |Mt|1/2

∂tmH(Mt) =
|Mt|1/2

(16π)3/2

,
1

2

"
16π −

!

M
H2

#
− ∂t

!

Mt

H2

-
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Note ∂tH = −∆ 1
H − |A|2

H − Ric(ν,ν)
H and ∂tdvol = dvol imply

(∗) ∂t

!

Mt

H2 =

!

Mt

−2H∆
1

H
− 2|A|2 − 2Ric(ν, ν) +H2.

Recall the Gauss equation

Rmijkl = Rmijkl + (hikhjl − hilhjk)

⇒ K = R1212 = Rm1212 + λ1λ2 = Rm1212 +
1

2
(H2 − |A|2).

In dim 3, 1
2R = Ric(ν, ν) +Rm1212 and we get

−2Ric(ν, ν) = −R+ 2K + |A|2 −H2.
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∂t

!

Mt

H2 =

!

Mt

−2
|∇H|2
H2

− |A|2 −R+ 2K

= 4πχ(Mt) +

!

Mt

−2
|∇H|2
H2

− |A|2 −R

≤ 8π −
!

Mt

|A|2 (χ(Mt) ≤ 2 since Mt is connected )

= 8π −
!

Mt

1

2
H2 +

1

2
(λ1 − λ2)

2

≤ 1

2

"
16π −

!

Mt

H2

#

⇒ ∂tmH(Mt) ≥ 0.
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Isolated gravitating system in general relativity

Definition (Asymptotically flat manifold)

A complete manifold (M̄3, ḡ) is asymptotically flat (with order
τ ∈ (1/2, 1]) if there is a compact set K ⊂ M̄ and a
diffeomorphism

φ : R3 −BR(0) → M̄3 −K

such that φ∗g = δij + σij satisfies

|σ|+ r|∂σ|+ r2|∂∂σ|+ r3|∂∂∂σ| ≤ O(r−τ )

Definition (ADM mass)

mADM (M̄, ḡ) = lim
r→∞

1

16π

!

∂Br(0)
(gij,i − gii,j)ν

jdVgeuc
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Schwarzschild metric

Schwarzschild metric of mass m > 0 is

(R3 − {0},
.
1 +

m

2|x|
/4
δij)

and note that

• r = m
2 is a totally geodesic sphere and is called (apparent)

horizon

• A({r = m
2 }) = 16πm2

• no compact minimal surface in {r > m
2 }

• mADM = m.
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Theorem (Riemannian Penrose inequality)

Let (M̄3, ḡ) be an asymptotically flat mfd with nonnegative scalar
curvature with minimal boundary M0 = ∂M̄ and no other compact
minimal surface in M̄ . Then

mADM ≥
0

|M0|
16π

.

Heuristic Proof: Let Mt IMCF from M0. By the monotonicity

mH(Mt) ≥ mH(M0) =
|M0|1/2

(16π)3/2

"
16π −

!

M0

H2

#
=

0
|M0|
16π

.

It is known that the Hawking mass of sufficiently round
(coordinate) spheres at infinity approaches to the ADM mass.
If we show Mt becomes sufficiently round spheres at infinity,

mADM = lim
t→∞

mH(Mt) ≥
0

|M0|
16π

.
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=
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Properties of weak solution

For M0 = ∂Ω0,

)
*

+
div

"
∇u

|∇u|

#
= |∇u| on Ωc

0

u = 0 on ∂Ω0

and Mt = ∂{u < t}.
• Ωt is outward area minimizing in the sense that

Ωt ⊂ Ω′ =⇒ |∂Ωt| ≤ |∂Ω|

• |Mt| = et|M0|
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Isoperimetric profile and mADM .

For Schwarzschild of mass m, (R3 − {0},
.
1 + m

2|x|
/4
δij), the

isoperimetric profile is the function

φm : [16πm2,∞) −→ R
|∂Br(0)| .−→ Vol(Br(0)−Bm

2
(0))

Key observation

φm(A) =
1

6
√
π
A

3
2 +

1

2
mA+O(A

1
2 ) as A → ∞.
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This motivates the following

Definition

miso(M̄
3, ḡ) = lim sup

|∂Ω|→∞

2

|∂Ω|(Vol(Ω)−
1

6
√
π
|∂Ω|

3
2 )

Theorem (Huisken, unpublished)

miso(M̄, ḡ) = mADM (M̄, ḡ)

The proof uses both MCF and IMCF.

Beomjun Choi Riemannian Penrose inequality and applications



Key tool

Theorem (J.L.Jauregui-D.A.Lee, Huisken)

Under the MCF Mt, if mH(Mt) ≤ m′, then

φm′(A(t))− V (t) is decreasing in t.

Recall in isoperimetric inequality,

"!

M
H2

#1/2

≥ Λ for all M =⇒ ∂t

'
2

3

A
3
2

Λ
− V

(
≤ 0.

V (0)− A(0)

6
√
π

≤ φm′(A(0))− A(0)

6
√
π
− [φm′(A(t))− V (t)]

≤ φm′(A(0))− A(0)

6
√
π
+ v

implies
miso ≤ m′

Beomjun Choi Riemannian Penrose inequality and applications



Other applications

By similar arguments, the flow (classical or weak) has been used in
the proofs of other geometric inequalities as well.

• Guan-Li Minkowski ineq for non-convex hypersurface in Rn+1

• Brendle-Hung-Wang Minkowski ineq for Anti-deSitter
Schwarzschild manifold

• Lee-Neves Penrose type ineq for asymptotically locally
hyperbolic space

• De Lima-Girão, Ge-Wang-Wu Alexandrov-Fenchel ineq for
different ambient spaces

• Bray-Neves another important application to the classification
of prime 3-manifolds with Yamabe invariant greater than RP3.
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Regularity of compact star-shaped solutions

Theorem (Huisken-Ilmanen ’08, H−1 estimate)

Suppose F : Mn × [0, T ] → Rn+1 is a smooth star-shaped IMCF
such that on Mn

0
0 < R1 ≤ 〈F, ν〉 ≤ R2.

Then there is cn > 0 such that for t > 0

1

H
≤ cn

"
R2

R1

#
max

1
1,

1

t1/2

2
|Mn

0 |
1
n e

t
n .

• Estimate does not depend on initial bound on H−1 or |A|2
• Uses only initial bounds of the support function 〈F, ν〉
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Theorem (Smoczyk (n = 2) ’00, Huisken-Ilmanen ’08)

Let F : Mn × [0, T ] → Rn+1 be a smooth compact sol of IMCF.

If 0 < H0 ≤ H ≤ H1, then |A|2 ≤ cn
H2

1

H0

1

t
.

• ∂H
∂t = ∆H

H2 − 2|∇H|2
H3 − |A|2

H = ∇ · (H−2∇H)− |A|2
H

• Huisken-Ilmanen showed the existence of smooth sol when M0

is C1, compact, star-shaped and has bounded non-negative
(weak) mean curvature.
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Non-compact solutions in Rn+1

An important observation

Example

If Γn−1
t ⊂ Sn is a IMCF, then the cones generated by Γt

CΓt = {rx ∈ Rn+1 : x ∈ Γt, r ≥ 0} ⊂ Rn+1

is a IMCF which is smooth except the origin.

Γn−1
t

CΓn
t

In simplest case, if CΓ0 := {(x, tan θ0 |x|)} is a round cone, then

CΓt := {(x, tan θ(t) |x|)} for t ∈ [0, T ∗) with T ∗ = ln
cosn−1 0

cosn−1 θ0
.
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Convex solutions in Sn and dualitiy

Theorem ( Gerhardt ’15, Makowski-Scheuer ’16)

Let Γ0 ⊂ Sn be smooth, strictly convex (hij > 0). There exist a
unique smooth IMCF, Γt, for t ∈ [0, T ) and the Γt converges to an
equator as t → T . (Note T = ln |Sn−1|− ln |Γn−1

0 |)

Gerhardt - for strictly convex solutions of F (λi) flow in Sn

Γt ⊂ Sn

xt = F (λi)ν
⇐⇒

Γ̃t = ν[Γt] ⊂ Sn

x̃t = −F̃ (λ̃i)ν̃

with F̃ (λ̃i) = F (λ̃−1
i ).

Gauss Map ν : Γ → SnΓt = ν[Γ̃t]

Γ̃t = ν[Γt]

Gauss Map ν : Γ̃t → Sn
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Non-compact solutions in Rn+1 - first result

Theorem (Daskalopoulos-Huisken ’17)

For n ≥ 2, let M0 ⊂ Rn+1 be C2 convex entire graph
xn+1 = u0(x), x ∈ Rn with:

(i) α0 |x| < u0(x) < α0 |x|+ κ for some α0 > 0 and κ > 0

(ii) 0 < c0 < H (〈F, en+1〉+ 1) < C0.

Then, there exists unique smooth IMCF Mt for 0 < t < T with
T = (n− 1) ln

3
1 + α2

0 and Mt becomes flat as t → T .

Solution no longer has a uniform lower bound of H, and hence
local estimate of H−1 was essential. Long time existence was a
hard part as H|F | (or H〈F, en+1〉) vanishes as t → T and they
had to capture this behavior.
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Non-compact solutions in Rn+1 - main existence result

Definition (Tangent cone at infinity)

Let M0 = ∂M̂0, M̂0 ⊂ Rn+1 non-compact convex set (containing
the origin). Then

∩ε>0εM̂0 = CΓ̂0 for some convex set Γ̂0 ⊂ Sn.

We call it the tangent cone of M̂0 at infinity. Γ0 := ∂Γ̂0 in Sn and
we call CΓ0 the tangent cone of M0 := ∂M̂0 at infinity.

M0

CΓ0

Γ0

O
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Motivated from the previous observation and the scaling property
of the flow, we prove

Theorem (C.-Daskalopoulos ’18)

For convex M0 = ∂M̂0 ⊂ Rn+1, IMCF Mt exists for t ∈ (0, T ).

• Using P (Γ̂0) := the perimeter of Γ̂0 in Sn,

T = ln |Sn−1|− lnP (Γ̂0) ∈ [0,∞]

and it is maximal. i.e. no smooth solution exists for t > T .

• Let CΓt : = the tangent cone of Mt at infinity. Then
Γt ⊂ Sn is IMCF in Sn becoming flat as t → T .

Note Γ̂0 can be any convex set in Sn possibly be degenerate (e.g.
line, point, etc) and

P (Γ̂0) =

4
|Γ0| if Γ̂0 has non-empty interior in Sn

2|Γ0| if Γ̂0 has empty interior in Sn.

Beomjun Choi Non-compact solutions



Motivated from the previous observation and the scaling property
of the flow, we prove

Theorem (C.-Daskalopoulos ’18)

For convex M0 = ∂M̂0 ⊂ Rn+1, IMCF Mt exists for t ∈ (0, T ).

• Using P (Γ̂0) := the perimeter of Γ̂0 in Sn,

T = ln |Sn−1|− lnP (Γ̂0) ∈ [0,∞]

and it is maximal. i.e. no smooth solution exists for t > T .

• Let CΓt : = the tangent cone of Mt at infinity. Then
Γt ⊂ Sn is IMCF in Sn becoming flat as t → T .

Note Γ̂0 can be any convex set in Sn possibly be degenerate (e.g.
line, point, etc) and

P (Γ̂0) =

4
|Γ0| if Γ̂0 has non-empty interior in Sn

2|Γ0| if Γ̂0 has empty interior in Sn.

Beomjun Choi Non-compact solutions



Evolution of Singularity

Theorem (C.- Hung ’18)

If 0 ∈ M0 is singular in the sense that the (blow-up) tangent cone
T0M0 ∕= Rn, then 0 ∈ Mt until the tangent cone becomes flat and
T0Mt evolves by IMCF.

t = 0

t = ln 4
3
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Theorem (C.-Daskalopoulos ’18 + C.-Hung ’18)

For an arbitrary convex M0 = ∂M̂0 ⊂ Rn+1, a convex smooth
solution exists if and only if the density of M0 ≡ 1.

i.e. Θ0(p) = lim
r→0

|Br(p) ∩M0|n
ωnrn

= 1 for all p ∈ M0.

When Θ0(p) = 1? Θ0(p) =
|TpM0∩Sn|n−1

|Sn−1|n−1
with TpM0 : = the

tangent cone at p ∈ M0.

If we denote Γ0(p) = TpM0 ∩ Sn and Γ0(p) = ∂Γ̂0(p),

θ0(p) = 1 iff P (Γ̂0(p)) = |Sn−1|.

This also relates the case T = 0 (non-existence of solution).
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Lemma (C.-Hung)

If Γ̂0 ⊂ Sn convex and P (Γ̂0) = |Sn−1|, then Γ̂0 is either a
hemisphere or a wedge [we call it a (hard shell) taco].

i.e. Ŵθ0 = Sn∩
.
{(r sin θ, r cos θ) : θ ∈ [0, θ0], and r > 0}×Rn−1

/

for some θ0 ∈ [0,π] up to an isometry of Sn.

• Smooth flow exists iff all initial singularities are tacos.

• No solution exists iff asymptotic cone (cone at infinity) is a
taco. (⇒ no 1-dimensional convex non-compact IMCF exists)
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Theorem (C.-Daskalopoulos, main apriori estimate)

Let F : Σ× [0, T ] → Rn+1, n ≥ 2, be a convex compact IMCF
and suppose there exist δ ∈ (0,π/2) and a fixed unit vector
ω ∈ Rn+1 for which

〈F,ω〉 ≥ |F | sin δ on Σ× [0, T ].

Then
1

H|F | ≤ C

"
1 +

1

t1/2

#
on Σ× [0, T ]

for a constant C = C(δ) > 0.

δ

Mt
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Theorem (C.-Daskalopoulos (c.f. Huisken-Ilmanen ’08))

For Mt compact star-shaped IMCF with

0 < R1 ≤ 〈F, ν〉 ≤ R2 on M0

(the same condition of Huisken-Ilmanen), we have

1

H
≤ cn

"
R2

R1

# 1
1 +

1

t1/2

2
R2 e

t
n ,

(only |M0|1/n has been replaced by R2.)
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Thank you for your attention

Useful reference (for miso and Riemannian Penrose inequality)

• Huisken’s talk at IAS (available at youtube)

• J.L.Jauregui-D.A.Lee ’16

• Bray’s AMS notice
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