All about deformations of cyclic quotient surface singularities

신동수

2021.12.20 대수기하 심포지엄

Correspondence between various descriptions of deformations of cyclic quotient surface singularities via the semi-stable minimal model program

What is ··· a cyclic quotient surface singularity?

$$\frac{1}{n}(1,a) = \mathbb{C}^2/\mu_n \text{ via } \zeta \cdot (x,y) = (\zeta x, \zeta^a y)$$

Hirzubruch-Jung continued fractions

$$\frac{n}{\alpha} = b_1 - \frac{1}{b_2 - \frac{1}{a}} \qquad b_1 \ Z^2$$

Minimal resolutions

$$\frac{1}{19}(1,7)$$

Hirzubruch-Jung continued fractions

$$\frac{19}{n} = 3 - \frac{1}{4 - \frac{1}{2}}$$

· Minimal resolutions

3

Three descriptions of deformations

- Equations
- P-resolutions
- Picture deformations

Equations

$$z_{i+1}z_{i-1} = z_i^{a_i} + t \cdot z_i^{k_i}$$

• Dual Hirzebruch-Jung continued fractions

$$\frac{n}{n-a} = [a_1, ..., a_e]$$

$$\cdot K(n/n-a) = \{ (k_1, ..., k_e) \mid [k_1, ..., k_e] = 0 + ... \}$$

$$k_i \ge 1 + k_i \le a_i$$

$$[a_1, a_2] = [a_1, ..., k_e]$$

$$[a_1, a_2] = [a_1, ..., k_e]$$

• Dual Hirzebruch-Jung continued fractions

$$\frac{19}{19-\eta} = [2,3,2,3]$$

$$\cdot K(19/19-7) = \{(1,2,2,1), (1,3,1,2), (2,2,13)\}$$
Treducible

P-resolutions

Let (X,0) be a rational surface singularity and let \mathcal{X} be the total space of a one-parameter smoothing of (X,0). Then the canonical algebra

$$\left(\sum_{n=0}^{\infty} \mathcal{O}_{\mathcal{X}}(n\mathsf{K}_{\mathcal{X}})\right)$$

is a finitely generated $\mathcal{O}_{\mathcal{X}}$ -algebra.

For any rational surface singularity X_0 , there is a one-to-one correspondence between irreducible components of the reduced miniversal deformation space of X_0 and P-modifications of X_0 .

Kollár Conjecture holds for …

- smoothings over the Artin component
 - · rational double points, rational triple points
- quotient surface singularities; [Kollár-Shepherd-Barron 1988]
- quotients of simple elliptic and cusp singularities; [Kollár-Shepherd-Barron 1988]
- rational quadruple points; [Stevens 1991]

For any quotient surface singularity X_0 , there is a one-to-one correspondence between irreducible components of the reduced miniversal deformation space of X_0 and P-resolutions of X_0 .

What is ... a P-resolution?

A partial resolution $f \colon Y \to X$ with T-singularities and the ample K_Y relative to f

What is ··· a T-singularity?

$$\frac{1}{dn^2}(1, dna - 1) \text{ or RDP}$$

- one-parameter $\mathbb{Q}\text{-}\mathsf{Gorenstein}$ smoothing

• [2 8]
$$2-\frac{1}{5}=\frac{1}{5}$$

$$=\frac{1}{2^2}(1.5)$$

. [5, 2]

· Generating algorithm

$$\frac{1}{19}(1,7)$$

Picture deformations

A normal surface singularity that admits a birational morphism to $\ensuremath{\mathbb{C}}^2$

$$(V, E) \rightarrow (X, \circ) \rightarrow (\mathbb{C}^2, \circ)$$

Digression: Why \cdots a sandwiched surface singularity?

Digression: Why ··· a sandwiched surface singularity?

J. Nash asked to H. Hironaka in the early sixties:

Does a finite succession of Nash transformations resolve the singularities of algebraic varieties?

Digression: Why ··· a sandwiched surface singularity?

H. Hironaka proved in 1983 that:

Digression: Why ··· a sandwiched surface singularity?

M. Spivakovsky proved in 1990 that:

Sandwiched singularities are resolved by a finite sequence of normalized Nash transformations.

Sandwiched singularities are rational and characterized by their dual resolution graphs.

What is ... a sandwiched graph?

A dual resolution graph that blows down to a smooth point by adding (-1)-vertices to some of vertices.

 $\frac{1}{19}(1,7)$

Examples of sandwiched surface singularities

- Cyclic quotient surface singularities
- · Weighted homogeneous surface singularities with "big" central nodes
- Rational surface singularities with the reduced fundamental cycles

All the one-parameter deformations of a sandwiched surface singularity are obtained by one-parameter deformations of the corresponding decorated curve. Moreover, all the smoothings of the singularity are provided by picture deformations of the decorated curves.

What is ... a decorated curve?

A decorated curve (C, l) is a union C of small pieces of curves C_i intersecting each sandwiched (-1)-curves F_i together with integers l_i recording the number of blow-ups occurring on the strict transformations of C_i starting from the smooth point.

What is ... a picture deformation?

A picture deformation of a decorated curve (C, l) over S consists of

- (a) a δ -constant deformation $C_S \to S$ of C_s
- (b) a flat deformation $l_S \subset \widetilde{C}_S = C_S \times S$ of the scheme l such that (c) $m_S \subset l_S$, where the relative total multiplicity scheme m_S of $\widetilde{C}_S \to C$ is defined as the closure $\bigcup_{s \in S \setminus 0} m(C_s)$.
 - (d) for generic $s \in S \setminus 0$ the divisor l_s on \widetilde{C}_s is reduced.

Correspondence between the three descriptions

- Equations
- P-resolutions
- Picture deformations

$$\frac{1}{19}(1,7)$$

Def(xo) ex medicible Components

Equations

P-resolutions

•
$$3-4-[2]$$
, $3-[4]-2$, $[4]-1-[5,2]$

Picture deformations

Correspondence using topology

The topological method in [Némethi-Popescu-Pampu 2010]

 $\textbf{Equations} \rightarrow \textbf{Symplectic fillings} \leftarrow \textbf{Picture deformations}$

What is ... a symplectic filling?

A symplectic 4-manifold with boundary that is compatible with the Milnor fillable contact structure of the boundary

$$W_{n,a}(\underline{k})$$

$$[a_1, \cdots, a_{e_1}] = \frac{n}{n-a}$$

= complement of

Lucky!

From P-resolutions to Complements

Correspondence using MMP

Step 1. Compactifying P-resolutions

$$\mathcal{Z} = \left\{ \boxed{ \frac{Y_0 \leftarrow 1 - a_e - \cdots - a_2 - a_1 - 1 - (+1)}{Y_t - a_e - \cdots - a_2 - a_1 - 1 - (+1)} \right\}$$

$$\theta = \frac{3}{5} V_0 \sim V_0 \frac{3}{5}$$
 $C Z = \frac{3}{5} \sim V_0 \frac{3}{5}$
 $A H^2(Z, T_Z) = 0$

$$\frac{1}{19}(1,7)$$

$${3-[4]-2-1-3-2-3-2} \longrightarrow 3-2-3-2$$

Step 2. Applying the semi-stable MMP

By applying only Iitaka-Kodaira divisorial contractions and usual flips, one can run MMP to $\mathcal{Z} \to \Delta$ until we obtain a deformation $\mathcal{Z}' \to \Delta$ whose central fiber Z'_0 is smooth.

$$\{3-[4]-2-1-3-2-3-2 \quad \Rightarrow \quad 3-2-3-2\}$$

$$\downarrow \text{divisortial continue bitton}$$

$$\{3-[4]-1-x-2-2-3-2 \quad \Rightarrow \quad 2-2-3-2\}$$

$$\downarrow \text{flip}$$

$$\{3-3-x-x-1-2-3-2 \quad \Rightarrow \quad 2-2-3-2\} = 2^{+1}$$

Step 3. Identifying Milnor fibers

- The central fiber Z'_0 is diffeomorphic to a general fiber Z'_t .
- By comparing Z'_0 and Z'_t , one can get the data of positions of (-1)-curves in Z'_t .
- One can get the data of (-1)-curves on Z_t by tracking the blow-downs $Z_t \to Z_t'$ given by flips and divisorial contractions.

Correspondence using MMP

From P-resolutions to Picture

deformations

For any sandwiched surface singularities, one can obtain picture deformations from P-resolutions via the semi-stable MMP.

- Step 1. Compactifying P-resolutions
- Step 2. Applying the semi-stable MMP
- Step 3. Identifying Picture deformations

Applications

Try to prove Kollár Conjecture for weighted homogeneous surface singularities with "big" central nodes.

감사합니다!

(1, 2, 2, 1)	=	3 – 4 – [2]	=	[1	1	0	0	0	0	0	
				1	0	0	1	0	1	0	
				1	0	1	0	0	1	0	
				1	0	0	0	1	1	1	
(1, 3, 1, 2)	=	3 - [4] - 2	=	[1	1	0	0	0	0		
				1	0	1	0	1	0		
				1	0	1	0	0	1		
				1	0	0	1	1	1		
(2, 2, 1, 3)	=	[4] -1 - [5, 2]	=	Γο	1	1	0	0			
				1	1	0	1	0			
				1	1	0	0	1			
				[1	0	1	1	1			