Exercises

Donggun Lee

January 17, 2022

A moduli functor $F: S c h^{o p} \rightarrow$ Sets is called a fine moduli if $F \simeq h_{X}$ for some $X \in S c h$. In this case, we say F is represented by X.

If F is a fine moduli represented by X, then there is a unique family $U \in$ $F(X)$ over X which corresponds to the identity in $h_{X}(X)$. We call $U \rightarrow X$ the universal family over X. Note that every family $(T \rightarrow S) \in F(S)$ over $S \in S c h$ is the pullback of the universal family along a unique morphism $S \xrightarrow{f} X$, i.e. the map induced $f^{*}: F(X) \longrightarrow F(S)$ by f sends $(U \rightarrow X)$ to $(T \rightarrow S)$.

Define $\mathcal{M}_{0, n}$ to be a moduli functor $\mathcal{M}_{0, n}: S c h^{o p} \rightarrow$ Sets with

$$
\mathcal{M}_{0, n}(S)=\left\{\mathbb{P}^{1} \text {-bundles over } S \text { with } n \text { disjoint sections }\right\} / \simeq
$$

for each $S \in S c h$. Furthermore, define $\overline{\mathcal{M}}_{0, n}: S c h^{o p} \rightarrow$ Sets to be a moduli functor with
$\overline{\mathcal{M}}_{0, n}(S)=\{$ families of rational nodal curves over S with n sections, fiberwisely stable $\} / \simeq$
for each $S \in S c h$.

1. Prove the following
(a) $\mathcal{M}_{0,2}$ is not a fine moduli (hint: consider Hirzebruch surfaces).
(b) $\mathcal{M}_{0,3}$ is a fine moduli space represented by a point.
(c) $\mathcal{M}_{0, n} \simeq(k \backslash\{0,1\})^{n-3} \backslash \Delta$, i.e. $\mathcal{M}_{0, n}$ is a fine moduli represented by the latter space.
2. Let n be a nonnegative integer. Let C be the projective line \mathbb{P}^{1} or a tree of \mathbb{P}^{1} 's with at worst nodal singularities. Let $p_{1}, \ldots, p_{n} \in C$ be n distinct smooth points on the C. Denote

$$
\operatorname{Aut}\left(C, p_{i}\right):=\left\{\sigma \in \operatorname{Aut}(C): \sigma\left(p_{i}\right)=p_{i} \text { for all } i\right\}
$$

(a) Compute the isomorphism class of $\operatorname{Aut}\left(\mathbb{P}^{1}, p_{i}\right)$ for each n.
(b) Prove that $\operatorname{Aut}\left(C, p_{i}\right)$ is trivial if and only if each irreducible component has at least three special points, i.e. the nodes or p_{i} 's.
3. Recall that $\overline{\mathcal{M}}_{0, n+1} \rightarrow \overline{\mathcal{M}}_{0, n}$ is naturally the universal curve with n sections $\sigma_{1}, \ldots, \sigma_{n}$, so each fiber $\left(\pi^{-1}(p), \sigma_{i}(p)\right)$ of $p \in \overline{\mathcal{M}}_{0, n}$ is precisely the stable n-pointed curve which p parametrizes. Prove the following.
(a) There are no singular 3 -pointed rational stable curves, so $\overline{\mathcal{M}}_{0,3}=$ $\mathcal{M}_{0,3}=$ pt. $\left(\mathbb{P}^{1},(0,1, \infty)\right)$ is the universal curve of $\overline{\mathcal{M}}_{0,3}$. Conclude that $\overline{\mathcal{M}}_{0,4} \simeq \mathbb{P}^{1}$. We denote this isomorphism φ.
(b) There are three distinct singular 4-pointed rational stable curves. These correspond to precisely $0,1, \infty$ under φ. The isomorphism φ extends the isomorphism $\mathcal{M}_{0,4} \simeq k \backslash\{0,1\}$ in Problem 1-(c).
(c) More generally, is the image of σ_{i} a boundary divisor of $\overline{\mathcal{M}}_{0, n+1}$ for each $i=1, \ldots, n$? Describe the image.
(d) Explain how φ realizes a subgroup of $P G L_{2}=\operatorname{Aut}\left(\mathbb{P}^{1}\right)$ which is isomorphic to S_{4}. Compute the images in $P G L_{2}$ of all the transitions in S_{4}.
4. Recall that the blowup B of \mathbb{A}^{2} along the origin is isomorphic to the closure of $\left\{((x, y),[x: y]) \in\left(\mathbb{A}^{2} \backslash 0\right) \times \mathbb{P}^{1}\right\}$ in $\mathbb{A}^{2} \times \mathbb{P}^{1}$, with a natural projection to \mathbb{A}^{2}. The fiber $0 \times \mathbb{P}^{1}$ of the origin is called the exceptional divisor.
(a) Show that $B \rightarrow \mathbb{A}^{2}$ is an isomorphism away from the exceptional divisor.
(b) For any subvariety $X \subset \mathbb{A}^{2}$, we define the strict transfrom of X in B to be the closure of $X \backslash 0$ in B. Prove that the strict transforms of two distinct lines through the origin are distinct. More generally, prove that the strict transforms of two smooth curves in \mathbb{A}^{2} which meets transversally at the origin are disjoint over the origin. Therefore two sections of $\mathbb{A}^{2} \rightarrow \mathbb{A}^{1}$ which intersects transversally can be separated by blowing up the intersection points.

In fact, the exceptional divisor \mathbb{P}^{1} parametrizes the projectivized tangent vectors at the origin in this case. We also remark that this construction is local so we can define a blowup of $\mathbb{P}^{2}, \mathbb{P}^{1} \times \mathbb{P}^{1}$, etc. along a point.
5. Consider the first projection $p r_{1}: \overline{\mathcal{M}}_{0,4} \times \mathbb{P}^{1} \rightarrow \overline{\mathcal{M}}_{0,4}$ with sections $0,1, \infty, \Delta$ where Δ is given by the commutative diagram

Then $p r_{1}$ is a family of 4 -pointed curves which is not necessarily stable, however restricts to the universal curve over $\mathcal{M}_{0,4}$. Construct $\overline{\mathcal{M}}_{0,5}$ by blowing up $\overline{\mathcal{M}}_{0,4} \times \mathbb{P}^{1}$ along 3 points lying over $\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}=\{0,1, \infty\}$ (what should these 3 points be?).
(a) Compute the cohomology of $\overline{\mathcal{M}}_{0,5}$ using the blowup formula.
(b) One can identify the boundary divisors explicitly. For example $D_{4,5}$ is the strict transform of Δ. Identify all the other boundary divisors.
(c) Compute their intersection products. When are they zero?
(d) Prove that the boundary divisors generate $H^{*}\left(\overline{\mathcal{M}}_{0,5}\right)$ as a k-algebra.
(e) Let $\pi_{i}: \overline{\mathcal{M}}_{0,5} \rightarrow \overline{\mathcal{M}}_{0,4}$ be the forgetful morphism which forgets the i-th marking and takes stabilization for each $i=1, \ldots, 5$. We have the following relations in $H^{*}\left(\overline{\mathcal{M}}_{0,5}\right)$:

$$
\pi_{i}^{*}[\{a\}]=\pi_{i}^{*}[\{b\}]
$$

for each i and $a, b \in\{0,1, \infty\}=\overline{\mathcal{M}}_{0,4} \backslash \mathcal{M}_{0,4}$. Show that these relations and the products studied in (b) generate all the relations among boundary divisors.
(f) Compute the S_{5}-representation of the second (rational) cohomology group of $\overline{\mathcal{M}}_{0,5}$.
(g) Can you find an S_{5}-invariant basis?
6. (a) Show that a blowup of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ along a point is isomorphic to a blowup \mathbb{P}^{2} along two distinct points.
(b) Use (a) to conclude that $\overline{\mathcal{M}}_{0,5}$ is isomorphic to a blowup of \mathbb{P}^{2} along 4 distinct points.
(c) Prove that the 4 points are in general position, i.e. any three of them are not on a line.

