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There are three doors to access to the object called a Riemann surface:

differential geometry, algebraic geometry, and complex analysis. Historically

the concept of Riemann surface emerged as a geometric object to understand

and solve the problems in these areas. An access from algebraic geometry has

computational advantages, but it may hide the geometric intuitions behind

the computations. An access from differential geometry is quite a natural

approach, and I hope we can have a lecture series in this prospect in the
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next years. In this lecture, I’ll adopt complex analysis as the main tool for

explanation, because it captures the point with a small amount of machinery.

A Riemann surface is a smooth surface whose transition maps {ψU→V }
are biholomorphic. In other words, it is a surface equipped with a complex

structure. In this talk, we will consider the compact Riemann surfaces only.

Every Riemann surface is orientable, because the complex structure pro-

vides the orientation in each chart: v 7→
√
−1v. Hence the only topological

invariant is the genus g (or the Euler characteristic χ = 2− 2g).

As I understand, the original definition of Riemann surfaces was given in

terms of conformality. A C1-map f : R2 → R2 is conformal (angle-preserving)

and preserves the orientation if and only if it satisfies the Cauchy-Riemann

equations. In this sense, a Riemann surface is an orientable surface equipped

with a notion of angles. (The metric (v, v) =
√
||v|| is not preserved, but we

can measure the angle
(u, v)

||u|| ||v||
on a Riemann surface). This gives hint to

the fact that complex tori C/Λ may have different structures of Riemann

surfaces as the lattices are deformed.

Find pictures from David Xianfeng Gu’s gallery:

https://www3.cs.stonybrook.edu/ gu/gallery/RiemannSurface/index.html

The Riemann sphere S2 is the Riemann surface of genus 0. It is the

sphere X2+Y 2+Z2 = 1 equipped with two charts given by the stereographic

projections φ1 (from the north pole) and φ2 (from the south pole):

φ1(X,Y, Z) =
X + iY

1 + Z
and φ2(X,Y, Z) =

X − iY
1− Z

.

Note that the transition map ψ1→2 = φ2 ◦ φ−11 = 1/z is biholomorphic:(
X + iY

1 + Z

)−1
=

1 + Z

X + iY
=

(1 + Z)(X − iY )

X2 + Y 2
=
X − iY
1− Z

There is no (nonconstant) holomorphic function on the whole Riemann

sphere, due to the Liouville’s theorem. Hence we should consider the mero-

morphic functions instead. Riemann sphere can be regarded as a mathe-
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matical object/construct on which we can run the complex analysis (on C),

observing the behaviour near ∞.

Every meromorphic function f on the Riemann sphere is a rational func-

tion
P (z)

Q(z)
: After killing the poles of f inside C by multiplying a suitable

polynomial, the function f(z) ·
∏k
i=1(z−zi)mi is an entire holomorphic func-

tion which may have a zero/pole at ∞. It must be a rational function.

A torus Tτ = C/(Z+τZ), τ ∈ H = {z ∈ C : Im(z) > 0}, has a structure

of Riemann surface of genus 1. The transition maps between two charts

are given by the translations, which are obviously biholomorphic. Again,

there is no (nonconstant) holomorphic function on the Riemann surface

Tτ , because every doubly periodic holomorphic function is constant. Hence

we should consider the doubly periodic meromorphic functions on C. They

are the meromorphic functions φ on C∗ such that φ(qw) = φ(w), where

q = exp(2πiτ). Indeed, C/Z ∼= C∗ and a doubly periodic function on C can

be regarded as a function φ : C∗/〈q〉 → C. For example, the function

P(z) :=
1

z2
+

∑
w ∈ Z+τZ

(
1

(z − w)2
− 1

w2

)
is a meromorphic function on Tτ (called the Weierstrass P-function), which

has a double pole at z = 0.

Notably, there is a moduli of Riemann surfaces of genus 1, produced

by the lattice point τ . For example, the Riemann surfaces {Tib = C/(Z +

ibZ) : 1 < b} are not biholomorphic to each other. There is a 1-(complex)-

parameter family of complex analyses over a torus. (In contrast, there is a

unique complex analysis on S2.)

Right after Riemann defined the objects corresponding to “Riemann

surfaces”, he computed the moduli(= number of parameters) of Riemann

surfaces. For higher genus g > 1, “Riemann’s count” says there are 3g − 3

moduli of Riemann surfaces of genus g. We will see this number later in

the lecture on Teichmüller space. This numbers are given as the first Čech
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cohomology group of the holomorphic tangent bundle:

H1(S,ΘS) =


0, g = 0

1, g = 1

3g − 3, g > 1

A concrete way to get Riemann surfaces is provided by the algebraic

equations. For a polynomial function P (x, y) ∈ C[x, y], put

Σ = {(x, y) : P (x, y) = 0} ⊂ C2.

This is a “branched covering” of C given by the projection (x, y) 7→ x. On

each neighborhood of (x0, y0) ∈ Σ such that
∂P

∂y
(x0, y0) 6= 0, we can use x

as the coordinate of the “complex algebraic curve”. Let

Σsing = {(x, y) : P (x, y) = 0 and
∂P

∂y
(x, y) = 0}.

The x-coordinates of Σsing are precisely the solutions to the equation

0 = Discriminant(P (x, ·)) = Resultant

(
P (x, ·), ∂P

∂y
(x, ·)

)
,

which is a finite set of isolated points. We can compactify Σ by adding the

points at infinity: Embed Σ into CP2 and take the closure(“projectivization”).

The resulting object Σ is a complex manifold outside a finite number of sin-

gularities at the points Σsing and possibly at the points of infinity(Σ \ Σ).

We need to “resolve” the singularities of Σ, which can be cooked according

to an algebraic recipe. Here are samples:

Sample 1 Σ : x2 + y2 = 1 ⊂ C2.

The projectivization Σ is given by X2 + Y 2 = Z2 in CP2 and the points

at infinity are:

Σ \ Σ = {(i : 1 : 0), (−i : 1 : 0)}.

It can be checked that these two points are smooth points of Σ and the

surface Σ is biholomorphic to the Riemann sphere by the Pythagorean triple

formula Φ : C→ Σ:

Φ(z) =

(
2z

1 + z2
,

1− z2

1 + z2

)
.
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This should be understood as the map Φ : C→ Σ for z 6= ±i and

Φ(±i) = (2z : 1− z2 : 1 + z2)

∣∣∣∣
z=±i

= (±i : 1 : 0).

(The inverse map is given by Φ−1(X : Y : Z) =
X

Y + Z
.)

Sample 2 Σ : y = x3 ⊂ C2.

The projectivization Σ is given by Y Z2 = X3 in CP2 with one point at

infinity:

Σ \ Σ = {∞ := (0 : 1 : 0)}.

Near∞, the surface looks like a cusp C : z2 = x3. To resolve this singularity,

embed this piece C into C3 and “blow up” by adding the “slope” variable:

Bl∞C = {(x, z, w) ∈ C3 : z2 = x3, xw = z}.

This is union of two (complex) curves: Bl∞C = C1 ∪ C2, where C1 is

projected down to C and C2 is the w-axis. Since C1 is parameterized by

(x = t2, z = t3, w = t), Since the smooth curve C1 is isomorphic to C

outside (x, z) = (0, 0, 0), we say that C1 is a desingularization of C. (The

projection map C1 → C is bijective, but it is not “biholomorphic” because

C is not smooth at the origin.) The point (0, 0) ∈ C is called a cusp.

Now the resolution of singularity Σ̃ of Σ is obtained by replacing the

piece C ⊂ Σ by C1. It is again biholomorphic to the Riemann sphere via

z 7→ (z, z3).

More generally, starting from any graph curve Σ : y = Q(x), we can

resolve Σ ⊂ CP2 to get a Riemann surface Σ̃ which is biholomorphic to the

Riemann sphere.

Sample 3 To get a Riemann surface of genus g ≥ 1 from algebraic equa-

tion, we need to start from a polynomial P (x, y) of degree ≥ 3. Let Σ be

the plane curve associated to P (x, y) = y2 − x3 + x.

Note that Σsing = {(0, 0)}, but at this point ∂P
∂x (0, 0) = (1, 0). So we can

use y as the local coordinate near (0, 0). The compactified curve is given by

Y 2Z − X3 + XZ3 = 0 and this has one point at infinity: ∞ = (0 : 1 : 0).
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Near ∞, this curve looks like z − x3 + xz3 = 0, which is smooth at (0, 0).

Therefore, Σ̃ = Σ in this case.

What is the genus of Σ̃? Let us briefly introduce the classical construc-

tion of Σ̃ from the multi-valued function f(x) =
√
x3 − x. First, the pro-

jection map (x, y) 7→ y is well-defined on Σ. In other words, the function

f(x) =
√
x3 − x is well-defined and it extends to a meromorphic function

on Σ, or a holomorphic map Σ→ CP1. Recall that this is not single-valued

over C (or CP1). To explain more details of this phenomenon, observe that

the projection map π(x, y) = x makes Σ a double (branched) covering of

CP1, with four branch points ±1, 0, and ∞. · · · · · ·

Sample 4 Now we start from the polynomial: P (x, y) = y + x3 + x2y.

Note that the curve Σ = {P (x, y) = 0} is smooth. But its projectivization is

given by Y Z2 +X3 +X2Y = 0, which has a point at infinity∞ = (0 : 1 : 0).

Near the point (x, z) = (0, 0), this looks like C : z2 + x3 + x2 = 0. It is

singular at (0, 0), so we blow it up to get:

Bl∞C = {(x, z, w) ∈ C3 : z2 + x3 + x2, xw = z}.

Let C1 = Bl∞C \ w-axis. Then along the curve C1, we have

lim
(x,z)→(0,0)

w2 = lim
(x,z)→(0,0)

−x3 − x2

x2
= −1.

Hence in the limit (x, z) → (0, 0), we have w → ±i. We see that in this

case the projection π : C1 → C is bijective outside w-axis, and π−1(0, 0) =

(0, 0,±i). This is a resolution of a nodal singularity.

A polynomial P (x, y) = y2 −
∏d
i=1(x − xi) for distinct xi’s yields a

Riemann surface of genus g =

⌊
d− 1

2

⌋
. These Riemann surfaces are called

the hyperelliptic curves, named after the elliptic curves which correspond to

the g = 1 case (d = 3, 4). Similarly, we can associate a Riemann surface to

arbitrary polynomial P (x, y). In fact, the converse is also true:

Every compact Riemann surface can be algebraically immersed into CP2,

with at most simple nodal points.
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In this sense, the compact Riemann surface (in differential geometry or com-

plex analysis) is the same as the algebraic curve (in algebraic geometry).
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As we have seen, the function theory on a Riemann surface S and the

geometry of S are closely related. First let’s establish a general fact which

we already observed for g = 0 and 1.

Theorem 1 There is no nonconstant (global) holomorphic function on S.

Proof. Let f be a holomorphic function. Since S is compact, |f(z)| has max-

imum at some point, say p ∈ S. If we choose a chart U 3 p, the holomorphic

function fU : U → C cannot attain the maximum absolute value inside U ,

unless it is constant (maximum principle). Therefore, fU is constant and

eventually f is constant by the identity theorem. �

Hence the space O(S) of holomorphic functions on S is nothing but C.

(There is no function theory on O(S).) And we should consider the following

objects:

• M(S): meromorphic functions on S

• O1(S): holomorphic forms on S

• M1(S): meromorphic forms on S

A meromorphic function f ∈ M(S) is nothing but a holomorphic map

S → CP1. It is not at all obvious if there is any nonconstant meromorphic

function on every Riemann surface.1 In fact, there are plenty of them, but

they are subject to a strong constraints as we will see.

A holomorphic(meromorphic) form on S is a collection of 1-forms {fU (z)dz}
for some holomorphic(meromorphic) functions fU on each chart U ⊂ S such

that for each intersection U ∩ V :

fU (z)dz = fV (w)dw (w = φUV (z)).

Equivalently, a form on S is the collection of local functions {fU} satisfying

fU (z) = (fV ◦ φUV (z)) · φ′UV (z).

1This is okay if we admit the fact that every Riemnan surface can be algebraically

defined, because the curve P (x, y) = 0 has a projection map (x, y) 7→ x.
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More generally, we consider the kth order holomorphic(meromorphic) forms

in Ok(S) (orinMk(S)) given by a collection of {fU (z)dzk} satisfying

fU = (fV ◦ φUV ) · φ′UV (z)k.

For example, the function f(z) = z on the Riemann sphere is a mero-

morphic function with a simple pole at ∞, and the form ω(z) = dz is a

meromorphic form which has a double pole at ∞: for z′ = 1/z,

ω(z) = dz = d(1/z′) =
−1

(z′)2
dz′.

This shows that there is no holomorphic form on CP1: a form f(z)dz in one

chart is transformed to − 1
(z′)2 f( 1

z′ )dz
′ in another chart.

The order of a function f = {fU} (or a form ω = {fUdz}) at p ∈ S is

the order of fU for a chart U 3 p. It is written as ordpf (or ordpω). the order

at p is zero if and only if fU has neither a zero or a pole at p. Given a form

ω ∈M(S), the residue of ω at p is Respω = c−1, where

ω = fU (z)dz, fU (z) =

−d∑
j=−1

cjz
j + analytic.

In fact, Respf of a meromorphic function f(z) on C is equal to Respω of the

form ω = f(z)dz on the Riemann sphere. Cauchy’s theorem says that

Respω =
1

2πi

∫
Cp

ω,

where Cp is a small anti-clockwise contour around p.

Exercise The order ordpf and the residue Respω are independent of the

choice of the chart and coordinates. On the other hand, the coefficients cj

for j ≤ −2 do depend on the choice.

Theorem 2 For ω ∈M1(S), the total residue is zero:∑
p

Resp(ω) = 0.
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Proof. The surface S can be polygonalized: there is a graph on S whose

faces are polygons entirely contained in a chart such that each pole of ω lie

inside some polygon. The sum of residues is the sum of the integral along

each polygons, which cancels out each other. �

Corollary 3 There is no ω ∈M1(S) with only one simple pole.

Given a nonzero f ∈M(S), the divisor of f is defined by

(f) =
∑
p∈S

(ordpf)p.

This is a formal Z-linear combination of points of S. Similarly, given a

nonzero ω ∈M1(S), the divisor of ω is

(ω) =
∑
p∈S

(ordpω)p.

Each nonzero meromorphic function/form has only finitely many poles and

zeros. (Why?)

Corollary 4 For g ≥ 1, there is no f ∈M(S) with only one simple pole.

Proof. We use the fact that there is a nonzero holomorphic form ω ∈ O1(S)

for g ≥ 1.2 If ordp(ω) = k, then fk+1ω is a meromorphic form which has

only one simple pole (at p), which is a contradiction. �

The Riemann–Roch formula is the key tool to study the Riemann sur-

faces. We state a weaker version below.

Theorem 5 (Riemann’s inequality, a weaker version of Riemann–Roch)

Let S be a Riemann surface of genus g and x1, . . . , xd ∈ S. For any posi-

tive integers m1, . . . ,md, the space L(
∑d

i=1mixi) of meromorphic functions,

which have a pole at xi with order ≤ mi and holomorphic elsewhere, is a

C-vector space of dimension ≥ (
∑d

i=1mi) + 1− g.
2This is a highly nontrivial fact. It is a key step to show that every Riemann surface is

an algebraic curve.
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For example, there is a nonconstant meromorphic function if we allow

poles with
∑d

i=1mi > g. Riemann–Roch’s formula is:

H0(S,O(D))−H1(S,O(D)) = d+ 1− g,

where D =
∑d

i=1mixi and H0(S,O(D)) = L(
∑d

i=1mixi).

Theorem 6 Let f be a nonzero meromorphic function. Then the number

of poles (counted with multiplicities) equals the number of zeros.

Proof. Let ω = d(log f) =
df

f
. If p is a zero (resp. a pole) of f of order k,

then Respω = k (resp. −k). The result follows from Theorem 2. �

I want to emphasize that unlike the objects in differential geometry, the

existence of certain function/form on S is a big issue. If you find some object

on S, then it will give you some clue to the symmetry (or a property) of S.

Theorem 7 Any two meromorphic functions f, g ∈M(S) are algebraically

related, that is, there exists a bivariate polynomial P such that P (f, g) ≡ 0.

Does this look plausible to you? (For example, how do you see that any two

polynomials f(z) and g(z) are algebraically related?3) As you see below, this

can be shown by using the fact that every meromorphic function on CP1 is

rational.

Proof. Let d :=
∑

p : poles

ordpf . Then f can be thought as a d : 1 branched

covering S → CP1. (This is another nice viewpoint for Riemann surfaces.)

For a small open set U ⊂ S with local chart x, Let z1, . . . , zd be the local

charts of f−1(U) such that f−1(x) = {z1, . . . , zd}. Let

φ(x, y) = (y − g(z1))(y − g(z2)) · · · (y − g(zd)).

3This can be shown by linear algebra. Suppose deg f = m and deg g = n. For large N ,

the vector space generated by fkg`’s for k ≤ N
2m

and ` ≤ N
2n

has dimension ≤ N2

4mn
. On

the other hand, this space is contained in 〈1, z, z2, . . . , zN 〉 which has dimension N + 1.

As N gets large enough, N2

4mn
> N + 1 and so there should be some polynomial relation

between f and g.
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This is a polynomial in y, whose coefficients si(x), 1 ≤ i ≤ d, are meromor-

phic functions : U → CP1. These function can be extended to the whole

CP1, including the branch points. Therefore si ∈ M(CP1) and they are ra-

tional functions in x. This confirms that φ(x, y) is a rational function in x

and y and φ(f(z), g(z)) ≡ 0 on S. �

As an example, recall the Weierstrass P-function on Tτ :

P(z) :=
1

z2
+

∑
w ∈ Z+τZ

(
1

(z − w)2
− 1

w2

)
Its derivative is given by

P ′(z) = −2
∑

w ∈ Z+τZ
(z − w)−3.

Then (P ′(z))2 = 4P(z)3−g2P(z)−g3 for some g2, g3 ∈ C which are computed

from the lattice Z⊕ Zτ . This gives the “algebraic equation” of Tτ given by

E = {(x, y) ∈ C2 : y2 = 4x3 − g2x− g3}.

More details: Define

Φ : Tτ → E = E ∪ {∞} ⊂ CP2

by Φ(z) = (P(z) : P ′(z) : 1). It can be checked that this is an embedding

of Tτ into CP2 whose image is an algebraic curve (zero set of a plane cubic

curve). The coefficients g2 and g3 (more precisely, the j-invariant = g32−27g23)

provide the moduli of Riemann surfaces of genus 1 (= elliptic curves).
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