SHARP CONVERGENCE RATE OF CURVE SHORTENING
FLOW
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ABSTRACT. The classical result of Gage-Hamilton shows every curve shorten-
ing flow of convex closed curve converges to a round circle after rescaling. The
goal of this three-hour lecture series to answer how fast the solution converges
to the circle and introduce its application to the regularity of arrival time.
More precisely, Gage-Hamilton says if I'y C R?, for t € (=T,0), is a curve
shortening flow that shrinks to the origin at time ¢ = 0, then the rescaled flow
= (—t)"Y21, for 7= —log(—t)
converges to \/55’1, the circle of radius \/5, as 7 — 0o. We will show 1:‘.,— con-
verges to v/25! with an exponential rate e4™ for § < 0. Moreover, the optimal
¢ and asymptotic profile of I'; are dictated by the linear analysis and spectral
theory around the stationary circle. This idea based on linear technique is key
to recent developments in the analysis of singularities in nonlinear geometric

equations. We present this technique in a simple context of curve shortening
flow.

1. PRELIMINARIES AND SET-UP OF PROBLEM

We say 1-parameter family of smooth closed embedded curves {I'; };cjo, 1) in R?
is a solution to curve shortening flow (CSF) if

0 0?

—F(p,t) = == F(p, ).

5L (0:1) = 55 F(p,1)
Here s is an arc-length parameter. Using outer unit normal v and the curvature
k with respect to —v, one can write 82, F = —kv. This note we only consider the

flow of embedded closed curves.
The classical theorem of Gage and Hamilton shows

Theorem 1.1 (Convex curve becomes round [1]). If Ty is convex, then smooth
unique solution I'y exists until I'y shrinks to a point in finite time T < co. Moreover,
the convexity is preserved (Ty is convex) and T'y smoothly converges to a round circle
if we rescale around the shrinking point.

To understand the convergence statement precisely, let A(¢) be the enclosed

area by I';. By Gauss-Bonet, %A = —27. Therefore, provided that the solution
A(0)

converges to a point (as stated in the theorem), the extinction time is T = 5~.

After translating time and space, suppose I'; is defined on [—T,0) and shrinks

to the origin. Then A(t) = —2xt. If we rescale Ty by 1/\/—t as Ty = \/%—tl"t. Then

the enclosed volume will be constant 2. Therefore [1] proves I, = v/25" smoothly

as t — 0. In principle, this should mean the smooth convergence of embeddings

(=)~ 2 F(p,t) to an embedding of S! to a round circle, but this is equivalent to
1
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show that T, converges to S' as a graph. T'; = {r(6,t)(cosf,sinf) : 6 € [0,2x]}
and r(-,t) converges to /2 in C*(S') ast — 0.
Let us introduce a new time variable

7:=—log(—t), 7€ (—logT,o0).
Now, we can restate the theorem of Gage-Hamilton in our preferred setting.
Theorem 1.2 ([1] revisited). As T — oo,
e28(0,7) — V2 in C>(Sh).
We are interested in the asymptotic behavior of
u(@,7) :=e2S(6,t) — V2.
Lemma 1.3 (Equation of u(6,7)).

1 m\2
(1.1) ur = —u" +u— M
2 2(vV2 4+ u +u)
Proof. Note Sy = —(S + Sgg) L.
Uy = e%(Stﬁ +18) = S S + 1e%S
T dr 2 6%(54-599) 2
1.2 ! + L + !
- = T+
( ' ) \/§+u+uea 2 \/Q
u+u” 1
= + —U.
V2(V24+u+u’) 2
The result follows from
1 1 u+u”

2 V2(V2rutu’)  2(v2+utu)

We may decompose the equation into

ur = Lu+ Nu
where

(u + u//)Q
2(V2 +u+u)

We say Lu is a linearization of (1.2) around 0. Nu represents the nonlinear error
term and it should be noted that Nu is at least quadratic in u and its derivatives.
Here is a formal (but very important) idea behind. « = 0 is a stationary solution to
nonlinear equation (1.2). If another solution is very close 0, their difference would
solve an approximate linear equation (which is like Taylor’s first order approxima-
tion). Another direct way to see Lu is to compute formal derivative(variation) of
among solutions. Suppose there is a 1-parameter family of solutions us (6, 7) with
s € (—€,¢) and ug = 0. If we denote § = %L:o’ then by taking the derivative of
(1.2) w.r.t. s, we obtain

1
Lu:u+§u" and Nu=—

o+46" 1 1
5T:++—2+—5:5+—6”.
NG 2 2
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As in Taylor’s theorem, the remainder term Nu will become arbitrarily small when
it is compared to Lu as u converges to 0. So the behavior of solution is expected
to follow from the linear equation u, = Lu.

In the linear case, the behavior directly follows from the spectral decomposition.

Ezample 1.4 (Linear heat equation). Let u be a solution to the heat equation
u; = u” on S x [0,00). Then u(-,0) € L?(S?) can be decomposed by Fourier basis

u(6,0) = ¢co + Z ¢ cos(k) + sy, sin(k0)

k=1
where
~ (u(0),cos(kf)) [ u(f,0)cos kOdb
N leos(kO)Z, P
and

(u(0),1)  [u(8,0)cos kOdb
T P
Note cos(kf) (including 1 = cos06) and sin(kf) are eigenfunction of A =" with
eigenvalue —k?. Thus if w = ((t) cos kt is a solution to the HE, then
W =K = plt)=e""00).
By the linearity, the solution has to be

u(t) =co+ Z[ck cos(k0) + sk Siﬂ(k@)]e*k%.
k

Co =

One can expect the following results: (which is actually true)
lu(t) — collL2 = O(e™),
|u(t) — co — (c1cos@ + sy sinf)e |2 = O(e™ )
and similarly other higher order asymptotics. Here, in view of regularity theory for

linear heat equation, one can even improve L? convergence to any C*< or Wk»
convergence with the same convergence rates.

In our problem, it is straightforward to check the following:

Lemma 1.5 (Spectral decomposition). L is self-adjoint (unbounded) operator on
L2(SY) and {1, cos(kf), sin(k@)} provides orthogonal basis of L? consisting of eigen-
functions Lcos(k0) = (1 — k?/2) cos(k6).

The first few eigenvalues are 1, 1/2, —1, —7/2 and so on. Without Nu, those
eigenfunctions of positive eigenvalues, namely 1, cos 6, sin 6 tend to grow as t — oo.

However, this case will be excluded by Theorem 1.2. We can formulate our main
theorem.

Theorem 1.6. Let u be a solution to (1.1) with u — 0 in C*™ as 7 — oco. Then
either

(1) there exist integer k > 2, and constants ci, s € R which are not both zero such
that

(1.3) |l — (ex cos kO + sj sin kﬁ)e(l_kz/Z)THCm,a = O(e(l_k2/2_€)T)

some € > 0 independent of k, m, a, or
(2) u converges to 0 faster than any exponential rates:

|ul|gr.o = O(eX) for any X < 0.
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Remark 1.7. It is interesting to know for given k, ¢, and s, if there exists a
CSF which satisfies the asymptotic behavior (1.3). This is true. The construction
of solutions with prescribed asymptotics is based on a fixed point theorem with
iterations. See [2, Section 3.

In fact, the later case (2) happens only if I'; is round shrinking circle. i.e. u =0
for all ¢ and 6. This is so called the unique continuation result and should be treated
with separate interest. See [3, Section 4].

Theorem 1.8 (c.f. [3] Section 4). Suppose the second alternative in Theorem
1.6 holds. i.e. u(r) decays faster than any exponential rates. Then u = 0. i.e.

I, =+v/—-2tS.

2. MAIN RESULT

From now on at each 7, we decompose u(t) with basis and write with coefficients
ck(t) and si(t)

u(,7) = Z e (T) cos kO + si(T) sin k6.
k
Here k goes from 0 and so(t) = 0.
We denote the projection of u onto positive eigenspace by
Pru(r) = co(7) + c1(7) cos @ + s1(7) cos @
and the projection onto negative eigenspace by

Pu(r) = () cos k@ + si(r) sin kf = u — P*u.
k>2

To treat Nu as small quantity, we need

Lemma 2.1. There is uniform C such that, for large T > 19,

[(Nu(r), u(r)) 2] < Cllu(r) | eallu(r) |72
(2.1) [(Nu(r), PTu(r)) 2| < Cllu(r) | esllu(r)]Z:
[(Nu(r), P~u(r)) 2] < Cllu(7)lcs u(r)lI7

Proof. Let us write Nu = _Q(ff%;l;-)i”) = (u+u")?p. May assume
H N 1 o1
P2 les = 100

by assuming 7 > 7 sufficiently large.

(2.2) /(u +u")pudf = /u3p +2u?u” p + (u")*up db
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Since the first two terms are bounded by C||ul|2, ||ul|cs, it suffices to work with the
last one. By the integration by parts,

/(u//)Qup — _/u/(u///)up+u/2u/lp+ u/ul/up/

1 1 1
— —/—(UQ)/ump—i- —(u’?’)'p—l- _(uz)/u//p/

(2.3) 1 2 1 ’ 1 2

— /§u2(u'"p)’ + g(u/)i’,p/ 4 §u2(uupl)2

1
< Clluls fullo: + [ gus.
Finally,
1
/u/?)pl — _ / 2uu/uﬂp, + u’UJIZpH — /(UQ)/(u//p/ + §u/p”)

(2.4)

1
= [y + jus") < Clulialulen
The second estimate is easier. This is because
10§(PTu)|| 2 < C|| P ul| e

for some uniform C depends only on ¢. (Q: Why? A: it is finite dimensional.) We
can actually choose C' = 1. We leave it as an exercise. The third estimate follows
from the first and second since (Nu, P~ u) = (Nu,u — PTu).

O

We would like to understand the behavior of solution u(T) as a dynamics between
coefficients ¢, and sy. Let

25) O |PYull3: = 2(Ptu, 0, PTu)p> = 2(PTu, PT 0 u) 2
. =2(P"u, Lu + Nu) >
Note

(Ptu, Lu) = (P*u, LPTu) > ~(PTu, P u)

DN | =

since A > 1/2.
By a similar argument to P~ u, we obtain

O || PFul® > +[[PFul? = 2/(PFu, Nu)

(2.6) — 2 — 12 -
O |P~ul|* < =2||P~ul|” + 2|(P"u, Nu)|.

Lemma 2.2 (c.f. Merle-Zaag). Let (1), y(7) be nonnegative absolutely continuous
functions and A > 0 is a constant that satisfy, for given € > 0, there is 79 such that
for >

> +\r—ey

">
"< My +ex.

(2.7)
Yy

Ifx+y — 0 as T — o0, then there hold x = o(y) as T — co.
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Proof. For 0 < ¢ < 1, suppose (2.7) holds for 7 > 79. If we further assume € < A,
28) (x—ey) > Az —ey) —e(—Ay+ex) = (A =€)z +e(A—e)y
. > (A =€)z —ey).

This implies if  — ey > 0 for some 7 > 7, then z — ey grows to co, which is a
contradiction. Therefore, x < ey for 7 > 71. This proves the assertion.
O

Lemma 2.1 and (2.6) imply
O-IPFull® = +[[PFull* = COIP ul* + | P7ull*)|[ullcs
OrlIPull® < =2l P~ ul® + C(IPFul® + | P ul?)l|ull s
Since ||ullca — 0 as T — oo, Lemma 2.2a pplies and we conclude
[P ullze = o[ P~ ullz2).
From the ODE of ||P~ul| 2, we get for all small € > 0, there is T > 79 large so that
0-|IPull7z < —2(1 - €)[|Pul|Z

and this proves

1Pl 2 = O(el=1F97).

Lemma 2.3 (Regularity improvement). Assume that ||u||ck.a (g1 x[r—2,7) < /10000,
then there is C = C(k,a) such that

||UHckva(51x[Tf1,T]) < C||u||L2(Sl><[7-72,q-])~
Proof. By (1.2), u, = Wil—m”) + %u and we may view this equation as
ur = au” + (a+ )u

where ||a —1/2||gr-2, < 1/10. The result follows by the linear parabolic regularity
theory. 0

By the regularity improvement, we have the following:

Theorem 2.4 (First asymptotics). |[u(7)|cr.a = O(e"1H97)) as 7 — oo for all
e > 0.

Lemma 2.5. Let x(t) and f(t) nonnegative functions satisfy ¥’ > dx — f and
1f] = O0(eN®) for N < X. If x(t) = o(e™), then z(t) = o(eM'?).

Proof. We integrate this differential inequality and obtain, for t5 > ¢1,

(2.9) e M2p(ty) > e Mig(ty) — / : e M f(s)ds

ty
and this yields

z(ty) > eMtz=t) (a:(t1) — M /00 e_’\sf(s)ds) .

t1
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This inequality implies that if z(t;) > eM: jzo e~ f(s)ds, for some t;, then
Ato

x(t2) grows with a rate grater than e Since this contradicts the assumption, we

conclude ~
x(t) < e/\t/ e f(s)ds = O(eM).
t
O

Lemma 2.6. Let y(t) and f(t) nonnegative functions satisfy y < Ay + f and
1] = 0N ®) for X < X. Then y(t) = O(eM). If y = Ay + f, then there is ¢ € R
such that

y=ceM +0(eM?).

Proof. Similar to the previous lemma (in fact it is easier). O

Let us consider the evolution of ca(T) = (u(7),cos26) /7.

(ca)r = (ur,c0820) /7 = (1 —22/2)cy + (Nu,cos 20) /7.
In view of Lemma 2.3, we now have
[(Nu,cos 20)| < Cllul/2: = O(e=21797).
By Lemma 2.6,
(1) = ¢+ 0(e720797) 5y = 5+ O(e 21797
for some ¢ and s.

Proposition 2.7. Suppose |[ul| 2 = O(e*™) for some A\ < 0 with

(j—1)? 72
A>1—L
5 7T

1-—

2
Then ||ul|ck.a = O(e=7)7) and there are constants ¢ and s such that

2

.2
Ju = (ccos jO + ssin j0)e1 =57 gre = O(e1=5=97).
Proof. Let us P;ru be the projection of u onto the eigenspace of eigenvalues strictly

less than (1 — 5%/2) and P u =u — Pfu.
Then by a similar argument as before,

A || Pl > (= 1) Pt Cllul|?

Pl > (1 - T)II 2l = Cllullga

(2.10) \
_ J _

O || Py ul| < (1 — g)IIPj ul| + Cllul|Zs.

By Lemma 2.3, [[ul2, = O(e*)"). By Lemma 2.5, | Pju| = O(e**7). Next,
if (1 —42/2) > 2\, then 1P ul| = O(e(l’jQ/Q)T) by Lemma 2.6. In this case
lull2 = O(e1=3"/27) which in turn improves to the decay of C* norm (with
the same rate) and shows the first part of assertion. Suppose we are in remaining
case (1—j2/2) < 2X. We have ||P; ul| = O(e*'7) if (1 — j%/2) < 2\ and O(7e**")
if (1—52/2) = 2)\. Then we may apply the same argument with the improved rate
lullzz = O(*7) (or O(eP A7) when 1 — j2/2 = 2)\). By repeating this finite
number of times, we reach at [|ufcr.. = O(e=37/27).

FILL THE SECOND PART.
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O

Proof of Theorem 1.6. By Theorem 2.4, the condition for Proposition 2.7 is satis-
fied for 5 = 2. If both ¢ and s are not both zero, then the assertion is satisfied.
Otherwise, the condition for Proposition 2.7 is satisfied for j = 3. We can iterate
this until we find non-zero coefficient. Otherwise the second alternative in Theorem
1.6 holds. ([l

Remark 2.8. Suppose ||ulz2 = O(eX=*/27) with k > 2. By regularity im-
provement, ||N(u)||pz = 0(62(1*’“2/2)7). Let j be the largest number such that
(1 —342/2) > 2(1 — k?)/2. Then the same proof argument actually proves slightly
stronger asymptotics

J
[lw — Z (¢ cos mB + sin m@)e(lfmz/Q)THLz = 0(762(1*]“2/2)7).

m=k

Additional 7 in the error is due to the possibility that 2(1 — k2/2) = 1 — m?/2 for
some m.

3. UNIQUE CONTINUATION PROPERTY

We closely follow the proof in [3].

Proof of Theorem 1.8. We decompose Nu(T) = >, N¢i(T) cos k6 + N 1 (7) sin k6.
Let us denote \; = 1 — j2/2. We have ODEs

OrCp = ApCi + Neg
and similar ones for s; and they yield
-

er(r) = M) e (1) + e)\kT/ ™! Nek(t)dt.

70

If we send 75 — 00, then e (7T—70)¢; (10) — 0 due to exponential convergence with
arbitrary rate and we obtain another representation

en(T) = —eMT / e MIN, g, (t)dt.

Let m € Ny be a free parameter. We use the first representation if k¥ > m and
the second representation if k < m and express e~ *m(T=70)y(7) as

(3.1)
e Am(T=T0)y (1) = Z {G(Akxmxrm)ck(mH/ Qe Am)(T=) Am(To=t) N ()t | cos k6
k>m To
_ Z |:/ e(Ak_Am’)(T_t)e)\m(To_t)N(;,k(t)dt:l
k<m T

+ same expressions for sy.

Since A\, cos kf = L cos k@, it would be wise to write above as
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(3.2)
e_xm(r_fo)u(T) _ e(L—)\m)(‘r—To)Hu(TO) +/ e(L—Am)(T—t)eAm(ro—t)HNu(t)dt

To

(oo}
B / e(L_)\m)(-r—t)eAm(To—t)(l — H)Nu(t)dt

-
Here II is the projection on the eigenspace of eigenvalue less than or equal to A,.

For 79 < 7, using L — )\, is non-positive definite on the range of IT and L — A,
is positive definite on the range of I —II,

(3.3)
’/ e(L—)\m)(T—t)ex\m(To—t)HNu(t)dt_/ e(L—Am)(T—t)eA,,ﬂ(ro—t)(1_H)Nu(t)dt
70

< / e A=) || Nu(t) | adt + / e AmE=70)|| Nu(t) | 2t

0

L2

o0
:/ &M (t=70) | Nu(t)|| 2 .

0

Therefore, for 79 < 7

e () < [Hum)la + [ € N ()] pade

To
oo
< ()l + € [ 0 ful) affu(o)] s
70

For given 7y,

sup e 77T Ju(7)|| 2 < [ Tu(ro)|| L2+ sup e 770 [u(r) | 2 <C/ ||U(t)||H4dt) '
to

T>To T>To

We let us choose 7y as the first time Cf;o |lu(t)|| gadt < 1/2. Then

sup e AT |y (1) || 2 < 2||TTu(7o)]| 2.
T2>To
If we take m — oo, then the right hand side deceases to 0 while e=*m(7=70) g
non-decreasing in m. Therefore, we conclude ||u(7)|| 2 = 0 for 7 > 79. i.e. u =0 for
T > 79. Indeed, tg has to be the initial time smooth solution is defined. Otherwise
ftzo |lu]|cadt = 0 and we can find smaller ¢’ < ¢p such that ftio lul|cadt < 1/2, a
contradiction.

O
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