EXERCISES - ALGEBRAIC GEOMETRY

JANUARY 19, 2022

- (1) The Grassmannian $\operatorname{Gr}(r, n) = \operatorname{Gr}(r, V)$ parametrizes the *r*-dimensional linear subspaces of a vector space V over \mathbb{C} with dim V = n.
 - (a) Prove that Gr(r, V) is a projective variety.
 - (b) It is equipped with tautological vector bundles S and Q, fitting into an exact sequence

$$0 \to \mathcal{S} \to V \otimes \mathcal{O}_{\mathrm{Gr}(r,V)} \to \mathcal{Q} \to 0.$$

Express the tangent vector bundle of $\operatorname{Gr}(r, V)$ in terms of S and Q.

- (2) Compute the Chern classes $c_i(\mathcal{T}_{\mathbb{P}^n}(-1))$ for $i = 0, 1, \ldots, n$.
- (3) Prove that $\operatorname{Pic}(\mathbb{P}^n) \cong \mathbb{Z} \langle \mathcal{O}_{\mathbb{P}^n}(1) \rangle$.
- (4) For an \mathcal{O}_X -module \mathcal{F} on a projective variety X, the functors $\operatorname{Ext}_X^i(\mathcal{F}, -)$ are the right derived functors of $\operatorname{Hom}_X(\mathcal{F}, -)$. Prove that there exists a one-to-one correspondence between isomorphism classes of extension of \mathcal{F}' by \mathcal{F} :

$$0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}'' \longrightarrow 0,$$

and elements of $\operatorname{Ext}^1_X(\mathcal{F}'', \mathcal{F}')$.

(5) Prove that any vector bundle \mathcal{E} of rank r over \mathbb{P}^1 is a direct sum of line bundles, i.e.

$$\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(a_1) \oplus \mathcal{O}_{\mathbb{P}^1}(a_2) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1}(a_r)$$

with integers $a_1 \ge a_2 \ge \cdots \ge a_r$.

(6) Let \mathcal{E} be a vector bundle, fitting into the following non-trivial extension

$$0 \to \mathcal{O}_X(1, -3) \to \mathcal{E} \to \mathcal{O}_X(0, 3) \to 0$$

on a smooth quadric surface X. Prove that \mathcal{E} is μ -stable with respect to $\mathcal{O}_X(1,5)$.

(7) If \mathcal{E} is an indecomposable vector bundle of rank two with even degree on an elliptic curve X, then it admits an exact sequence

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathcal{E} \longrightarrow \mathcal{L} \longrightarrow 0$$

for some line bundle \mathcal{L} on X.

JANUARY 19, 2022

- (8) Let *E* be a vector bundle of rank two on Pⁿ. Then *E* is μ-stable (resp. μ-semistable) if and only if H⁰(*E*_{norm}) = 0 (resp. H⁰(*E*_{norm}(-1)) = 0). In general, let *E* be a vector bundle of rank *r* on a smooth projective variety *X* with Pic(*X*) ≅ Z⟨*O*_{*X*}(1)⟩. Then we have
 (a) If H⁰(*X*, (∧^q*E*)_{norm}) = 0 for 1 ≤ q ≤ r − 1, then *E* is μ-stable.
 - (b) If $\mathrm{H}^{0}(X, (\wedge^{q} \mathcal{E})_{\mathrm{norm}}(-1)) = 0$ for $1 \leq q \leq r-1$, then \mathcal{E} is μ -semistable.
- (9) Give an example to show that the condition in (8) is not necessary.
- (10) Prove that $\Omega^1_{\mathbb{P}^n}$ and $\mathcal{T}_{\mathbb{P}^n}$ are μ -stable.
- (11) Using Hirzebruch-Riemann-Roch's theorem, prove that

$$\chi(\mathcal{E}(-1,3)) = 1$$

for a μ -stable vector bundle \mathcal{E} of rank two on $\mathbb{P}^1 \times \mathbb{P}^1$ with $c_1 = (1,0)$ and $c_2 = 3$.

(12) Let X be a smooth projective surface and $Z = \{p_1, \ldots, p_s\} \subset X$ with s-distinct points. Fix two line bundles $\mathcal{L}_1, \mathcal{L}_2 \in \operatorname{Pic}(X)$. Then there exists a vector bundle \mathcal{E} of rank two on X, fitting into an exact sequence

$$0 \to \mathcal{L}_1 \to \mathcal{E} \to \mathcal{I}_{Z,X} \otimes \mathcal{L}_2 \to 0,$$

if and only if every section of $\mathcal{L}_1^{\vee} \otimes \mathcal{L}_2 \otimes \omega_X$ vanishing at all but one of the p_i 's vanishes at the remaining point as well. Here, $\mathcal{I}_{Z,X}$ is the ideal sheaf of $Z \subset X$.

- (13) In (12), prove that $c_1(\mathcal{E}) = c_1(\mathcal{L}_1) + c_1(\mathcal{L}_2)$ and $c_2(\mathcal{E}) = c_1(\mathcal{L}_1)\dot{c}_1(\mathcal{L}_2) + s$.
- (14) Prove that $\mathbf{M}_{\mathbb{P}^2}(2; -1, 1)$ is a single point space with $\Omega^1_{\mathbb{P}^2}(1)$ as its unique point.