
Suppose that a one-parameter family of smooth immersions γ : R1 × [0, T )→ Rn+1 satisfies
∂
∂t
γ(z, t) = ∂2

∂s2
γ(z, t) (0.1) eq:CSF

for z ∈ R1 and t ∈ [0, T ), where s is the arc length parameter. Then, we call the evolution of a
complete immersed curve Γt := γ(R1, t) a curve shortening flow.

Notice that if γ is a periodic function in R, namely γ(z + L, t) = γ(z, t), then each image Γt is
a closed curve. Conversely, if the initial image Γ0 is a closed curve, then we can find a L-periodic
immersion γ(·, 0). Then, by the uniqueness of solution to parabolic PDEs, we can show that γ(0, t)
remains as a L-periodic function, but we won’t prove it in this note. Hence, when we study closed
curve shortening flow, we consider γ : S1 × [0, T )→ Rn+1.

In addition, in this winter school, we concentrate on the flows embedded in R2, namely each
γ(·, t) is embedding and Rn+1 = R2. If one gets used to the maximum principle through this
winter school, then it is very easy to show that a closed curve embedded in R2 remains embedded
under the curve shortening flow.

Now, we present (0.1) as a standard PDE. For each t ∈ [0, T ), the arc length parameter s is
defined to satisfy

ds
dz

=
∣∣ ∂
∂z
γ(z, t)

∣∣ , (0.2)
and therefore
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∂s2
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(
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∣∣−4 ∂
∂z
γ. (0.3) eq:standard_PDE

Namely, γ(z, t) is a vector-valued solution to parabolic type PDEs. Thus, we can employ powerful
tools in the theory of differential equations.

Theorem 0.1 (weak maximum principle). Suppose that a smooth function u : R × [0, T ) → R
satisfies u(x+ L, t) = u(x, t) = 0 for some L > 0 and

ut ≤ auxx + bux (0.4)

in R× [0, T ), where a, b are smooth functions such that a ≥ 0. Then,

u(x, t) ≤ max
x∈R

u(x, 0) (0.5)

holds for all (x, t) ∈ R× [0, T ).

Proof. For each ε > 0, we define uε = u− εt and observe

uεt < ut ≤ auxx + bux = auεxx + buεx. (0.6) eq:eps_ptb

We claim that
uε(x, t) ≤M := max

x∈R
u(x, 0) = max

x∈R
uε(x, 0) (0.7)

holds in R× [0, T ). If the claim is true, then passing ε to zero completes the proof.

Now, towards a contradiction, we suppose that supQ u
ε > M , where Q := R × [0, T ). Then,

given δ ∈ (0,M − supQ u
ε) there exists some space-time point (x0, t0) such that uε < M + δ
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holds for R × [0, t0) and uε(x0, t0) = M + δ. Since uε(·, t0) attains its maximum at x0, we have
uεxx(x0, t0) ≤ 0 and uεx(x0, t0) = 0. Therefore, combining (0.6) and a ≥ 0 yields

uεt(x0, t0) < 0. (0.8)

On the other hand, t ∈ (0, t0) satisfies uεt(x0, t0)− uεt(x0, t) > 0, which contradicts

0 > uεt(x0, t0) = lim
t→t0

uεt(x0, t0)− uεt(x0, t)

t0 − t
≥ 0. (0.9)

�

By using the maximum principle, we can show an exercise problem.

Exercise 1. Let Γt be a smooth closed curve shortening flow. Then, it develops a singularity at a
finite time T ≤ 1

2
maxx∈Γ0 |x|2.

Proof. We recall γ : S1 × [0, T )→ Rn+1 satisfying (0.1) and Γt = γ(S1, t). Then,
∂
∂t
|γ|2 = 2〈γ, γt〉 = 2〈γ, γss〉 = ∂

∂s2
|γ|2 − 2|γs|2. (0.10)

Since |γs| = 1 by definition of s, the smooth function u(z, t) := |γ(z, t)|2 + 2t satisfies

ut = uss = |γz|−2uzz − 〈γz, γzz〉|γz|−3uz (0.11)

as in (0.3). In addition, u(z, t) = u(z + L, t) for some L > 0. Hence, by the maximum principle,
we have

|γ|2 + 2t = u ≤ maxu(·, 0) = max |γ(·, 0)|2 = max
x∈Γ0

|x|2 =: r2. (0.12)

Therefore, we obtain |γ(·, t)| ≤ r2 − 2t for t ≥ 0, namely Γt is contained in the ball of radius√
r2 − 2t. Hence, Γt is squeezed in the shrinking ball, which disappears at the time 1

2
r2, namely

the singular time satisfies T ≤ 1
2
r2. �

In the most cases, we only use the weak maximum principle, but we provide the strong maxi-
mum principle without proofs for the people who are interested in.

Theorem 0.2 (strong maximum principle). Suppose that a smooth function u : R × [0, T ) → R
satisfies u(x+ L, t) = u(x, t) = 0 for some L > 0 and

ut ≤ auxx + bux (0.13)

in R× [0, T ), where a, b are smooth functions such that a > 0. Then,

u(x, t) < max
x∈R

u(x, 0) (0.14)

holds for all (x, t) ∈ R× (0, T ), unless u is a constant function.

Proof. See Partial Differential Equations by Evans. �

Also, we give another variations of the weak maximum principle. The readers are encourages
to prove them as exercises.
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Exercise 2 (comparison principle). Suppose that L-periodic smooth functions u, v : R× [0, T )→
R satisfy

ut ≤ auxx + bux, vt ≥ avxx + vx, (0.15)

in R× [0, T ), where a, b are smooth functions such that a ≥ 0. Moreover u(x, 0) ≤ v(x, 0) holds
in R. Then,

u(x, t) ≤ v(x, t) (0.16)
holds for all (x, t) ∈ R× [0, T ).

Exercise 3 (compactly supported subsolution). Suppose that a smooth function u : R×[0, T )→ R
satisfies

ut ≤ auxx + bux (0.17)

in R × [0, T ), where a, b are smooth functions such that a ≥ 0. Moreover, {x : u(x, t) 6= 0} is a
bounded subset in R for every t ∈ [0, T ). Then,

u(x, t) ≤ max
x∈R

u(x, 0) (0.18)

holds for all (x, t) ∈ R× [0, T ).

We also provide some basic estimates for parabolic PDEs. We recall the Holder norm Cα for
α ∈ (0, 1) that

‖u‖Cα(Q) = ‖u‖C0(Q) + sup
{
|u(X)−u(Y )|
d(X,Y )α

: X, Y ∈ Q, d(X, Y ) ≤ 1
}

(0.19)

where d is the parabolic distance given by d(X, Y )2 = |x−y|2 + |t−s| forX = (x, t), Y = (y, s).
In addition, for k ∈ N and α ∈ (0, 1) we define

‖u‖Ck,α(Q) =
k∑
l=0

‖u‖Cl(Q) + sup
{
|Dku(X)−Dku(Y )|

d(X,Y )α
: X, Y ∈ Q, d(X, Y ) ≤ 1

}
. (0.20)

Theorem 0.3 (interior L∞ estimates). Suppose that u : R × [0, T ) → R is a smooth L-periodic
solution to

ut = auxx + bux + cu (0.21)
where a, b, c are smooth L-periodic functions satisfying

Λ−1 ≤ a ≤ Λ, |b|, |c| ≤ Λ, (0.22)

for some Λ > 0. Then, for each ε > 0 there exists some constant C only depending on L,Λ, ε such
that

‖u(·, t)‖L∞(R) ≤ C sup
s∈[t−ε,t]

‖u(·, s)‖L2([0,L]) (0.23)

holds for t ∈ [ε, T ).

Proof. See Second Order Parabolic Differential Equations by Lieberman. �
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Theorem 0.4 (interior Schauder estimates). Suppose that u : Q→ R, where Q = R× [0, T ), is a
smooth L-periodic solution to

ut = auxx + bux + cu (0.24)
where a, b, c are smooth L-periodic functions satisfying

Λ−1 ≤ a, ‖a‖Cα(Q), ‖b‖Cα(Q), ‖c‖Cα(Q) ≤ Λ, (0.25)

for some Λ > 0. Then, for each α ∈ (0, 1) and ε > 0 there exists some constant C only depending
on L,Λ, ε, α such that

‖u(·, t)‖C2,α(Q) ≤ C sup
s∈[t−ε,t]

‖u(·, s)‖L∞([0,L]) (0.26)

holds for t ∈ [ε, T ).

Proof. See Second Order Parabolic Differential Equations by Lieberman. �

We also recall the Fourier series.

Theorem 0.5 (Fourier series). Suppose that f : R → R is a 2π-periodic function such that
f ∈ L2[−π, π]. Then,

f(x) =
1

2
a0 +

∞∑
n=1

an cos(nx) +
∞∑
n=1

bn sin(nx) (0.27)

where

an =
1

π

ˆ π

−π
f(x) cos(nx)dx, bn =

1

π

ˆ π

−π
f(x) sin(nx)dx. (0.28)

Moreover, ‖f‖2
L2[−π,π] = π

2
a2

0 + π
∑∞

n=1(a2
n + b2

n).

Furthermore, we recall some basic properties of smooth curves in R2. Let γ be a smooth im-
mersion of the smooth curve Γ ⊂ R. Then, the Frenet–Serret formulas yields

t = d
ds
γ, d

ds
t = κn, d

ds
n = −κt, |n| = |t| = 1, (0.29)

where s is the arc length parameter, t is the tangent vector, n is a unit normal vector, κ is the
curvature. Indeed, one can easily obtain the formulas by differentiating |n|2 = 1, |t|2 = 1,
〈n, t〉 = 0.

If a smooth embedded curve Γ ⊂ R2 is a boundary of a convex set Ω ⊂ R2, then the curvature
is always positive κ > 0 and therefore n := κ−1 d

ds
t is the unit inward pointing normal vector.

Moreover, given θ ∈ R there exists at most one point x ∈ Γ such that n = (cos θ, sin θ). Notice
that if Γ is closed then there exists exactly one such point Therefore, we can reparameterize the
angle θ, namely we can let γ(θ) denote the point in Γ such that n = (cos θ, sin θ). Then, we define
a support function1 S(θ) by

S(θ) = 〈γ(θ), (cos θ, sin θ)〉. (0.30)

1One can see the geometric meaning of the support function in the first lecture of prof. Kang.
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Thus, we can directly calculate Sθ, Sθθ so that we have

γ(θ) = S(cos θ, sin θ) + Sθ(− sin θ, cos θ), (0.31)

and
κ =

1

Sθθ + S
. (0.32)

Hence, the support function of a convex curve must satisfy Sθθ + S > 0. One may consider the
following exercises for fun, although it is not required to know the proofs.

Exercise 4. Given a convex closed curve Γ ⊂ R2, inf S > 0 holds if and only if Γ encloses the
origin.

Exercise 5. Suppose that u : R → R is a 2π-periodic smooth function satisfying uθθ + u > 0.
Then, there exist a closed convex curve Γ ⊂ R2 whose support function is u.

Hint. We define half planesHθ = {x ∈ R2 : 〈x, (cos θ, sin θ)〉 ≤ u(θ)} and then define a set

Ω = ∩θ∈RHθ. (0.33)

Then, we can prove that Ω is a bounded convex set with the smooth boundary Γ = ∂Ω, and its
support function is u. �

Finally, one would be curious if the flow is invariant under parametrizations. We provide a
well-known theorem for the independence of parametrizations.

Theorem 0.6 (reparametrization). Suppose that a smooth family of immersions γ̂ : R1 × [0, T )→
R2 satisfies

∂
∂t
γ̂(z, t) = ∂2

∂s2
γ̂(z, t) + V (z, t)t̂(z, t), (0.34)

where t̂(z, t) = |γ̂z|−1γ̂z and V is a smooth function. Then, there is a smooth family of diffeomor-
phisms ϕ : R1 × [0, T ) → R1 such that γ(·, t) = γ̂(·, t) ◦ ϕ(·, t) satisfies 0.1. In particular, each
γ(·, t) is an immersions.

Proof. Proposition 1.3.4 in Lecture Notes on Mean Curvature Flow by Mantegazza. �


