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Abstract. The classical result of Gage-Hamilton shows every curve shorten-
ing flow of convex closed curve converges to a round circle after rescaling. The
goal of this three-hour lecture series to answer how fast the solution converges
to the circle and introduce its application to the regularity of arrival time.

More precisely, Gage-Hamilton says if Γt ⊂ R2, for t ∈ (−T, 0), is a curve
shortening flow that shrinks to the origin at time t = 0, then the rescaled flow

Γ̃τ = (−t)−1/2 Γt for τ = − log(−t)

converges to
√
2S1, the circle of radius

√
2, as τ → ∞. We will show Γ̃τ con-

verges to
√
2S1 with an exponential rate eδτ for δ < 0. Moreover, the optimal

δ and asymptotic profile of Γ̃τ are dictated by the linear analysis and spectral
theory around the stationary circle. This idea based on linear technique is key
to recent developments in the analysis of singularities in nonlinear geometric
equations. We present this technique in a simple context of curve shortening
flow.

1. Preliminaries and set-up of problem

We say 1-parameter family of smooth closed embedded curves {Γt}t∈[0,T ) in R2

is a solution to curve shortening flow (CSF) if

∂

∂t
F (p, t) =

∂2

∂s2
F (p, t).

Here s is an arc-length parameter. Using outer unit normal ν and the curvature
κ with respect to −ν, one can write ∂2

ssF = −κν. This note we only consider the
flow of embedded closed curves.

The classical theorem of Gage and Hamilton shows

Theorem 1.1 (Convex curve becomes round [1]). If Γ0 is convex, then smooth
unique solution Γt exists until Γt shrinks to a point in finite time T < ∞. Moreover,
the convexity is preserved (Γt is convex) and Γt smoothly converges to a round circle
if we rescale around the shrinking point.

To understand the convergence statement precisely, let A(t) be the enclosed
area by Γt. By Gauss-Bonet, d

dtA = −2π. Therefore, provided that the solution

converges to a point (as stated in the theorem), the extinction time is T = A(0)
2π .

After translating time and space, suppose Γt is defined on [−T, 0) and shrinks

to the origin. Then A(t) = −2πt. If we rescale Γt by 1/
√
−t as Γ̃t =

1√
−t

Γt. Then

the enclosed volume will be constant 2π. Therefore [1] proves Γ̃t →
√
2S1 smoothly

as t → 0−. In principle, this should mean the smooth convergence of embeddings
(−t)−

1
2F (p, t) to an embedding of S1 to a round circle, but this is equivalent to
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show that Γ̃t converges to S1 as a graph. Γ̃t = {r(θ, t)(cos θ, sin θ) : θ ∈ [0, 2π]}
and r(·, t) converges to

√
2 in C∞(S1) as t → 0−.

Let us introduce a new time variable

τ := − log(−t), τ ∈ (− log T,∞).

Now, we can restate the theorem of Gage-Hamilton in our preferred setting.

Theorem 1.2 ([1] revisited). As τ → ∞,

e
τ
2 S(θ, τ) −→

√
2 in C∞(S1).

We are interested in the asymptotic behavior of

u(θ, τ) := e
τ
2 S(θ, t)−

√
2.

Lemma 1.3 (Equation of u(θ, τ)).

(1.1) uτ =
1

2
u′′ + u− (u+ u′′)2

2(
√
2 + u+ u′′)

Proof. Note St = −(S + Sθθ)
−1.

(1.2)

uτ = e
τ
2 (St

dt
dτ + 1

2S) = − 1

e
τ
2 (S + Sθθ)

+
1

2
e

τ
2 S

= − 1√
2 + u+ uθθ

+
1

2
u+

1√
2

=
u+ u′′

√
2(
√
2 + u+ u′′)

+
1

2
u.

The result follows from

1

2
− 1√

2(
√
2 + u+ u′′)

=
u+ u′′

2(
√
2 + u+ u′′)

□
We may decompose the equation into

uτ = Lu+Nu

where

Lu = u+
1

2
u′′ and Nu = − (u+ u′′)2

2(
√
2 + u+ u′′)

.

We say Lu is a linearization of (1.2) around 0. Nu represents the nonlinear error
term and it should be noted that Nu is at least quadratic in u and its derivatives.
Here is a formal (but very important) idea behind. u = 0 is a stationary solution to
nonlinear equation (1.2). If another solution is very close 0, their difference would
solve an approximate linear equation (which is like Taylor’s first order approxima-
tion). Another direct way to see Lu is to compute formal derivative(variation) of
among solutions. Suppose there is a 1-parameter family of solutions us(θ, τ) with
s ∈ (−ε, ε) and u0 ≡ 0. If we denote δ = ∂u

∂s

!!
s=0

, then by taking the derivative of

(1.2) w.r.t. s, we obtain

δτ = +
δ + δ′′
√
2
2 +

1

2
δ = δ +

1

2
δ′′.
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As in Taylor’s theorem, the remainder term Nu will become arbitrarily small when
it is compared to Lu as u converges to 0. So the behavior of solution is expected
to follow from the linear equation uτ = Lu.

In the linear case, the behavior directly follows from the spectral decomposition.

Example 1.4 (Linear heat equation). Let u be a solution to the heat equation
ut = u′′ on S1 × [0,∞). Then u(·, 0) ∈ L2(S1) can be decomposed by Fourier basis

u(θ, 0) = c0 +

∞"

k=1

ck cos(kθ) + sk sin(kθ)

where

ck =
〈u(0), cos(kθ)〉
‖ cos(kθ)‖2L2

=

#
u(θ, 0) cos kθdθ

π

and

c0 =
〈u(0), 1〉
‖1‖2L2

=

#
u(θ, 0) cos kθdθ

2π
.

Note cos(kθ) (including 1 = cos 0θ) and sin(kθ) are eigenfunction of ∆ =′′ with
eigenvalue −k2. Thus if w = ϕ(t) cos kt is a solution to the HE, then

ϕ′ = −k2ϕ =⇒ ϕ(t) = e−k2tϕ(0).

By the linearity, the solution has to be

u(t) = c0 +
"

k

[ck cos(kθ) + sk sin(kθ)]e
−k2t.

One can expect the following results: (which is actually true)

‖u(t)− c0‖L2 = O(e−t),

‖u(t)− c0 − (c1 cos θ + s1 sin θ)e
−t‖L2 = O(e−4t)

and similarly other higher order asymptotics. Here, in view of regularity theory for
linear heat equation, one can even improve L2 convergence to any Ck,α or W k,p

convergence with the same convergence rates.

In our problem, it is straightforward to check the following:

Lemma 1.5 (Spectral decomposition). L is self-adjoint (unbounded) operator on
L2(S1) and {1, cos(kθ), sin(kθ)} provides orthogonal basis of L2 consisting of eigen-
functions L cos(kθ) = (1− k2/2) cos(kθ).

The first few eigenvalues are 1, 1/2, −1, −7/2 and so on. Without Nu, those
eigenfunctions of positive eigenvalues, namely 1, cos θ, sin θ tend to grow as t → ∞.
However, this case will be excluded by Theorem 1.2. We can formulate our main
theorem.

Theorem 1.6. Let u be a solution to (1.1) with u → 0 in C∞ as τ → ∞. Then
either
(1) there exist integer k ≥ 2, and constants ck, sk ∈ R which are not both zero such
that

(1.3) ‖u− (ck cos kθ + sk sin kθ)e
(1−k2/2)τ‖Cm,α = O(e(1−k2/2−ε)τ )

some ε > 0 independent of k, m, α, or
(2) u converges to 0 faster than any exponential rates:

‖u‖Ck,α = O(eλτ ) for any λ < 0.
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Remark 1.7. It is interesting to know for given k, ck, and sk, if there exists a
CSF which satisfies the asymptotic behavior (1.3). This is true. The construction
of solutions with prescribed asymptotics is based on a fixed point theorem with
iterations. See [2, Section 3].

In fact, the later case (2) happens only if Γt is round shrinking circle. i.e. u ≡ 0
for all t and θ. This is so called the unique continuation result and should be treated
with separate interest. See [3, Section 4].

Theorem 1.8 (c.f. [3] Section 4). Suppose the second alternative in Theorem
1.6 holds. i.e. u(τ) decays faster than any exponential rates. Then u ≡ 0. i.e.
Γt =

√
−2tS1.

2. main result

From now on at each τ , we decompose u(t) with basis and write with coefficients
ck(t) and sk(t)

u(θ, τ) =
"

k

ck(τ) cos kθ + sk(τ) sin kθ.

Here k goes from 0 and s0(t) ≡ 0.
We denote the projection of u onto positive eigenspace by

P+u(τ) = c0(τ) + c1(τ) cos θ + s1(τ) cos θ

and the projection onto negative eigenspace by

P−u(τ) =
"

k≥2

ck(τ) cos kθ + sk(τ) sin kθ = u− P+u.

To treat Nu as small quantity, we need

Lemma 2.1. There is uniform C such that, for large τ > τ0,

(2.1)

|〈Nu(τ), u(τ)〉L2 | ≤ C‖u(τ)‖C4‖u(τ)‖2L2

|〈Nu(τ), P+u(τ)〉L2 | ≤ C‖u(τ)‖C4‖u(τ)‖2L2

|〈Nu(τ), P−u(τ)〉L2 | ≤ C‖u(τ)‖C4‖u(τ)‖2L2

Proof. Let us write Nu = − (u+u′′)2

2(
√
2+u+u′′)

= (u+ u′′)2ρ. May assume

$$$$ρ+
1

2
√
2

$$$$
C4

≤ 1

100

by assuming τ > τ0 sufficiently large.

(2.2)

%
(u+ u′′)2ρu dθ =

%
u3ρ+ 2u2u′′ρ+ (u′′)2uρ dθ
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Since the first two terms are bounded by C‖u‖2L2‖u‖C4 , it suffices to work with the
last one. By the integration by parts,

(2.3)

%
(u′′)2uρ = −

%
u′(u′′′)uρ+ u′2u′′ρ+ u′u′′uρ′

= −
%

1

2
(u2)′u′′′ρ+

1

3
(u′3)′ρ+

1

2
(u2)′u′′ρ′

=

%
1

2
u2(u′′′ρ)′ +

1

3
(u′)3ρ′ +

1

2
u2(u′′ρ′)2

≤ C‖u‖2L2‖u‖C4 +

%
1

3
u′3ρ′.

Finally,

(2.4)

%
u′3ρ′ = −

%
2uu′u′′ρ′ + uu′2ρ′′ = −

%
(u2)′(u′′ρ′ +

1

2
u′ρ′′)

=

%
u2(u′′ρ′ +

1

2
u′ρ′′) ≤ C‖u‖2L2‖u‖C4 .

The second estimate is easier. This is because

‖∂ℓ
θ(P

+u)‖L2 ≤ C‖P+u‖L2

for some uniform C depends only on ℓ. (Q: Why? A: it is finite dimensional.) We
can actually choose C = 1. We leave it as an exercise. The third estimate follows
from the first and second since 〈Nu,P−u〉 = 〈Nu, u− P+u〉.

□

We would like to understand the behavior of solution u(τ) as a dynamics between
coefficients ck and sk. Let

(2.5)
∂τ‖P+u‖2L2 = 2〈P+u, ∂τP

+u〉L2 = 2〈P+u, P+∂τu〉L2

= 2〈P+u, Lu+Nu〉L2

Note

〈P+u, Lu〉 = 〈P+u, LP+u〉 ≥ 1

2
〈P+u, P+u〉

since λ ≥ 1/2.
By a similar argument to P−u, we obtain

(2.6)
∂τ‖P+u‖2 ≥ +‖P+u‖2 − 2|〈P+u,Nu〉|
∂τ‖P−u‖2 ≤ −2‖P−u‖2 + 2|〈P−u,Nu〉|.

Lemma 2.2 (c.f. Merle-Zaag). Let x(τ), y(τ) be nonnegative absolutely continuous
functions and λ > 0 is a constant that satisfy, for given ε > 0, there is τ0 such that
for τ ≥ τ0

(2.7)
x′ ≥ +λx− εy

y′ ≤ −λy + εx.

If x+ y → 0 as τ → ∞, then there hold x = o(y) as τ → ∞.
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Proof. For 0 < ε < 1, suppose (2.7) holds for τ ≥ τ0. If we further assume ε < λ,

(2.8)
(x− εy)′ ≥ (λx− εy)− ε(−λy + εx) = (λ− ε2)x+ ε(λ− ε)y

≥ (λ− ε2)(x− εy).

This implies if x − εy > 0 for some τ > τ0, then x − εy grows to ∞, which is a
contradiction. Therefore, x ≤ εy for τ ≥ τ1. This proves the assertion.

□

Lemma 2.1 and (2.6) imply

∂τ‖P+u‖2 ≥ +‖P+u‖2 − C(‖P+u‖2 + ‖P−u‖2)‖u‖C4

∂τ‖P−u‖2 ≤ −2‖P−u‖2 + C(‖P+u‖2 + ‖P−u‖2)‖u‖C4 .
.

Since ‖u‖C4 → 0 as τ → ∞, Lemma 2.2a pplies and we conclude

‖P+u‖L2 = o(‖P−u‖L2).

From the ODE of ‖P−u‖L2 , we get for all small ε > 0, there is τ > τ0 large so that

∂τ‖P−u‖2L2 ≤ −2(1− ε)‖P−u‖2L2

and this proves

‖P−u‖L2 = O(e(−1+ε)τ ).

Lemma 2.3 (Regularity improvement). Assume that ‖u‖Ck,α(S1×[τ−2,τ ]) ≤ /10000,
then there is C = C(k,α) such that

‖u‖Ck,α(S1×[τ−1,τ ]) ≤ C‖u‖L2(S1×[τ−2,τ ]).

Proof. By (1.2), uτ = u+u′′
√
2(

√
2+u+u′′)

+ 1
2u and we may view this equation as

uτ = au′′ + (a+ 1
2 )u

where ‖a−1/2‖Ck−2,α < 1/10. The result follows by the linear parabolic regularity
theory. □

By the regularity improvement, we have the following:

Theorem 2.4 (First asymptotics). ‖u(τ)‖Ck,α = O(e(−1+ε)τ)) as τ → ∞ for all
ε > 0.

Lemma 2.5. Let x(t) and f(t) nonnegative functions satisfy x′ ≥ λx − f and

|f | = O(eλ
′(t)) for λ′ < λ. If x(t) = o(eλt), then x(t) = o(eλ

′t).

Proof. We integrate this differential inequality and obtain, for t2 ≥ t1,

(2.9) e−λt2x(t2) ≥ e−λt1x(t1)−
% t2

t1

e−λsf(s)ds

and this yields

x(t2) ≥ eλ(t2−t1)

&
x(t1)− eλt1

% ∞

t1

e−λsf(s)ds

'
.
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This inequality implies that if x(t1) > eλt1
#∞
t1

e−λsf(s)ds, for some t1, then

x(t2) grows with a rate grater than eλt2 . Since this contradicts the assumption, we
conclude

x(t) ≤ eλt
% ∞

t

e−λsf(s)ds = O(eλ
′t).

□
Lemma 2.6. Let y(t) and f(t) nonnegative functions satisfy y′ ≤ λy + f and

|f | = O(eλ
′(t)) for λ′ < λ. Then y(t) = O(eλt). If y = λy + f , then there is c ∈ R

such that
y = ceλt +O(eλ

′t).

Proof. Similar to the previous lemma (in fact it is easier). □
Let us consider the evolution of c2(τ) = 〈u(τ), cos 2θ〉/π.

(c2)τ = 〈uτ , cos 2θ〉/π = (1− 22/2)c2 + 〈Nu, cos 2θ〉/π.
In view of Lemma 2.3, we now have

|〈Nu, cos 2θ〉| ≤ C‖u‖2C2 = O(e−2(1−ε)τ ).

By Lemma 2.6,

c2(τ) = c+O(e−2(1−ε)τ ) s2 = s+O(e−2(1−ε)τ )

for some c and s.

Proposition 2.7. Suppose ‖u‖L2 = O(eλτ ) for some λ < 0 with

1− (j − 1)2

2
> λ > 1− j2

2
.

Then ‖u‖Ck,α = O(e(1−
j2

2 )τ ) and there are constants c and s such that

‖u− (c cos jθ + s sin jθ)e(1−
j2

2 )τ‖Ck,α = O(e(1−
j2

2 −ε)τ ).

Proof. Let us P+
j u be the projection of u onto the eigenspace of eigenvalues strictly

less than (1− j2/2) and P−
j u = u− P+

j u.
Then by a similar argument as before,

(2.10)
∂τ‖P+

j u‖ ≥ (1− (j − 1)2

2
)‖P+

j u‖ − C‖u‖2C4

∂τ‖P−
j u‖ ≤ (1− j2

2
)‖P−

j u‖+ C‖u‖2C4 .

By Lemma 2.3, ‖u‖2C4 = O(e2λτ ). By Lemma 2.5, ‖P+
j u‖ = O(e2λτ ). Next,

if (1 − j2/2) > 2λ, then ‖P−
j u‖ = O(e(1−j2/2)τ ) by Lemma 2.6. In this case

‖u‖L2 = O(e(1−j2/2)τ ), which in turn improves to the decay of Ck,α norm (with
the same rate) and shows the first part of assertion. Suppose we are in remaining
case (1− j2/2) ≤ 2λ. We have ‖P−

j u‖ = O(e2λτ ) if (1− j2/2) < 2λ and O(τe2λτ )

if (1− j2/2) = 2λ. Then we may apply the same argument with the improved rate
‖u‖L2 = O(e2λτ ) (or O(e(2λ+ε)τ ) when 1 − j2/2 = 2λ). By repeating this finite

number of times, we reach at ‖u‖Ck,α = O(e(1−j2/2)τ ).
FILL THE SECOND PART.
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□

Proof of Theorem 1.6. By Theorem 2.4, the condition for Proposition 2.7 is satis-
fied for j = 2. If both c and s are not both zero, then the assertion is satisfied.
Otherwise, the condition for Proposition 2.7 is satisfied for j = 3. We can iterate
this until we find non-zero coefficient. Otherwise the second alternative in Theorem
1.6 holds. □

Remark 2.8. Suppose ‖u‖L2 = O(e(1−k2/2)τ ) with k ≥ 2. By regularity im-

provement, ‖N(u)‖L2 = O(e2(1−k2/2)τ ). Let j be the largest number such that
(1 − j2/2) > 2(1 − k2)/2. Then the same proof argument actually proves slightly
stronger asymptotics

‖u−
j"

m=k

(cm cosmθ + sinmθ)e(1−m2/2)τ‖L2 = O(τe2(1−k2/2)τ ).

Additional τ in the error is due to the possibility that 2(1− k2/2) = 1−m2/2 for
some m.

3. Unique continuation property

We closely follow the proof in [3].

Proof of Theorem 1.8. We decompose Nu(τ) =
(

k Nc,k(τ) cos kθ+Ns,k(τ) sin kθ.
Let us denote λi = 1− j2/2. We have ODEs

∂τ ck = λkck +Nc,k

and similar ones for sk and they yield

ck(τ) = eλk(τ−τ0)ck(τ0) + eλkτ

% τ

τ0

e−λktNc,k(t)dt.

If we send τ0 → ∞, then eλi(τ−τ0)ck(τ0) → 0 due to exponential convergence with
arbitrary rate and we obtain another representation

ck(τ) = −eλkτ

% ∞

τ

e−λktNc,k(t)dt.

Let m ∈ N0 be a free parameter. We use the first representation if k ≥ m and
the second representation if k < m and express e−λm(τ−τ0)u(τ) as

(3.1)

e−λm(τ−τ0)u(τ) =
"

k≥m

)
e(λk−λm)(τ−τ0)ck(τ0) +

% τ

τ0

e(λk−λm)(τ−t)eλm(τ0−t)Nc,k(t)dt

*
cos kθ

−
"

k<m

)% ∞

τ

e(λk−λm)(τ−t)eλm(τ0−t)Nc,k(t)dt

*

+ same expressions for sk.

Since λk cos kθ = L cos kθ, it would be wise to write above as
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(3.2)

e−λm(τ−τ0)u(τ) = e(L−λm)(τ−τ0)Πu(τ0) +

% τ

τ0

e(L−λm)(τ−t)eλm(τ0−t)ΠNu(t)dt

−
% ∞

τ

e(L−λm)(τ−t)eλm(τ0−t)(1−Π)Nu(t)dt

Here Π is the projection on the eigenspace of eigenvalue less than or equal to λm.
For τ0 ≤ τ , using L− λm is non-positive definite on the range of Π and L− λm

is positive definite on the range of I −Π,

(3.3)$$$$
% τ

τ0

e(L−λm)(τ−t)eλm(τ0−t)ΠNu(t)dt−
% ∞

τ

e(L−λm)(τ−t)eλm(τ0−t)(1−Π)Nu(t)dt

$$$$
L2

≤
% τ

τ0

e−λm(t−τ0)‖Nu(t)‖L2dt+

% ∞

r

e−λm(t−τ0)‖Nu(t)‖L2dt

=

% ∞

τ0

e−λm(t−τ0)‖Nu(t)‖L2dt.

Therefore, for τ0 ≤ τ

e−λm(τ−τ0)‖u(τ)‖L2 ≤ ‖Πu(τ0)‖L2 +

% ∞

τ0

e−λm(t−τ0)‖Nu(t)‖L2dt

≤ ‖Πu(τ0)‖L2 + C

% ∞

τ0

e−λm(t−τ0)‖u(t)‖L2‖u(t)‖H4dt

For given τ0,

sup
τ≥τ0

e−λm(τ−τ0)‖u(τ)‖L2 ≤ ‖Πu(τ0)‖L2+sup
τ≥τ0

e−λm(τ−τ0)‖u(τ)‖L2

&
C

% ∞

t0

‖u(t)‖H4dt

'
.

We let us choose τ0 as the first time C
#∞
τ0

‖u(t)‖H4dt ≤ 1/2. Then

sup
τ≥τ0

e−λm(τ−τ0)‖u(τ)‖L2 ≤ 2‖Πu(τ0)‖L2 .

If we take m → ∞, then the right hand side deceases to 0 while e−λm(τ−τ0) is
non-decreasing in m. Therefore, we conclude ‖u(τ)‖L2 = 0 for τ ≥ τ0. i.e. u = 0 for
τ ≥ τ0. Indeed, t0 has to be the initial time smooth solution is defined. Otherwise#∞
t0

‖u‖C4dt = 0 and we can find smaller t′ < t0 such that
#∞
t0

‖u‖C4dt < 1/2, a

contradiction.
□
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