EXERCISES - ALGEBRAIC GEOMETRY

JANUARY 19, 2022
(1) The Grassmannian $\operatorname{Gr}(r, n)=\operatorname{Gr}(r, V)$ parametrizes the r-dimensional linear subspaces of a vector space V over \mathbb{C} with $\operatorname{dim} V=n$.
(a) Prove that $\operatorname{Gr}(r, V)$ is a projective variety.
(b) It is equipped with tautological vector bundles \mathcal{S} and \mathcal{Q}, fitting into an exact sequence

$$
0 \rightarrow \mathcal{S} \rightarrow V \otimes \mathcal{O}_{\operatorname{Gr}(r, V)} \rightarrow \mathcal{Q} \longrightarrow 0
$$

Express the tangent vector bundle of $\operatorname{Gr}(r, V)$ in terms of \mathcal{S} and \mathcal{Q}.
(2) Compute the Chern classes $c_{i}\left(\mathcal{T}_{\mathbb{P}^{n}}(-1)\right)$ for $i=0,1, \ldots, n$.
(3) Prove that $\operatorname{Pic}\left(\mathbb{P}^{n}\right) \cong \mathbb{Z}\left\langle\mathcal{O}_{\mathbb{P}^{n}}(1)\right\rangle$.
(4) For an \mathcal{O}_{X}-module \mathcal{F} on a projective variety X, the functors $\operatorname{Ext}_{X}^{i}(\mathcal{F},-)$ are the right derived functors of $\operatorname{Hom}_{X}(\mathcal{F},-)$. Prove that there exists a one-to-one correspondence between isomorphism classes of extension of \mathcal{F}^{\prime} by \mathcal{F} :

$$
0 \rightarrow \mathcal{F}^{\prime} \rightarrow \mathcal{F} \rightarrow \mathcal{F}^{\prime \prime} \rightarrow 0
$$

and elements of $\operatorname{Ext}_{X}^{1}\left(\mathcal{F}^{\prime \prime}, \mathcal{F}^{\prime}\right)$.
(5) Prove that any vector bundle \mathcal{E} of rank r over \mathbb{P}^{1} is a direct sum of line bundles, i.e.

$$
\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{1}}\left(a_{1}\right) \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{2}\right) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^{1}}\left(a_{r}\right)
$$

with integers $a_{1} \geq a_{2} \geq \cdots \geq a_{r}$.
(6) Let \mathcal{E} be a vector bundle, fitting into the following non-trivial extension

$$
0 \rightarrow \mathcal{O}_{X}(1,-3) \rightarrow \mathcal{E} \rightarrow \mathcal{O}_{X}(0,3) \rightarrow 0
$$

on a smooth quadric surface X. Prove that \mathcal{E} is μ-stable with respect to $\mathcal{O}_{X}(1,5)$.
(7) If \mathcal{E} is an indecomposable vector bundle of rank two with even degree on an elliptic curve X, then it admits an exact sequence

$$
0 \rightarrow \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{L} \rightarrow 0
$$

for some line bundle \mathcal{L} on X.
(8) Let \mathcal{E} be a vector bundle of rank two on \mathbb{P}^{n}. Then \mathcal{E} is μ-stable (resp. μ-semistable) if and only if $\mathrm{H}^{0}\left(\mathcal{E}_{\text {norm }}\right)=0\left(\right.$ resp. $\left.\mathrm{H}^{0}\left(\mathcal{E}_{\text {norm }}(-1)\right)=0\right)$.
In general, let \mathcal{E} be a vector bundle of rank r on a smooth projective variety X with $\operatorname{Pic}(X) \cong \mathbb{Z}\left\langle\mathcal{O}_{X}(1)\right\rangle$. Then we have
(a) If $\mathrm{H}^{0}\left(X,\left(\wedge^{q} \mathcal{E}\right)_{\text {norm }}\right)=0$ for $1 \leq q \leq r-1$, then \mathcal{E} is μ-stable.
(b) If $\mathrm{H}^{0}\left(X,\left(\wedge^{q} \mathcal{E}\right)_{\text {norm }}(-1)\right)=0$ for $1 \leq q \leq r-1$, then \mathcal{E} is μ-semistable.
(9) Give an example to show that the condition in (8) is not necessary.
(10) Prove that $\Omega_{\mathbb{P}^{n}}^{1}$ and $\mathcal{T}_{\mathbb{P}^{n}}$ are μ-stable.
(11) Using Hirzebruch-Riemann-Roch's theorem, prove that

$$
\chi(\mathcal{E}(-1,3))=1
$$

for a μ-stable vector bundle \mathcal{E} of rank two on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with $c_{1}=(1,0)$ and $c_{2}=3$.
(12) Let X be a smooth projective surface and $Z=\left\{p_{1}, \ldots, p_{s}\right\} \subset X$ with s-distinct points. Fix two line bundles $\mathcal{L}_{1}, \mathcal{L}_{2} \in \operatorname{Pic}(X)$. Then there exists a vector bundle \mathcal{E} of rank two on X, fitting into an exact sequence

$$
0 \rightarrow \mathcal{L}_{1} \rightarrow \mathcal{E} \rightarrow \mathcal{I}_{Z, X} \otimes \mathcal{L}_{2} \rightarrow 0
$$

if and only if every section of $\mathcal{L}_{1}^{\vee} \otimes \mathcal{L}_{2} \otimes \omega_{X}$ vanishing at all but one of the p_{i} 's vanishes at the remaining point as well. Here, $\mathcal{I}_{Z, X}$ is the ideal sheaf of $Z \subset X$.
(13) In (12), prove that $c_{1}(\mathcal{E})=c_{1}\left(\mathcal{L}_{1}\right)+c_{1}\left(\mathcal{L}_{2}\right)$ and $c_{2}(\mathcal{E})=c_{1}\left(\mathcal{L}_{1}\right) \dot{c}_{1}\left(\mathcal{L}_{2}\right)+s$.
(14) Prove that $\mathbf{M}_{\mathbb{P}^{2}}(2 ;-1,1)$ is a single point space with $\Omega_{\mathbb{P}^{2}}^{1}(1)$ as its unique point.

