Exercises

Donggun Lee

January 17, 2022

A moduli functor $F : Sch^{op} \to Sets$ is called a *fine moduli* if $F \simeq h_X$ for some $X \in Sch$. In this case, we say F is represented by X.

If F is a fine moduli represented by X, then there is a unique family $U \in F(X)$ over X which corresponds to the identity in $h_X(X)$. We call $U \to X$ the universal family over X. Note that every family $(T \to S) \in F(S)$ over $S \in Sch$ is the pullback of the universal family along a unique morphism $S \xrightarrow{f} X$, i.e. the map induced $f^* : F(X) \longrightarrow F(S)$ by f sends $(U \to X)$ to $(T \to S)$.

Define $\mathcal{M}_{0,n}$ to be a moduli functor $\mathcal{M}_{0,n}: Sch^{op} \to Sets$ with

 $\mathcal{M}_{0,n}(S) = \{\mathbb{P}^1 \text{-bundles over } S \text{ with } n \text{ disjoint sections}\} / \simeq$

for each $S \in Sch$. Furthermore, define $\overline{\mathcal{M}}_{0,n} : Sch^{op} \to Sets$ to be a moduli functor with

 $\overline{\mathcal{M}}_{0,n}(S) = \{\text{families of rational nodal curves over } S$

with *n* sections, fiberwisely stable}/ \simeq

for each $S \in Sch$.

1. Prove the following

- (a) $\mathcal{M}_{0,2}$ is not a fine moduli (hint: consider Hirzebruch surfaces).
- (b) $\mathcal{M}_{0,3}$ is a fine moduli space represented by a point.
- (c) $\mathcal{M}_{0,n} \simeq (k \setminus \{0,1\})^{n-3} \setminus \Delta$, i.e. $\mathcal{M}_{0,n}$ is a fine moduli represented by the latter space.
- 2. Let n be a nonnegative integer. Let C be the projective line \mathbb{P}^1 or a tree of \mathbb{P}^1 's with at worst nodal singularities. Let $p_1, \ldots, p_n \in C$ be n distinct smooth points on the C. Denote

$$\operatorname{Aut}(C, p_i) := \{ \sigma \in \operatorname{Aut}(C) : \sigma(p_i) = p_i \text{ for all } i \}.$$

- (a) Compute the isomorphism class of $\operatorname{Aut}(\mathbb{P}^1, p_i)$ for each n.
- (b) Prove that $\operatorname{Aut}(C, p_i)$ is trivial if and only if each irreducible component has at least three special points, i.e. the nodes or p_i 's.

- 3. Recall that $\overline{\mathcal{M}}_{0,n+1} \to \overline{\mathcal{M}}_{0,n}$ is naturally the universal curve with *n* sections $\sigma_1, \ldots, \sigma_n$, so each fiber $(\pi^{-1}(p), \sigma_i(p))$ of $p \in \overline{\mathcal{M}}_{0,n}$ is precisely the stable *n*-pointed curve which *p* parametrizes. Prove the following.
 - (a) There are no singular 3-pointed rational stable curves, so $\overline{\mathcal{M}}_{0,3} = \mathcal{M}_{0,3} = \operatorname{pt.} (\mathbb{P}^1, (0, 1, \infty))$ is the universal curve of $\overline{\mathcal{M}}_{0,3}$. Conclude that $\overline{\mathcal{M}}_{0,4} \simeq \mathbb{P}^1$. We denote this isomorphism φ .
 - (b) There are three distinct singular 4-pointed rational stable curves. These correspond to precisely $0, 1, \infty$ under φ . The isomorphism φ extends the isomorphism $\mathcal{M}_{0,4} \simeq k \setminus \{0, 1\}$ in Problem 1-(c).
 - (c) More generally, is the image of σ_i a boundary divisor of $\overline{\mathcal{M}}_{0,n+1}$ for each $i = 1, \ldots, n$? Describe the image.
 - (d) Explain how φ realizes a subgroup of $PGL_2 = \operatorname{Aut}(\mathbb{P}^1)$ which is isomorphic to S_4 . Compute the images in PGL_2 of all the transitions in S_4 .
- 4. Recall that the blowup B of \mathbb{A}^2 along the origin is isomorphic to the closure of $\{((x,y), [x:y]) \in (\mathbb{A}^2 \setminus 0) \times \mathbb{P}^1\}$ in $\mathbb{A}^2 \times \mathbb{P}^1$, with a natural projection to \mathbb{A}^2 . The fiber $0 \times \mathbb{P}^1$ of the origin is called the exceptional divisor.
 - (a) Show that $B \to \mathbb{A}^2$ is an isomorphism away from the exceptional divisor.
 - (b) For any subvariety $X \subset \mathbb{A}^2$, we define the *strict transfrom* of X in B to be the closure of $X \setminus 0$ in B. Prove that the strict transforms of two distinct lines through the origin are distinct. More generally, prove that the strict transforms of two smooth curves in \mathbb{A}^2 which meets transversally at the origin are disjoint over the origin. Therefore two sections of $\mathbb{A}^2 \to \mathbb{A}^1$ which intersects transversally can be separated by blowing up the intersection points.

In fact, the exceptional divisor \mathbb{P}^1 parametrizes the projectivized tangent vectors at the origin in this case. We also remark that this construction is local so we can define a blowup of \mathbb{P}^2 , $\mathbb{P}^1 \times \mathbb{P}^1$, etc. along a point.

5. Consider the first projection $pr_1 : \overline{\mathcal{M}}_{0,4} \times \mathbb{P}^1 \to \overline{\mathcal{M}}_{0,4}$ with sections $0, 1, \infty, \Delta$ where Δ is given by the commutative diagram

$$\begin{array}{c} \overline{\mathcal{M}}_{0,n} \longrightarrow \overline{\mathcal{M}}_{0,n} \times \mathbb{P}^1 \\ \varphi \bigg| \simeq \qquad \varphi \times \mathrm{id} \bigg| \simeq \\ \mathbb{P}^1 \longrightarrow \mathbb{P}^1 \times \mathbb{P}^1. \end{array}$$

Then pr_1 is a family of 4-pointed curves which is not necessarily stable, however restricts to the universal curve over $\mathcal{M}_{0,4}$. Construct $\overline{\mathcal{M}}_{0,5}$ by blowing up $\overline{\mathcal{M}}_{0,4} \times \mathbb{P}^1$ along 3 points lying over $\overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4} = \{0, 1, \infty\}$ (what should these 3 points be?).

- (a) Compute the cohomology of $\overline{\mathcal{M}}_{0,5}$ using the blowup formula.
- (b) One can identify the boundary divisors explicitly. For example $D_{4,5}$ is the strict transform of Δ . Identify all the other boundary divisors.
- (c) Compute their intersection products. When are they zero?
- (d) Prove that the boundary divisors generate $H^*(\overline{\mathcal{M}}_{0,5})$ as a k-algebra.
- (e) Let $\pi_i : \overline{\mathcal{M}}_{0,5} \to \overline{\mathcal{M}}_{0,4}$ be the forgetful morphism which forgets the *i*-th marking and takes stabilization for each $i = 1, \ldots, 5$. We have the following relations in $H^*(\overline{\mathcal{M}}_{0,5})$:

$$\pi_i^*[\{a\}] = \pi_i^*[\{b\}]$$

for each *i* and $a, b \in \{0, 1, \infty\} = \overline{\mathcal{M}}_{0,4} \setminus \mathcal{M}_{0,4}$. Show that these relations and the products studied in (b) generate all the relations among boundary divisors.

- (f) Compute the S_5 -representation of the second (rational) cohomology group of $\overline{\mathcal{M}}_{0,5}$.
- (g) Can you find an S_5 -invariant basis?
- 6. (a) Show that a blowup of $\mathbb{P}^1 \times \mathbb{P}^1$ along a point is isomorphic to a blowup \mathbb{P}^2 along two distinct points.
 - (b) Use (a) to conclude that $\overline{\mathcal{M}}_{0,5}$ is isomorphic to a blowup of \mathbb{P}^2 along 4 distinct points.
 - (c) Prove that the 4 points are in general position, i.e. any three of them are not on a line.