Lecture notes : 16th KIAS Geometry Winter School

Hyun Kyu Kim (email: hyunkyukim@ewha.ac.kr)

title: Basics on Teichmüller spaces of Riemann surfaces date: 2021.Jan.19

references (공부하기 좋은 책들):

Farb-Margalit, A primer on mapping class groups Hubbard, Teichmüller theory

목표 (to understand) :

Riemann (1857) said : "a curve of genus $g \ge 2$ depends on 3g - 3 moduli"

(curve는 Riemann surface를 의미. moduli는 (complex) parameter)

Let S = topological 2-manifold

Today : S compact of genus g, oriented. We fix any smooth structure on S.

<u>Def</u>. A holomorphic structure (or complex-analytic structure or complex structure) on S is a maximal holomorphic atlas Σ on S.

 $(\stackrel{\sim}{\neg} \Sigma = \{(U_i, \varphi_i)\}_{i \in I}, \text{ where } \{U_i\}_{i \in I} \text{ is an open cover of } S, \varphi_i : U_i \to \varphi_i(U_i) \subset \mathbb{C} \text{ diffeomorphism to an open subset of } \mathbb{C}, \text{ and each transition map } \varphi_i \circ \varphi_i^{-1} \text{ is (bi)holomorphic)}$

 $\rightarrow (S, \Sigma)$ is called a **Riemann surface** of topological type S.

<u>Def</u>. Riemann's classical moduli space

 $\mathcal{M}(S) := \{\text{holomorphic structures } \Sigma \text{ on } S\}/\text{Diff}^+(S)$

where the quotient means quotient by the action of pullback by orientation-preserving diffeomorphisms $S \to S$.

(cf. {Riemann surfaces of topological type S}/isomorphism)

(cf. \mathcal{M}_g)

 \underline{want} :

• parametrize all points of $\mathcal{M}(S)$ by parameters?

• structures on $\mathcal{M}(S)$? topologize? manifold?

왜 하나?

- 결과론 (해보니 좋더라)
- to quantize (하나씩만 다룰 수는 없고, 모아놓은 공간(위의 함수)을 다뤄야 된다)

어쨌든, $\mathcal{M}(S)$ 를 공부하려면, better idea to study:

$\underline{\text{Def.}}$ Teichmüller space

 $\mathcal{T}(S) = \{\text{holomorphic structures } \Sigma \text{ on } S\} / \text{Diff}(S)_0$

where the quotient is quotient by the action of pullback by diffeomorphisms $S \to S$ isotopic to identity.

Note: people write $\mathcal{T}(S) = \{\text{holomorphic structures } \Sigma \text{ on } S\}/\text{isotopy}$

We will see partially:

<u>Thm</u> (Fenchel-Nielsen ~ 1948) If $g \ge 2$, $\mathcal{T}(S)$ is homeomorphic to \mathbb{R}^{6g-6} .

(we will see how the number 6g - 6 comes up)

We will not see:

<u>Thm</u>. \exists (Weil-Petersson) Kähler metric on $\mathcal{T}(S)$.

Relationship with $\mathcal{M}(S)$?

 $\underline{\mathrm{Def}}$. Mapping class group

 $MCG(S) := Diff^+(S)/Diff(S)_0$

(discrete group of components of $\text{Diff}^+(S)$)

Note: MCG(S) acts 'nicely' on $\mathcal{T}(S)$, and $\mathcal{T}(S)/MCG(S)$ is homeomorphic to $\mathcal{M}(S)$ (so $\mathcal{T}(S)$ is a universal cover of $\mathcal{M}(S)$)

Let's study $\mathcal{T}(S)$. People say

 $\mathcal{T}(S) \xleftarrow{1:1}{\longleftrightarrow} \{\text{hyperbolic metrics on } S\}/\text{isotopy}$

(where a hyperbolic metric is a Riemannian metric with constant sectional curvature -1) holds due to the 'Uniformization Theorem'.

<u>Thm</u> (the **Uniformization Theorem**; Koebe, Poincaré, 1907) A simply-connected Riemann surface is isomorphic (i.e. biholomorphic) to exactly one of \mathbb{C} , \mathbb{P}^1 , \mathbb{H}^2 .

Here \mathbb{P}^1 is the Riemann sphere (can be viewed as $\mathbb{C} \cup \{\infty\}$, and is homeomorphic to S^2), and $\mathbb{H}^2 = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ is the upper half-plane. Note \mathbb{H}^2 is naturally a Riemann surface,

whose holomorphic structure naturally inherits from that of \mathbb{C} because \mathbb{H}^2 is an open subset of \mathbb{C} . Note that both \mathbb{C} and \mathbb{H}^2 can be viewed as open submanifolds of \mathbb{P}^1 .

Let's use the Uniformization Theorem.

Start from a Riemann surface (S, Σ) of topological type S (i.e. $[\Sigma] \in \mathcal{T}(S)$).

Let $p: \widetilde{S} \to S$ be a universal covering.

<u>Claim</u>. \exists ! holomorphic structure $\widetilde{\Sigma}$ on \widetilde{S} s.t. $p: (\widetilde{S}, \widetilde{\Sigma}) \to (S, \Sigma)$ is a local biholomorphism.

Then $(\widetilde{S}, \widetilde{\Sigma})$ is a simply-connected Riemann surface, so by the Uniformization Theorem, \exists isomorphism

$$\Phi: (\widetilde{S}, \widetilde{\Sigma}) \to X$$

of Riemann surfaces, where

$$X \in \{\mathbb{C}, \mathbb{P}^1, \mathbb{H}^2\}.$$

How do we get the original (S, Σ) back? Quotient by the **deck transformation group**

 $\operatorname{Aut}(p) := \{h : \widetilde{S} \to \widetilde{S} \text{ homeomorphism s.t. } p = ph\}$

(i.e. self-homeomorphisms h of \widetilde{S} that preserve the covering p, i.e. h making the diagram

to commute)

Facts from 대수위상:

- (1) $\operatorname{Aut}(p) \cong \pi_1(S)$
- (2) $\operatorname{Aut}(p)$ acts properly discontinuously (and freely) on \widetilde{S}
- (3) $\widetilde{S}/\operatorname{Aut}(p)$ is homeomorphic to S

Note : Consider the automorphism group of the Riemann surface $(\widetilde{S}, \widetilde{\Sigma})$:

 $\operatorname{Aut}(\widetilde{S}, \widetilde{\Sigma}) = \{h : \widetilde{S} \to \widetilde{S} \text{ homeomorphisms preserving } \widetilde{\Sigma}\}$

(you may replace 'homeomorphisms' by 'diffeomorphisms'). Then the subgroups $\operatorname{Aut}(p)$ and $\operatorname{Aut}(\widetilde{S}, \widetilde{\Sigma})$ of $\operatorname{Homeo}(\widetilde{S})$ satisfy

$$\operatorname{Aut}(p) \leq \operatorname{Aut}(S, \Sigma)$$

(by construction of $\widetilde{\Sigma}$)

Note : From the isomorphism $\Phi: (\widetilde{S}, \widetilde{\Sigma}) \to X$ of Riemann surfaces, we get the isomorphism

$$\operatorname{Ad}_{\Phi}: \operatorname{Aut}(\widetilde{S}, \widetilde{\Sigma}) \to \operatorname{Aut}(X), \quad h \mapsto \Phi \circ h \circ \Phi^{-1}$$

of the isomorphism groups.

(consider the diagram

$$\begin{array}{c} (\widetilde{S},\widetilde{\Sigma}) \stackrel{\Phi}{\longrightarrow} X \\ h \\ \langle \widetilde{S},\widetilde{\Sigma} \rangle \stackrel{\Phi}{\longrightarrow} X \end{array}$$

)

summary (for a fixed $x \in S$)

$$\pi_1(S, x) \cong \operatorname{Aut}(p) \le \operatorname{Aut}(\widetilde{S}, \widetilde{\Sigma}) \xrightarrow{\operatorname{Ad}_\Phi} \operatorname{Aut}(X)$$

<u>Thm</u>.

(1) The resulting homomorphism

$$\rho = \rho_{\Sigma} : \pi_1(S, x) \to \operatorname{Aut}(X),$$

called the monodromy representation (or holonomy representation) of Σ , is welldefined up to conjugation by an element of Aut(X).

(2) $\rho_{\Sigma} = \rho_{\Sigma'} \Leftrightarrow \Sigma, \Sigma'$ represent a same point of $\mathcal{T}(\Sigma)$.

(3) ρ is faithful (i.e. injective) and (the image is) discrete.

Question: Aut(X)는 어떻게 생겼나?

<u>Thm</u>.

(1) $\operatorname{Aut}(\mathbb{P}^1) \cong \operatorname{PSL}(2, \mathbb{C}) = \operatorname{SL}(2, \mathbb{C}) / \{\pm \operatorname{Id}\}, \text{ for each } \sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}(2, \mathbb{C}) \text{ (i.e. } a, b, c, d \in \mathbb{C}, ad - bc = 1), \text{ the associated automorphism } f_{\sigma} \in \operatorname{Aut}(\mathbb{P}^1) \text{ of } \mathbb{P}^1 = \mathbb{C} \cup \{\infty\} \text{ is } f_{\sigma}(z) = \frac{az+b}{cz+d})$

- (2) Aut(\mathbb{C}) $\cong \{ \begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix} \in SL(2, \mathbb{C}) \mid a \neq 0 \}$ (so $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = az + b \}$
- (3) $\operatorname{Aut}(\mathbb{H}^2) \cong \operatorname{PSL}(2,\mathbb{R})$

<u>Thm</u>. Suppose that a Riemann surface Y is not isomorphic to \mathbb{P}^1 , \mathbb{C} , $\mathbb{C} \setminus \{a\}$, or a Riemann surface of genus 1 (i.e. homeomorphic to the torus $S^1 \times S^1$). Then Y has \mathbb{H}^2 as its universal covering Riemann surface.

<u>Thm</u>. For $g \geq 2$,

$$\mathcal{T}(S) \to \operatorname{Hom}^{df}(\pi_1(S), \operatorname{PSL}(2, \mathbb{R}))/\operatorname{PSL}(2, \mathbb{R})$$

sending $[\Sigma]$ to $[\rho_{\Sigma}]$ is a bijection.

Here, the right-hand-side is the set of all group homomorphisms $\rho : \pi_1(S) \to \text{PSL}(2,\mathbb{R})$ defined up to conjugation by an element of $\text{PSL}(2,\mathbb{R})$ such that ρ is faithful and (the image of ρ is) discrete.

Can we see dim $\mathcal{T}(S)$? ($\mathcal{T}(S)$ locally homeomorphic to \mathbb{R}^N , for which N?)

 $\pi_1(S)$ has a presentation by 2g generators and 1 relation. Note that $PSL(2,\mathbb{R})$ is a real 3-manifold. So, at least locally,

$$\dim \mathcal{T}(S) = (2g-1) \cdot 3 - 3,$$

where -3 comes from the quotient action by the 3-manifold Lie group $PSL(2,\mathbb{R})$. So

$$\dim \mathcal{T}(S) = 6g - 6.$$

What we didn't see today : the hyperbolic metric description of $\mathcal{T}(S)$. We will see next time a little bit (how a Riemann surface structure Σ on S induce a hyperbolic metric on S)