Suppose that a one-parameter family of smooth immersions y : R! x [0,7) — R""! satisfies

2(z,t) = 27(2,1) (0.1)

for € R' and ¢t € [0,T), where s is the arc length parameter. Then, we call the evolution of a
complete immersed curve T'; := (R', ) a curve shortening flow.

Notice that if ~y is a periodic function in R, namely ~(z + L,t) = (2, t), then each image I'; is
a closed curve. Conversely, if the initial image I'; is a closed curve, then we can find a L-periodic
immersion (-, 0). Then, by the uniqueness of solution to parabolic PDEs, we can show that (0, t)
remains as a L-periodic function, but we won’t prove it in this note. Hence, when we study closed
curve shortening flow, we consider v : St x [0,7) — R™*1,

In addition, in this winter school, we concentrate on the flows embedded in R?, namely each
v(-,t) is embedding and R"™' = RZ2 If one gets used to the maximum principle through this
winter school, then it is very easy to show that a closed curve embedded in R? remains embedded
under the curve shortening flow.

Now, we present (0.1) as a standard PDE. For each ¢ € [0,T), the arc length parameter s is
defined to satisfy

(0.2)
and therefore
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Namely, v(z, t) is a vector-valued solution to parabolic type PDEs. Thus, we can employ powerful
tools in the theory of differential equations.
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Theorem 0.1 (weak maximum principle). Suppose that a smooth function u : R x [0,T) — R
satisfies u(x + L,t) = u(z,t) = 0 for some L > 0 and

Uy < AUy, + buy, (0.4)
inR x [0,T), where a,b are smooth functions such that a > 0. Then,
u(z,t) < max u(z,0) 0.5)
€
holds for all (x,t) € R x [0,T).

Proof. For each € > 0, we define u®* = u — <t and observe

up < Uy < QUgy + buy, = aus, + bu. (0.6)
We claim that
ut(x,t) < M := max u(z,0) = maﬂg(ua(m, 0) 0.7
re e

holds in R x [0, T'). If the claim is true, then passing ¢ to zero completes the proof.

Now, towards a contradiction, we suppose that supg u* > M, where @) := R x [0,7T’). Then,
given § € (0, M — sup u®) there exists some space-time point (xo,%) such that u® < M +§
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holds for R x [0, t) and u®(xzg,ty) = M + 6. Since u®(-, ty) attains its maximum at x,, we have
us, (o, t9) < 0and us(zo,ty) = 0. Therefore, combining (0.6) and @ > 0 yields

Ui(l‘o,to) < 0. (0.8)
On the other hand, ¢ € (0, o) satisfies u$ (o, to) — u$(zo,t) > 0, which contradicts

€ t o € t
0 > ug(zo, tg) = thi% ug (2o, zz — ::t (z0,1)

> 0. 0.9)
0J

By using the maximum principle, we can show an exercise problem.

Exercise 1. Let I'; be a smooth closed curve shortening flow. Then, it develops a singularity at a
finite time T' < § max,er, ||

Proof. We recall v : St x [0,T) — R"*! satisfying (0.1) and I'; = (S, ¢). Then,

D1y = 207, 7) = 207, ¥ss) = 2= [7I* — 2] (0.10)
Since |v;s| = 1 by definition of s, the smooth function u(z,t) := |y(z,t)|? + 2t satisfies

U = Ugs = |7z|_2uzz - <727’yzz>|72|_3uz (011)
as in (0.3). In addition, u(z,t) = u(z + L, t) for some L > 0. Hence, by the maximum principle,
we have

[v]? + 2t = u < maxu(-,0) = max |y(-,0)|* = max |z|* =: r*. (0.12)

x€lg
Therefore, we obtain |y(-,t)| < r? — 2t for ¢t > 0, namely T'; is contained in the ball of radius
V1?2 — 2t. Hence, I'; is squeezed in the shrinking ball, which disappears at the time %7"2, namely
the singular time satisfies 7" < %7’2. OJ

In the most cases, we only use the weak maximum principle, but we provide the strong maxi-
mum principle without proofs for the people who are interested in.

Theorem 0.2 (strong maximum principle). Suppose that a smooth function v : R x [0,T) — R
satisfies u(x + L,t) = u(x,t) = 0 for some L > 0 and

U < AQUgy + buyg (0.13)
inR x [0,T), where a,b are smooth functions such that a > 0. Then,
u(z,t) < ma]écu(x, 0) (0.14)
fAS

holds for all (z,t) € R x (0,T), unless u is a constant function.

Proof. See Partial Differential Equations by Evans. 0

Also, we give another variations of the weak maximum principle. The readers are encourages
to prove them as exercises.



Exercise 2 (comparison principle). Suppose that L-periodic smooth functions u,v : R x [0,T) —
R satisfy

Uy < AUy + by, Vg 2> QUgy + Vg, (0.15)

in R x [0,T), where a,b are smooth functions such that a > 0. Moreover u(z,0) < v(z,0) holds
in R. Then,

u(z,t) <wv(zx,t) (0.16)
holds for all (x,t) € R x [0, T).

Exercise 3 (compactly supported subsolution). Suppose that a smooth functionu : Rx[0,T) — R
satisfies

U < QUgy + buy (0.17)

in R x [0,T), where a,b are smooth functions such that a > 0. Moreover, {x : u(x,t) # 0} is a
bounded subset in R for everyt € [0,T'). Then,

u(z,t) < maxu(z,0) (0.18)

zeR

holds for all (x,t) € R x [0,T).

We also provide some basic estimates for parabolic PDEs. We recall the Holder norm C'* for
a € (0,1) that

luloei@) = llulleo) + sup { M990+ X, ¥ € Q. (X, ¥) < 1} (0.19)

where d is the parabolic distance given by d(X,Y)? = |z —y|*+ |t — s| for X = (z,1),Y = (y, 5).
In addition, for k£ € N and « € (0, 1) we define

k
kq, _Dky
lullose@) = I lullergy +sup { PG50 X v € Qud(X, V) <1}, (0.20)
=0

Theorem 0.3 (interior L>° estimates). Suppose that u : R x [0,T) — R is a smooth L-periodic
solution to
Up = AUgy + bu, + cu (0.21)

where a, b, c are smooth L-periodic functions satisfying
A <a<A, UNEEN 0.22)
for some A > 0. Then, for each € > 0 there exists some constant C' only depending on L, \, ¢ such

that
|u(-, )|z < C sup  |[u(-, s)|[z2(0,z)) (0.23)

s€[t—e,t]

holds for t € [e,T).
Proof. See Second Order Parabolic Differential Equations by Lieberman. 0



Theorem 0.4 (interior Schauder estimates). Suppose that u : Q — R, where Q =R x [0,T), is a
smooth L-periodic solution to

Uy = AlUgy + buy, + cu (0.24)
where a, b, c are smooth L-periodic functions satisfying
ATt <, lallce @), Ibllew@): lellox@) < A, (0.25)

for some A > 0. Then, for each o € (0,1) and £ > 0 there exists some constant C' only depending
on L,\, e, « such that

Ju(- ) [lcze@) < C f?;lp ] [[u(-, $)ll oo, (0.26)
s€ft—e,
holds for t € [e,T).
Proof. See Second Order Parabolic Differential Equations by Lieberman. 0

We also recall the Fourier series.

Theorem 0.5 (Fourier series). Suppose that f : R — R is a 2w-periodic function such that
f € L*[—n, 7). Then,

1 o0 [e.@] '
flx) = 50 + z; a, cos(nx) + z:l by, sin(nz) (0.27)
where
1 (7 1 [
ay, = —/ f(z) cos(nz)dz, b, = —/ f(z)sin(nz)dzx. (0.28)
T J_r (L —
Moreover, || f[| 72 . = 505 + 7302, (ap +02).

Furthermore, we recall some basic properties of smooth curves in R?. Let v be a smooth im-
mersion of the smooth curve I' C R. Then, the Frenet—Serret formulas yields

d d d

t =21, ot = kn, n = —rt, In| = [t| =1, (0.29)
where s is the arc length parameter, t is the tangent vector, n is a unit normal vector, ~ is the
curvature. Indeed, one can easily obtain the formulas by differentiating |1r1|2 = 1, t|2 = 1,
(n,t) =0.

If a smooth embedded curve I' C R2is a boundary of a convex set {2 C R?, then the curvature
is always positive £ > 0 and therefore n := /fl%t is the unit inward pointing normal vector.
Moreover, given 6 € R there exists at most one point x € I' such that n = (cos ), sin 6). Notice
that if I" is closed then there exists exactly one such point Therefore, we can reparameterize the
angle 6, namely we can let v(6) denote the point in I" such that n = (cos 6, sin #). Then, we define
a support function' S(#) by

S(0) = (v(8), (cosb,sinh)). (0.30)

'One can see the geometric meaning of the support function in the first lecture of prof. Kang.



Thus, we can directly calculate Sy, Syy so that we have

~v(60) = S(cosB,sinf) + Sy(—sin b, cos ), (0.31)

and )
— . . 2
" Seo + S 0.32)

Hence, the support function of a convex curve must satisfy Sgg + S > 0. One may consider the
following exercises for fun, although it is not required to know the proofs.

Exercise 4. Given a convex closed curve I' C R?, inf S > 0 holds if and only if T encloses the
origin.

Exercise 5. Suppose that u : R — R is a 2w-periodic smooth function satisfying ugg + u > 0.
Then, there exist a closed convex curve I' C R? whose support function is .

Hint. We define half planes Hy = {zr € R? : (x, (cos6,sin)) < u()} and then define a set

Q = NgerHy. (0.33)
Then, we can prove that € is a bounded convex set with the smooth boundary I' = 0f2, and its
support function is . U

Finally, one would be curious if the flow is invariant under parametrizations. We provide a
well-known theorem for the independence of parametrizations.

Theorem 0.6 (reparametrization). Suppose that a smooth family of immersions 4 : R* x [0, T) —
R? satisfies

25(2,1) = LA4(2,1) + V(z,0)E(2,1), (0.34)
where ’E(z, t) = |%.|7'9, and V' is a smooth function. Then, there is a smooth family of diffeomor-
phisms ¢ : R x [0,T) — R such that v(-,t) = (-, t) o ¢(-, t) satisfies 0.1. In particular, each
v(+, t) is an immersions.
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Proof. Proposition 1.3.4 in Lecture Notes on Mean Curvature Flow by Mantegazza. (



