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1 Continuing from last time : compact surfaces

Let S be a compact oriented surface. The Teichmüller space is

T (S) := {holomorphic structures Σ on S}/isotopy

which is in bijection with

Homdf (π1(S),PSL(2,R))/PSL(2,R),

the set of all group homomorphisms ρ : π1(S) → PSL(2,R), defined up to conjugation by

an element of PSL(2,R) (i.e. two homomorphisms ρ, ρ′ : π1(S) → PSL(2,R) are viewed as

equivalent if ∃σ ∈ PSL(2,R), ∀[γ] ∈ π1(S), ρ′([γ]) = σ ρ([γ])σ−1; to be more precise, pick a

point x of S and replace π1(S) by π1(S, x)), such that ρ has discrete image in PSL(2,R) and

ρ is faithful (i.e. injective).

For a point [Σ] of T (S) represented by the holomorphic structure Σ on S, let [ρ] = [ρΣ] be

the corresponding point of Homdf (π1(S),PSL(2,R))/PSL(2,R) represented by the monodromy

representation homomorphism

ρ : π1(S)→ PSL(2,R).

Let

Γ := ρ(π1(S)) ≤ PSL(2,R)

be the corresponding Fuchsian group (this just means a discrete subgroup of PSL(2,R)).

We have the commutative diagram of maps

(S̃, Σ̃)
Φ //

p

��

(H2,ΣH2)

quotient

��
(S,Σ)

φ // H2/Γ

for a unique map φ : (S,Σ) → H2/Γ, which is an isomorphism of Riemann surfaces, hence in

particular a diffeomorphism from S to H2/Γ.
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Note that H2 = {x+ iy ∈ C | y > 0} = {(x, y) ∈ R2 | y > 0} has a standard hyperbolic metric

gH2 = dx2+dy2

y2
(a hyperbolic metric means a Riemannian metric with sectional curvature≡ 1;

since we are dealing only with surfaces here, one can replace the ‘sectional curvature’ by the

‘Gaussian curvature’). The automorphism group of this Riemannian manifold (H2, gH2) is:

Thm. The orientation-preserving isometry group

Isom+(H2, gH2) := {h : H2 → H2 orientation-preserving diffeomorphisms preserving gH2}

(here, h preserving gH2 means h∗gH2 = gH2) coincides with the group PSL(2,R) ≤ Homeo(H2)

of PSL(2,R) fractional linear transformations.

Hence

Isom+(H2, gH2) = PSL(2,R) = Aut(H2,ΣH2).

(preserving lengths and angles, i.e. being an isometry

↔preserving angles, i.e. being conformal

↔preserving complex structures, i.e. being holomorphic)

So Γ ≤ PSL(2,R) is a discrete subgroup of Isom+(H2, gH2), hence the quotient H2/Γ inherits

the hyperbolic metric. We can then pullback this hyperbolic metric along the diffeomorphism

φ : S → H2/Γ, to obtain a hyperbolic metric g[Σ] on S.

Thm. This hyperbolic metric g[Σ] on S is well-defined by [Σ] ∈ T (S), up to isotopy, and this

assignment [Σ] 7→ g[Σ] yields a bijection

T (S)→ {hyperbolic metrics on S}/isotopy

Some authors just define the Teichmüller space this way, i.e. as the space of all isotopy classes

of hyperbolic metrics on S.

2 Teichmüller spaces for non-compact surfaces

This time, let S be a non-compact oriented topological 2-manifold. We assume S is of finite

type, i.e. S is obtained from a compact oriented surface of genus g by removing n points, where

the removed points are called the punctures. We require

n ≥ 1, χ(S) = 2− 2g − n < 0.

Pick any smooth structure on S, so we may view S as a smooth oriented surface.
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Def. The Teichmüller space of S is defined as

T (S) = {complete hyperbolic metrics g on S}/isotopy

Here a hyperbolic metric g on S being complete means that, when S is viewed as a metric

space with the metric defined from the lengths of paths with respect to g (distance between

two points of S being the length of the shortest piecewise smooth path), S is a complex metric

space. And modding out by isotopy means modding out by pullbacks by self-diffeomorphisms

of S isotopic to the identify diffeomorphism.

It turns out that the above version T (S) is not so nice for our purpose.

For other versions to consider, we need to investigate the boundary behaviors of the hyperbolic

metrics g on S, i.e. the asymptotic behavior near the punctures. It is convenient to describe

such a behavior in terms of monodromy. First, we need:

Thm. The assignment to each hyperbolic metric on S its monodromy representation yields

the bijection

T (S)↔ Homdf ;S(π1(S),PSL(2,R))/PSL(2,R),

where the right hand side is the set of all group homomorphisms ρ : π1(S) → PSL(2,R),

defined up to conjugation, such that ρ has discrete image, ρ is faithful, and ρ is of ‘type S’,

i.e. H2/ρ(π1(S)) is homeomorphic to S.

From now on, a point of T (S) may be denoted by [g] (isotopy class of a hyperbolic metric).

Def. A non-identity element A of PSL(2,R) is called

• parabolic if |tr(A)| = 2;

• hyperbolic if |tr(A)| > 2;

• elliptic if |trA| < 2

(each is similar to ± ( 1 a
0 1 ) (a 6= 0), ±

(
λ 0
0 λ−1

)
(λ > 0), ±

(
cos θ − sin θ
sin θ cos θ

)
(θ ∈ R))

Note. For [ρ] ∈ T (S), the value ρ([γ]) is never elliptic.

Def. Let p be a puncture of S. (so p is not really a point of S) Let γp be a small simple

loop in S surrounding p. Let [g] ∈ T (S), and let [ρ] be the corresponding conjugacy class of

monodromy representation homomorphisms ρ : π1(S)→ PSL(2,R).

• p is a cusp with respect to [g] if ρ([γp]) is parabolic;

• p is a funnel with respect to [g] if ρ([γp]) is hyperbolic.
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(cusp와 funnel 참조: 제 15회 고등과학원 기하학 겨울학교, 김영주 교수 강연 “쌍곡기하 산책”)

Def. Define the cusped (or, punctured) Teichmüller space as

T u(S) := {[g] ∈ T (S) | all punctures of S are cusps with respect to [ρ]}

and the enhanced (or, holed) Teichmüller space as

T +(S) :=

{
[g,O]

∣∣∣∣∣ [g] ∈ T (S), O is a choice of orientation ∈ {+,−}
per each funnel of S with respect to [g]

}

(I think u stands for ‘unipotent’)

The data O can be thought of as follows. For a funnel puncture p of S, there is a unique

geodesic in the homotopy class of the loop γp around p. The data O is a choice of an orientation

of this geodesic, per each funnel puncture p.

FACT. The enhanced Teichmüller space T +(S) is a smooth manifold diffeomorphic to

T +(S) ≈ R6g−6+3n,

and is equipped with a Poisson structure called the Weil-Petersson Poisson structure. The

cusped Teichmüller space T u(S), viewed as a subspace of T +(S), is a symplectic leaf with

respect to this Poisson structure. Moreover, T u(S) is diffeomorphic to

T u(S) ≈ R6g−6+2n,

possesses a Kähler structure compatible with the Weil-Petersson symplectic form, and can be

viewed as a universal cover of Riemann’s classical moduli space Mg,n.

One of the goals of today’s lecture is to partially understand the above FACT.

To start with, how do we investigate T +(S)? Say we do not know anything about the above

FACT yet. We should first topologize the set T +(S), and try to show that it is locally or

globally homeomorphic to some RN . That is, we should find some charts, and maybe check
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if the charts we found are smoothly compatible with each other. One way to topologize the

set T +(S) is to use the model Homdf ;S(π1(S),PSL(2,R))/PSL(2,R). First, since π1(S) is

a free group (why?), the set Hom(π1(S),PSL(2,R)) can be identified with the product of

bunch of PSL(2,R). As each PSL(2,R) is naturally a topological space, one can topologize

Hom(π1(S),PSL(2,R)) as (PSL(2,R))M for some M . Then Homdf ;S(π1(S),PSL(2,R)) can be

given the subspace topology, and finally Homdf ;S(π1(S),PSL(2,R))/PSL(2,R) the quotient

topology. But we will not do it this way.

Instead, just viewing T +(S) as a set, we will start finding charts for this set right away,

without giving it a topology first. Then you can use ‘(smooth) manifold chart lemma’ in the

end (see Lee’s book Introduction to Smooth Manifolds, 2nd ed., for example).

In fact, due to lack of time, we choose not to do this task for T +(S) today, but only for the

following yet another version of a Teichmüller space.

Def. Define the decorated Teichmüller space as

T d(S) := {[g, h] | [g] ∈ T u(S), h is a choice of a horocycle at each puncture}

Here, a horocycle at a (cusp) puncture p with respect to a hyperbolic metric g on S means

a (smooth) curve in S that is perpendicular to all geodesics with respect to g emanating from

p. It can be viewed as a circle centered at ∞.

So we have the following diagram of maps between different version of Teichmüller spaces

T d(S)

��

T +(S)

��
T u(S) �

� // T (S)

where the vertical maps are maps forgetting decoration and orientation, respectively. The left

vertical map T d(S) → T u(S) is a fiber bundle with fiber diffeomorphic to Rn, and the right

vertical map T +(S)→ T (S) is a 2n-to-1 branched covering. Note that the bottom right T (S)

is the naive definition of the Teichmüller space, while the bottom left T u(S) is the most ‘nice’
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version, which had been classically studied (called Tg,n, which is a universal cover of Mg,n).

One reason why people considered the upper versions T d(S) and T +(S) (in 1980’s and on)

is to obtain nice sets of coordinate systems, suitable for the quantization problem. However,

even without the quantization, these special coordinate systems turned out to be providing

prototypical examples of more general phenomenon, namely those of cluster A-varieties (or

cluster K2-varieties) and cluster X -varieties (or cluster Poisson varieties) which arose in the

21st century.

3 Coordinate system for the decorated Teichmüller space T u(S)

So, let us study coordinate systems for the various versions of Teichmüller spaces.

The original plan (for the last lecture) was to also review the Fenchel-Nielsen coordinate

systems for T (S) (and T u(S)), which is most classical (early 20c), and based on a choice of an

extra data called a pants (or trouser) decomposition of S. But let’s not do it.. These coordinate

systems turned out to be not suitable for the task of quantization.

The new sets of coordinate systems which arose in 1980’s require the choice of the following

data :

Def. An ideal arc in S is an unoriented simple path running between (not necessarily distinct)

punctures. An isotopy of ideal arcs means an isotopy (i.e. homotopy) within the class of ideal

arcs.

An ideal triangulation T of S is a collection of ideal arcs in S such that

(1) no arc of T bounds a disk;

(2) no two members are isotopic or intersect in S;

(3) the collection T is maximal among the collections satisfying (1)–(2).

Note: T divides S into ideal triangles

Note: We often consider T only up to (simultaneous) isotopy.

e.g. once-punctured torus

e.g. 3-punctured sphere
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Note: T has 6g − 6 + 3n constituent arcs. (exercise)

Let’s now describe a coordinate system for the decorated Teichmüller space T d(S).

Choose one ideal triangulation T of S.

Given a point [ρ, h] ∈ T d(S), how do we get coordinates, i.e. some set of real numbers

representing this point?

Stretch all ideal arcs of T to unique geodesics (‘shortest’ paths) with respect to g, in their

respective isotopy classes. (question: why possible? why unique? exercise!)

Then, if you try to measure the geodesic length of an arc e of T with respect to g, you get

∞. Truncate both ends of e by the horocycles at the endpoint punctures, and then measure

the geodesic length δe of the remaining finite-length part of e. So, δe can be thought of as

the distance between the horocycles. In fact, δe is defined as the signed distance between the

horocycles. That is, if the horocycles are too big so that they truncate too much as in the

figure below, we set δe to be minus the distance between the horocycles.

Def. Penner’s lambda length for [g, h] ∈ T d(S) at arc e of T is

λe,T ([g, h]) := exp(δe/2) ∈ R>0.

Note that λe,T ([g, h]) does not depend on T , so one can write it as λe([g, h]).
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Thm. (Penner, 1980’s) For each ideal triangulation T , the map

T d(S)→ (R>0)T

[g, h] 7→ (λe([g, h]))e∈T

is a diffeomorphism.

In fact, at this point, we can’t say that this is a diffeomorphism. We can only understand

this statement as saying that this map is a set bijection.

A crucial point is what happens if we choose a different ideal triangulation T ′. Easiest way to

choose a different T ′ is to replace exactly one arc k of T by another one; this process is called

a flip at k:

Then, only one arc changes, so λe,T = λe,T ′ for all arcs e other than k. What about the

coordinate λk′ = λk′,T ′ for the new arc k′?

Thm. (“Ptolemy relation”) If a, b, c, d are sides of an ideal quadrilateral, and if k, k′ are two

ideal diagonals of this quadrilateral,

then the lambda length coordinate functions satisfy

λkλk′ = λaλc + λbλd

Note: this is an example of an “exchange relation”, which looks like

new · old = product + product.

Another example of such a relation is the famous Plücker relation for Grassmannians.

Note: so

λk′ =
1

λk
(λaλc + λbλd)

8



Note: This pretty coordinate change formula justifies the strange factor 1/2 in the exponent

of the definition of the lambda length λe = eδe/2.

Note: The actual “Ptolemy’s Theorem” is for the Euclidean lengths of the Euclidean quadri-

lateral inscribed in a circle. The above version of Ptolemy’s theorem is an incarnation of

‘Casey’s Theorem’ of 19c.

4 Cluster varieties

To touch upon the subject of cluster varieties, we now focus on the coordinate change formulas

only, and not the 2d geometry.

Per each ideal triangulation T of S, consider the set of commuting formal variables λ1, . . . , λN

(where N = |T | = 6g − 6 + 3n) enumerated by the arcs of T , and consider the split algebraic

torus

AT = (Gm)N = Spec(Z[λ±1
1 , . . . , λ±1

N ]),

which is an affine scheme whose ring of regular functions is the N -variable Laurent polynomial

ring. Such a data is called a seed.

For another ideal triangulation T ′, we would have another variables λ′1, . . . , λ
′
N , and the

corresponding affine scheme

AT ′ = (Gm)N = Spec(Z[(λ′1)±1, . . . , (λ′N )±1]).

We glue the tori (Gm)N and (Gm)N for T and T ′ along the rational map which we denote by

µTT ′ : AT → AT ′

which is defined by the coordinate change formulas for the lambda lengths. Namely, for exam-

ple, if T and T ′ are related by the flip at edge k, then µTT ′ is defined so that its pullback is

given by

µ∗TT ′(λ
′
e) =

{
λe if e 6= k
1
λk

(λaλc + λbλd) if e = k,

where a, b, c, d are the arcs of T forming the ideal quadrilateral (in this counterclockwise orderr)

having k as a diagonal.
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Consider all possible ideal triangulations T of S, and glue all the tori AT together by these

maps µTT ′ , called mutations. The resulting scheme is an example of the cluster A -variety.

To be a bit more precise, a cluster A -variety is associated to a quiver (i.e. directed graph).

In our case, each ideal triangulation T yields a quiver QT constructed as follows: each arc of

T has a node of Q on it, and for each ideal triangle we draw the three arrows between the

nodes at the sides of this triangle, forming a counterclockwise 3-cycle. The cluster A -variety

constructed above is the cluster A -variety associated to the quiver QT .

Note: similar construction for the enhanced Teichmüller space T +(S) with exponentiated

(Thurston’s) shear coordinate functions Xe,T = exe,T (defined per each arc e of T ) yield the

cluster X -variety for the quiver QT .

Note: there is no subtraction involved in the coordinate change formula ; this allows us to

evaluate the cluster variety at a semi-field (which is like a field without subtraction), e.g. R>0.

Note: we can now use tools from the theory of cluster algebras and cluster varieties, to study

Teichmüller spaces. Especially for the quantization problem (with respect to the Weil-Petersson

Poisson structure on T +(S), which can be interpreted in terms of a generalized combinatorial

description for cluster X -varieties).

More details on cluster varieties and their quantization can be found in:

V.V. Fock and A.B. Goncharov, Moduli spaces of local systems and higher Teichmüller theory,

Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1–211. arXiv:math/0311149

V.V. Fock and A.B. Goncharov, The quantum dilogarithm and representations of quantum

cluster varieties, Invent. Math. 175 (2) (2009), 223-286. arXiv:math/0702397
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