
2. Monte Carlo Simulations
in “equilibrium” statistical physics

The 19th Winter School on Statistical Physics @ Pohang, 10-14 January 2022

Dong-Hee Kim

Gwangju Institute of Science and Technology

References

• M. E. J. Newman and G. T. Barkema, "Monte Carlo Methods in Statistical
Physics" (Oxford University Press, 1999)

• L. Böttcher and H. J. Herrmann, "Computational Statistical
Physics" (Cambridge University Press, 2021)

• W. Janke, in "Computational Physics" (Springer, 1996)

• Lectures by Mattias Troyer, Bernd Berg, Kari Rummukainnen

Outline
• Basic concepts in Markov Chain Monte Carlo

• Implementing a Monte Carlo code to simulate the Ising model

• Error estimation schemes

• Finite-size-scaling analysis of the second-order transitions

• Critical slowing down and cluster update algorithms

• Some other issues

2.1. Random numbers

Integration by rolling dice

Radius = 1
Compute the area of the unit circle

with random numbers.

1. Generate two random numbers from the uniform
distribution between -1 and 1.

2. Use them as x and y coordinates.

3. See if (x,y) is inside of the circle.

4. Generate many such random points, and count

how many are inside of the circle.

5. Area = 4 x number of points found in the circle  

 / total number of points

Pseudo-random numbers
• “Pseudo”-Random Number Generators. That is what we’re looking for.

• There are many algorithms and implementations.

• There are notorious ones causing systematic failures in Monte Carlo
simulations, such as R250 and RANDU. (e.g. Ferrenberg et al. PRL 1992) 
See “examples of a bad generator” in H. G. Katzgraber, arXiv:1005.4117.

• There are many tests for “quality” check, but those do not guarantee that
it is random enough. R250 was a “good” PRNG as it passed all common
quality tests at that time.

PRNG
• It is deterministic. It generates “a sequence” based on a given “seed”. The

sequence is generated recursively, i.e. .

• It has a finite period.

• A simple example: a linear congruential generator, RAN0.

• Good PRNG: good statistics (no correlation), long period, high
performance, well-tested in your field of research.

xi = f(xi−1, xi−2, …, xi−k)

Xi+1 = (16807 Xi) mod (231 − 1) (period = 231 - 1: very short)

A bad PRNG?

Random Numbers (Katzgraber)

is primitive modulo p.
LCGs are extremely fast and use little memory, however, the period is limited by

the choice of m. For standard LCGs, m ∼ 232 which corresponds to approximately
109 random numbers. On a modern computer such a sequence is exhausted in seconds.
If m = 2k (k ∈ N) then lower-order bits of the generated sequence have a far shorter
period than the sequence as a whole. Therefore never use a linear congruential PRNG
for numerical simulations. However, it is acceptable to use a LCG to generate a seed
block for a more complex PRNG. Finally, note that LCGs are difficult to parallelize.

Example of a bad generator: RANDU RANDU is a linear congruential PRNG
of the Park-Miller type that was installed as the standard generator on IBM main-
frame computers in the 1960s. It uses the parameters a = 65539, c = 0, and m = 231.
The particular choice of a = 65539 = 216 + 3 was made to speed up the modulo
operation on 32-bit machines. The fact that the numbers have correlations can be
illustrated with the following simple calculation (modulo m means that 232 ≡ 0)

xi+2 = axi+1 = (216 + 3)xi+1 = (216 + 3)2xi (5)

= (232 + 6 · 216 + 9)xi ≡ [6(216 + 3)− 9]xi

= 6xi+1 − 9xi .

Therefore, tuplets of random numbers have to be correlated. If three consecutive
random numbers x1, x2 and x3 are combined to a vector (x1, x2, x3), then the numbers
lie on planes in three-dimensional space, as can be seen in Fig. 1.

Figure 1: 103 triplets of successive random num-
bers produced with RANDU plotted in three-
dimensional space. If the random numbers were
perfectly random, no planes should be visible.
However, when viewed from the right angle,
planes emerge, thus showing that the random
numbers are strongly correlated.

3.2 Lagged Fibonacci generators

Lagged Fibonacci generators are intended as an improvement over linear congruential
generators and, in general, they are not only fast but most of them pass all standard
empirical random number generator tests. The name comes from the similarity to
the Fibonacci series

xi = xi−1 + xi−2 −→ {1, 1, 2, 3, 5, 8, 13, 21, . . .} (6)

6

[From Helmut G. Katzgraber, arXiv:1005.4117]

Strategies for parallel computing

• Random seeding: each CPU has its own seed. Hope for the best.

• Parametrization: each CPU has different parameters for the same PRNG.

• Block splitting: 

• Leapfrogging:

Popular PRNG
• Merssene Twister generator (MT19937, Matsumoto and Nishimura 1998)

• Serial generator, available by default in C++11, python, etc.

• Very fast, Very long period (219937-1), Very low correlation

• SPRNG (The Scalable Parallel Random Number Generators Library)

• Parallel (parameterization), available at http://www.sprng.org/

• TRNG (Tina’s random number generator library, fully C++)

• Parallel (block splitting, leapfrogging), https://www.numbercrunch.de/trng/

http://www.sprng.org/
https://www.numbercrunch.de/trng/

C++ vs. Python
#include <iostream>

#include <random>

int main(int argc, char* argv[]) {

 const int N = atoi(argv[1]);

 std::random_device rd;

 std::mt19937 mt(rd());

 std::uniform_real_distribution<double> rng;

 int count = 0;

 for (int i = 0; i < N; ++i) {

 const double x = rng(mt);

 const double y = rng(mt);

 if (x*x + y*y < 1.0) count++;

 }

 std::cout << "AREA = "

 << 4.0 * count / N << std::endl;

}

import random as rng

import sys

N = int(sys.argv[1])

count = 0

for i in range(N):

 x = rng.random()

 y = rng.random()

 if x**2 + y**2 < 1 :

 count = count + 1

print('AREA = %f' % (4.0*count/N))

>> ./pi.x [N] # C++

>> python3 pi.py [N] # python

Computing with random numbers:π

C++ vs. Python
Computing with random numbers:π

C++ is 10 times faster than python.

Python’s for-loop has a HUGE overhead.

Do not use python for serious
Monte Carlo simulations.

Non-uniform distribution

• So far, we have been playing with a random number from a uniform
distribution [0,1).

• What if you need a random number following an arbitrary distribution?

• Transformation method. e.g. Box-Muller transformation

• Rejection sampling method. (purely numerical)

Transformation

|px(x) dx | = |py(y) dy |

Change of variables in P.D.F e.g. exponential distribution

e.g. Box-Muller transformation for the Gaussian distribution

p(x) dx = a exp[−ax] dx
= d[e−ax] = 1 ⋅ du

x = −
1
a

ln(1 − u)
uniform distribution

P(x) =
1

2π
exp (−

x2

2) x = −2 ln(1 − u) sin(2πv)

It does not work for all probability distribution! — This method requires an inverse function.

Rejection sampling

f(x)

c ⋅ g(x)

1. We know how to make a random sample from g(x).
2. There exists a constant c such that f(x) < c g(x).

Conditions

Algorithm

1. Draw a random number X from PDF g(x).

2. Accept X with a probability f(X) / [c g(X)];

(1) Draw a uniform random number r

(2) If r < f(X) / [c g(X)], accept X.

(3) Reject, otherwise.

X

c ⋅ g(X)

f(X)

2.2. Markov Chain Monte Carlo

Ising model in two dimensions

E = − J∑
⟨i,j⟩

sisj − h∑
i

si

Canonical ensemble

p({s1, s2, …, sN}) =
1
Z

exp[−βE({s1, s2, …, sN})]

Hamiltonian h = 0

Measurement

⟨O⟩ = ∑
s1=±1

∑
s2=±1

⋯ ∑
sN=±1

O({s1, s2, …, sN}) p({s1, s2, …, sN}) → ⟨O⟩MC

What are the hurdles?

p({s1, s2, …, sN}) =
1
Z

exp[−βE({s1, s2, …, sN})]

Compute this: ⟨O⟩ = ∑
s1=±1

∑
s2=±1

⋯ ∑
sN=±1

O({s1, s2, …, sN}) p({s1, s2, …, sN})

Number of microstates = 2N : IT’S IMPOSSIBLY LARGE!

where

What about just generating a random spin sequence
and computing a sum like we did before:

Importance sampling
• Uniform generation of random spin sequence would not solve the issue: 

The uniform sampling does not change the system size scaling .

• Boltzmann weight is exponential: central region contributes much more than
the tail part. Can we just sample the Boltzmann distribution directly?

• Importance sampling (this is what “Monte Carlo” really means in practice) 
— a strategy to visit “important” states more often.

∼ 2N

e.g. importance sampling of the canonical ensemble

⟨O⟩ =
1
Z ∑

{si}

O exp(−βE) ≈
1

NMC

NMC

∑
i=1

Oi ≡ ⟨O⟩MC

Markov Chain Monte Carlo
Start from a state and propose a new state with a selection probability .
Accept or reject the proposed state with an acceptance probability .

X Y g(X → Y)
A(X → Y)

X0 X1 X2 X3 X4

W(X0 → X1) W(X1 → X2) W(X2 → X3) W(X3 → X4) …

Transition probability W(X → Y) = g(X → Y) A(X → Y)

⟨O⟩MC =
1

NMC
[O(Xto) + O(Xto+1) + O(Xto+2) + O(Xto+3) + ⋯ + O(Xto+NMC

)]

Markov Chain Monte Carlo
• Master equation

• Ergodicity: there exists such that .

• Normalization:

• Homogeneity:

n W(n)(X → Y) > 0

∑Y W(X → Y) = 1

∑Y p(Y)W(Y → X) = p(X)

dp(X, t)
dτ

= ∑
Y≠X

p(Y)W(Y → X) − ∑
Y≠X

p(X)W(X → Y) 0
Equilibrium

p(X) = peq(X)

equilibrium distribution

peq(X) ∝ exp[−βE(X)]

X0 X1 X2 X3 X4

W(X0 → X1) W(X1 → X2) W(X2 → X3) W(X3 → X4) …

Detailed Balance Condition

∑
Y≠X

p(Y)W(Y → X) = ∑
Y≠X

p(X)W(X → Y)

peq(Y)W(Y → X) = peq(X)W(X → Y)

Balance Condition
[stationary p(X)]

Detailed Balance Condition
(sufficient condition)

W(X → Y)
W(Y → X)

=
peq(Y)
peq(X)

= exp[−β(EY − EX)]Canonical ensemble

“Reversibility”
“No net stochastic flux”

= W(X → Z) W(Z → Y) W(Y → X)

W(X → Y) W(Y → Z) W(Z → X)

c.f. “irreversible” MC

p(X) → peq(X)

“Equilibrium”

Metropolis algorithm

W(X → Y)
W(Y → X)

=
peq(Y)
peq(X)

= exp[−β(EY − EX)]Canonical ensemble

M(RT)2 algorithm [N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller (1953)]

W(X → Y)
W(Y → X)

=
g(X → Y) A(X → Y)
g(Y → X) A(Y → X)

=
A(X → Y)
A(Y → X)

= e−β(EY−EX)

symmetric

A(X → Y) = min [1, exp[−β(EY − EX)]]The choice of M(RT)2 :

You can propose any A that satisfies this equation!

Choices of Acceptance Probability
A(X → Y)
A(Y → X)

= e−β(EY−EX)

A(X → Y) = min [1, exp(−βΔE)]M(RT)2 :

You can propose any A that satisfies this equation:

Heat-Bath (Glauber) : A(X → Y) =
exp(−βΔE)

1 + exp(−βΔE)
for the Ising model

2.3. Simulating the Ising model

Simulating Ising model
local update with a single-spin flip

ΔE ≡ EY − EX = [−J(−s0)(s1 + s2 + s3 + s4)] − [−J(s0)(s1 + s2 + s3 + s4)] = 2Js0 ∑
k∈n.n.

sk

s1

s4 s2

s3

s0

s1

s4 s2

s3

-s0

X → Y
s0 → − s0

E = − J∑
⟨i,j⟩

sisj

Common update strategies
How do you sweep the lattices to update spins?

1. RANDOM

2. SEQUENTIAL

3. SUBLATTICE (CHECKERBOARD)

Visit lattices sites randomly. Slow.

Visit every site sequentially. Weak detailed balance.

Visit every site in sublattices sequentially.
Weak detailed balance. Some advantages in vectorization.

3 → 1 → 10 → 14 → 5 → ⋯

1 → 2 → 3 → 4 → 5 → ⋯

One Monte Carlo Step (MCS)
A typical choice of unit time in Monte Carlo simulations

= One full sweep of the lattice sites

for mcs in range(N_mcs) :

 for i in range(L) :

 for j in range(L) :

 deltaE = (compute by)

 if deltaE < 0 :

 (accept the spin flip) 
 else if exp(-beta*deltaE) < random() :

 (accept the spin flip)

ΔE si,j → − si,j
one sweep, 
one MCS

one move

Convergence of MCMC
A physicist-friendly argument: O. Narayan and A. P. Young, PRE 64, 021104 (2001)

pl(t + 1) = ∑
m

pm(t) W(m → l)

peq
l W(l → m) = peq

m W(m → l)

G(t) = ∑
l

1
peq

l
(pl(t) − peq

l)
2

= ∑
l

[pl(t)]2

peq
l

− 1

pl(t + 1) − pl(t) = ∑
m≠l

[pm(t) W(m → l) − pl(t) W(l → m)]

master equation (unit step = one move)

detailed balance

def.
≤ 0

Convergence of MCMC

pl(t + 1) = ∑
m

pm(t) W(m → l)

ΔG = G(t + 1) − G(t) = −
1
2 ∑

l,m,n

W(l → m) W(l → n) peq
l (pm(t)

peq
m

−
pn(t)
peq

n)
2

master equation

≤ 0

peq
l W(l → m) = peq

m W(m → l)

detailed balance

O. Narayan and A. P. Young, PRE 64, 021104 (2001)

m n
l should appear at an arbitrary large time

+ ergodicity
p(X) → peq(X)

Weak Detailed Balance

≤ 0

sequential update

0 5 10 15 20

1 6 11 16 21

2 7 12 17 22

3 8 13 18 23

4 9 14 19 24

master equation pl(t + 1) = ∑
m

pm(t) W(m → l)

p(tmcs + 1) = Wsweep p(tmcs) = WNWN−1⋯W1W0 p(tmcs)

 : detailed balance is valid.Wi

 : detailed balance is broken.Wsweep

Thus, the inequality still works in every Monte Carlo "move".

ΔG = G(t + 1) − G(t) = −
1
2 ∑

l,m,n

W(l → m) W(l → n) peq
l (pm(t)

peq
m

−
pn(t)
peq

n)
2

A typical structure of an MC code

1. Thermalization

2. Measurement

0. Initialization Ordered initial state or disordered (random) initial state?

sweep()

sweep()

measure()

Allow relaxation time for a spin configuration to be thermalized.

Ideally, we want .p(X) → peq(X)

This is a production run. Measure what you want every m MCS.

(m = 1 is just fine.)

Boundary Conditions
• Periodic Boundary Condition

• Fixed Boundary Condition

• Open Boundary Condition

• Helical Boundary Condition

s1 s4s2 s3s4 s1

s1 s4s2 s3sL sR

s1 s4s2 s3

Boundary Conditions
• Periodic Boundary Condition

• Fixed Boundary Condition

• Open Boundary Condition

• Helical Boundary Condition

s1 s4s2 s3s4 s1

s7 s8 s9

s4 s5 s6

s1 s2 s3

s7 s8 s9

s4 s5 s6

s1 s2 s3

s7 s8 s9

s4 s5 s6

s1 s2 s3

s7 s8 s9

s4 s5 s6

s1 s2 s3

s7 s8 s9

s4 s5 s6

s1 s2 s3s7 s8 s9

s4 s5 s6

s1 s2 s3

s7 s8 s9

s4 s5 s6

s1 s2 s3

s7 s8 s9

s4 s5 s6

s1 s2 s3

• magnetization (order parameter)

• magnetic susceptibility

• specific heat

• Binder's (fourth-order) cumulant

• correlation function

Measurements
⟨m⟩ = 1

N ⟨ ∑N
i=1 si ⟩

χ = βN (⟨m2⟩ − ⟨m⟩2)

c =
β2

N (⟨E2⟩ − ⟨E⟩2)

U4 = 1 −
⟨m4⟩

3⟨m2⟩2

G(2)
c (i, j) = ⟨sisj⟩ − ⟨si⟩⟨sj⟩

Python Implementation [M(RT)2]
IT'S VERY SLOW. NOT RECOMMENDED. BUT, ...

import numpy as np

import matplotlib.pyplot as plt

L = 64 # L x L lattices

T = 2.0 # temperature

mcs_max = 1000

N = L * L # total number of site

index of nearest neighbor spins

neighbor = [[(i + 1) % L + (i // L) * L,

 (i - 1) % L + (i // L) * L,

 (i + L) % N,

 (i - L) % N

] for i in range(N)]

initial state : random

spin = 2 * np.random.randint(2, size = N) - 1

mag = np.sum(spin)

magarr = np.zeros(mcs_max)

M(RT)^2 single spin update

pc = np.exp(-2.0 / T * np.arange(5))

for mcs in range(mcs_max) :

 for i in range(N) :

 snn = spin[i] * np.sum(spin[neighbor[i]])

 if snn <= 0 :

 mag = mag - 2 * spin[i]

 spin[i] = -spin[i]

 elif pc[snn] > np.random.random() :

 mag = mag - 2 * spin[i]

 spin[i] = -spin[i]

 magarr[mcs] = mag / N

See what happens ...
In fact, MC measurements are correlated, often very much.

2.4. Analyzing Monte Carlo data

• Monte Carlo measurements should be started after the Markov chain
provides a distribution sufficiently close to the asymptotic distribution.

• The number of equilibration (thermalization) steps should be several (>10)
times of an autocorrelation time measured from the very beginning.

• This is one of the bottleneck for parallelization with massive independent
MC running across many CPUs. Every cpu needs its own thermalization.

Equilibration time

τeq ≫
∑∞

t=1 (⟨A0At⟩ − ⟨A⟩2)
⟨A2

0⟩ − ⟨A⟩2

Autocorrelation time
• A measure of how long it takes from one state to a significantly different

another state. Ideally, it should be a time interval between different
measurements, which is practically not possible.

• Usually the equilibration time is much longer than the autocorrelation time.

• Autocorrelation function

• Integrated autocorrelation time

C(t) = ⟨A(ti)A(ti + t)⟩ − ⟨A⟩2 ∝ exp(−t/τexp)

τint = 1 + 2
∞

∑
t=1

C(t)
C(0)

≈ 2∫
∞

0

C(t)
C(0)

dt = 2τexp

Exponentially decaying autocorrelation function

C(t) = ⟨A(t′￼+ t)A(t′￼)⟩ − ⟨A⟩2 ∝
1

tmax − t

tmax−t

∑
t′￼=0

A(t′￼+ t)A(t′￼) −
1

tmax − t

tmax−t

∑
t′￼=0

A(t′￼+ t) ⋅
1

tmax − t

tmax−t

∑
t′￼=0

A(t′￼)

(Newman and Barkema)

Trouble happens when t gets 'close' to tmax :

- very large statistical fluctuations

- poor accuracy at its tail

- Thus, you have to run it for a very long time
(as long as many correlation times)!

- Left figure: tmax = 1,000,000 mcs.

Error estimate of uncorrelated measurements

Standard error : standard deviation of a true estimate

Our error estimate : deviation of from Ā ⟨A⟩

You have done uncorrelated measurements on : . M A {A1, A2, …, AM} sample mean . Ā =
1
M

M

∑
i=0

Ai

⟨Ā⟩ =
1
M ∑

i

⟨Ai⟩ = ⟨A⟩ best estimate of a sample mean = true expectation value

σ2
A = ⟨A2⟩ − ⟨A⟩2

Δ2
A = ⟨(Ā − ⟨A⟩)2⟩ =

σ2
A

M
≈

s2
A

M − 1

s2
A = (A2) − (Ā)2 =

1
M ∑

i

A2
i − (1

M ∑
i

Ai)
2

⟨s2
A⟩ =

M − 1
M [⟨A2⟩ − ⟨A⟩2] =

M − 1
M

σ2
A

We do not know it.

We know it from the measurements!

Binning analysis

Δ2
A ≡ ⟨(Ā − ⟨A⟩)2⟩ =

σ2
A

M
+

1
M2 ∑

i≠j
(⟨AiAj⟩ − ⟨A⟩2)

Error estimate for correlated samples:

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 ... AMAM-1AM-2

τint τint τint τint

(second term) =
2

M2

M

∑
i=1

M−i

∑
t=1

(⟨AiAi+t⟩ − ⟨A⟩2) ≈
2
M

∞

∑
t=1

(⟨A1A1+t⟩ − ⟨A⟩2)

Assumption:
correlation decay rapidly as

.| i − j | → ∞

V. Ambegaokar and M. Troyer, Am. J. Phys. 78, 150 (2010)

2σ2
A

M
τA

ΔA = σA
1 + 2τA

M
corrected error

Binning analysis
V. Ambegaokar and M. Troyer, Am. J. Phys. 78, 150 (2010) [arXiv:0906.0943]

Measuring error estimate and integrated autocorrelation time at once.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A(1)
2

A(2)
2

A(1)
5A(1)

3 A(1)
4 A (1)

7A(1)
6 A(1)

8A(1)
1

A(2)
1 A(2)

3 A(2)
4

A(3)
1 A(3)

2A(l)
i =

1
2 (A(l−1)

2i−1 + A(l−1)
2i)

Less correlated as it proceeds to the next layer.

Binning analysis
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16

A (1)
2

A (2)
2

A(1)
5A (1)

3 A(1)
4 A (1)

7A(1)
6 A (1)

8A(1)
1

A(2)
1 A (2)

3 A(2)
4

A(3)
1 A (3)

2

A(l)
i =

1
2 (A(l−1)

2i−1 + A(l−1)
2i)

Error estimate at the l-th layer if uncorrelated

Δ(l)
A = [1

Ml(Ml − 1)

Ml

∑
i=1

(A(l)
i − A(l))

2

]
1/2

ΔA = σA
1 + 2τA

M
l → ∞

τA =
1
2

lim
l→∞ (

Δ(l)
A

Δ(0)
A)

2

− 1

V. Ambegaokar and M. Troyer, Am. J. Phys. 78, 150 (2010) [arXiv:0906.0943]

i = 1,…, Ml ≡ M/2l

Integrated autocorrelation time Keep track of to test the convergence!Δ(l)
A

s2
A

τ(int)
A ≡ 1 + 2τA

Not converged!

Not converged!

Converged!

Binning analysis : an example

Calculation of Measurement Errors
• What if your quantity is a function of other estimates, e.g. specific heat,

magnetic susceptibility, and Binder's cumulant.

• Magnetic susceptibility : how can you estimate
the error of this quantity? The binning analysis is not applicable.

• Blocking method, bootstrap resampling method, jackknife method.

• Blocking method: intuitive, simple, but (a naive version is) unreliable.

• Jackknife method: easy, fast, but independent samples needed.

χ = βN (⟨m2⟩ − ⟨m2⟩)

Blocking method

N = 16

M = 4

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A16A15A14A12 A13

bin 1 bin 2 bin 3 bin 4

1. Prepare bins (blocks) of consecutive measurements

2. Compute a quantity (e.g. susceptibility, specific heat) within each block

B1 B2 B3 B4

Option 1. Assume no correlation between 's.B

N/M ≫ τint

Δ2
B ≈

s2
B

NB − 1

Option 2. Do the binning analysis with the data set of 'sB

(block size dependent!)
(not recommended)

Jackknife method
1. Split the measurements into bins of size .M N/M ≫ τint

N = 16

M = 4

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A16A15A14A12 A13

bin 1 bin 2 bin 3 bin 4

2. Try to discard each bin to prepare a measurement of with remaining dataFi

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A16A15A14A12 A13

bin 1 bin 2 bin 3 bin 4

F1

e.g

Jackknife method
3. Jackknife error estimate

Jackknife measurements: F0, F1, F2, …, FM (: computation with a full data set)F0

ΔF ≈
M

∑
i=1

(Fi − F̄)2

Error estimateExpectation value Jackknife or Bootstrap ?

Jackknife

+ more suitable for small samples
+ quick and easy

- poor for non-smooth estimator

Bootstrap

- computationally more intensive

+ all purposes, no assumption
+ more precise

⟨F⟩ ≈ MF0 − (M − 1)F̄

≈ F0 ≈ F̄

Bootstrap resampling
1. Split the measurements into bins of size .M N/M ≫ τint

N = 16

M = 4

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A16A15A14A12 A13

bin 1 bin 2 bin 3 bin 4

2. Pick randomly bins with replacement. Compute the quantity of interest.M

3. Repeat Step 1-2 (a large number) times. Now you have done measurements.Nb Nb

4. Compute the error estimate at a given confidence interval with the distribution.

5. Often, the bootstrap estimate of the error is measured as:
ΔF =

1
Nb − 1

Nb

∑
i=0

(Fi − ⟨F⟩)2

Finite-size-scaling analysis

• Correlation length is always finite in a finite-size system.

• Strictly speaking, a phase transition does not exist in a finite-size system.

• Although, you can still define a pseudo-critical point which is getting
closer and closer to a true critical point as the system size increases.

• Critical behaviors can be also studied with the finite-size-scaling ansatz of
macroscopic observables.

Pseudo-critical point & Finite-size-scaling ansatz

ξL ∝ |T*L − Tc |−ν ∝ L T*L = Tc + aL−1/νA "pseudo"-critical point :
|T*L − Tc |L1/ν = O(1)

At the critical point, the correlation length diverges as in the thermodynamic limit.ξ ξ ∼ |T − Tc |−ν

However, in a finite-size system with length scale , it has to be like at the largest. L ξL ∼ L

How does an observable showing criticality like, , behave in a finite-size system? X ∼ |T − Tc |−x

XL(T) = LyXo(L/ξ) XL(T) = Lx/νX̃o (|T − Tc |L1/ν)Finite-Size-Scaling ansatz :

XL(T*L) = LyX̃o(L/ξL) ∝ Ly XL(T*L) ∝ |T*L − Tc |−x ∝ ξx/ν
L ∝ Lx/ν

y = x/ν

• magnetization

• magnetic susceptibility

• specific heat

Finite-size-scaling ansatz

mL = L−β/νℳo (tL1/ν)

χL = L−γ/ν𝒳o (tL1/ν)

cL = L−α/ν𝒞o (tL1/ν)

c*L ∼ log L (α = 0)

⟨m⟩ = 1
Ld ⟨ ∑Ld

i=1 si ⟩

χ = βLd (⟨m2⟩ − ⟨m⟩2)

c =
β2

Ld (⟨E2⟩ − ⟨E⟩2)

leading-order behavior in t ≡ (T − Tc)/Tc

***2D Ising model () : α = 0 c(t) ∼ − log | t |

The fourth-order cumulant
a.k.a. Binder cumulant, Binder parameter

UL = 𝒰o (tL1/ν)UL = 1 −
⟨m4⟩L

3⟨m2⟩2
L

pL(m, t) = Lβ/νp̃o(|m |Lβ/ν, tL1/ν)

i.e. a true critical point = a system-size-invariant crossing point in UL

%ǫȥƎơɭ -ʠȟʠȍŔȥʋ

bȶɭ ʋǠǫɽ ƎǫɽʋɭǫŹʠʋǫȶȥ࡬ ǫʋ ǠȶȍƎɽ ʋǠŔʋ
〈
M4〉

L
=
〈
M2〉2

L
ŔȥƎ

ʋǠơɭơǉȶɭơ UL(T) =
2
3 ǉȶɭ T < Tcࡳ zȥ ɽʠȟȟŔɭ ́࡬ ˁơ

ƎơȟȶȥɽʋɭŔʋơƎ ʋǠŔʋ

UL(T) =






2
3 ǉȶɭ T < Tc

const. ǉȶɭ T = Tc

0 ǉȶɭ T > Tc

࢐ࠎࠐ࢏

ࠐࠑ

The fourth-order cumulant
a.k.a. Binder cumulant, Binder parameter UL = 1 −

⟨m4⟩L

3⟨m2⟩2
L

pL(m) =
Ld

2πσ2
L

exp (−
Ldm2

2σ2
L) pL(m) =

1
2

Ld

2πσ2
L {exp [−

Ld(m − ms)2

σ2
L] + exp [−

Ld(m − ms)2

σ2
L]}

⟨m4⟩ = 3⟨m2⟩2 ⟨m4⟩ = ⟨m2⟩2

UL = 0 UL = 2/3

*figures taken from L. Böttcher's lecture note

FSS analysis
1. Locate the critical point, as precisely as you can.

• Crossing point of Binder cumulants: (and)

• Maximum point of susceptibility or specific heat. (and)

2. Estimate the critical exponents

• Maxima of susceptibility and specific heat (and)

3. Verify them or measure them agian by with the finite-size-scaling
curve collapse

Tc 1/ν

Tc 1/ν

γ/ν α/ν

Example : fourth-order cumulant
2D Ising model, single-spin update, equilibration = 100,000 MCS, measurement = 1,000,000 MCS

Tc ≈ 2.269

ν ≈ 1

Why not just trying the FSS collapse?
• Quality of the FSS collapse is often judged by one's eyes 😅

• There are some ways to systematically measure the quality. For example,

σ2 =
1

xmax − xmin ∫
xmax

xmin
∑

L

χ̃2
L(x) − [∑

L

χ̃L(x)]
2

dx (See Ch.8 of Newman & Barkema)

S =
1
𝒩 ∑

i,j

(yij − Yij)2

dy2
ij + dY2

ij
Houdayer and Hartmann PRB 70, 014418 (2004)
Kawashima and Ito, JPSJ 62, 435 (1993)

Srafino et al., arXiv:1905.09512 [PNAS 118 (2021)]

or pyfssa: https://pyfssa.readthedocs.io/en/stable/

https://pyfssa.readthedocs.io/en/stable/

Why not just trying the FSS collapse?

We have a problem...

Rescaled points of different L's
are not on the same line:

The deviation can't be computed
directly.

1. histogram reweighting

2. interpolation

2.5. Critical slowing down &
Cluster update algorithms

Example: susceptibility and specific heat
Error bars around the critical point increases rapidly with increasing system size L!

2D Ising model, single-spin update, equilibration = 100,000 MCS, measurement = 1,000,000 MCS

• At the critical point, the correlation time diverges, too!

• It is getting worse as the system size increases!

• This is a major issue with the single-spin update scheme.

- It would need extremely long MC sweeps to simulate a large-size system.

Critical slowing down

τ ∼ | t |−zν : dynamical exponentz

ξ ∼ | t |−ν τ ∼ ξz ∼ Lz

What about updating many spins instead of a single spin?

Autocorrelation time computed at

using the binning analysis.

Tc

(with single-spin updates)

Critical slowing down

τ ∼ Lz

z ≈ 2

averaged over 20 independent samples

Cluster algorithms
• Why not updating many spins at once, instead of a single spin?

• Cluster update algorithms ➔ much shorter autocorrelation time 
➔ significantly reduces the critical slowing down

• Popular algorithms in classical spin systems: Swendsen-Wang, Wolff
cluster updates

• Although, the cluster update schemes are model-dependent. There are
cases where a cluster update strategy is not available.

= ∑
{si}

∑
nij

∏
⟨i,j⟩

[e−βJ(1 − δsi,sj
)δnij,0 + eβJδsi,sj {(1 − p)δnij,0 + pδnij,1}] ≡ ∑ P(σ, n)

Fortuin-Kasteleyn representation

Z = ∑
{si}

eβJ∑⟨i,j⟩ sisj = ∑
{si}

∏
⟨i,j⟩

eβJ [(1 − p) + pδsi,sj] = ∑
{si}

∑
nij

∏
⟨i,j⟩

eβJ [(1 − p)δnij,0 + pδsi,sj
δnij,1]

p = 1 − e−2βJ

X X
p1 − p

different neighboring spins same neighboring spins

deleted (n=0) deleted (n=0) active (n=1)

bond percolation at a given spin configuration

Swendsen-Wang algorithm

R. H. Swendsen and J.-S. Wang, PRL 58, 86 (1987).

J.-S. Wang and R. H. Swendsen, Physica A 167, 565 (1990).

1.Mark active bonds with probability p
for neighboring bonds between the
same spins. p = 1 − exp[−2βJ]

Swendsen-Wang algorithm

R. H. Swendsen and J.-S. Wang, PRL 58, 86 (1987).

J.-S. Wang and R. H. Swendsen, Physica A 167, 565 (1990).

1.Mark active bonds with probability p
for neighboring bonds between the
same spins.

2. Identify ALL clusters connected
through the active bonds.

p = 1 − exp[−2βJ]

Swendsen-Wang algorithm

R. H. Swendsen and J.-S. Wang, PRL 58, 86 (1987).

J.-S. Wang and R. H. Swendsen, Physica A 167, 565 (1990).

1.Mark active bonds with probability p
for neighboring bonds between the
same spins.

2. Identify ALL clusters connected
through the active bonds.

3.Assign a new spin +1 or -1 randomly
for each cluster.

p = 1 − exp[−2βJ]

Swendsen-Wang algorithm
OLD NEW

Detailed Balance

Z = ∑
{si}

∑
nij

∏
⟨i,j⟩

[e−βJ(1 − δsi,sj
)δnij,0 + eβJδsi,sj {(1 − p)δnij,0 + pδnij,1}] ≡ ∑ P(σ, n)

p(σ)W(σ → σ′￼) = p(σ′￼)W(σ′￼ → σ)

p(σ) gb(n |σ) gc(σ → σ′￼) A(σ → σ′￼) = p(σ′￼) gb(n |σ′￼) gc(σ′￼ → σ) A(σ′￼ → σ)

P(σ, n) = P(σ′￼, n)

detailed balance condition

SW update
acceptance = 11constant constant

Detailed Balance
Z = ∑

{si}
∑
nij

∏
⟨i,j⟩

[e−βJ(1 − δsi,sj
)δnij,0 + eβJδsi,sj {(1 − p)δnij,0 + pδnij,1}] ≡ ∑ P(σ, n)

P(σ, n) = P(σ′￼, n)

x
x

x
xx

x

x
x

(1 − p)eβJ

(1 − p)eβJ

peβJpeβJ

e−βJ

e−βJ

Try !p = 1 − e−2βJ

Numerical Bottleneck

• In the Swendsen-Wang algorithm, "all" clusters must be identified.

• Cluster identification can be a major bottleneck.

• Hoshen-Kopelmann algorithm for cluster labelling

• Newman-Ziff algorithm

• Wolff update is preferred if available because of its simplicity.

Wolff algorithm

U. Wolff, PRL 62, 361 (1989).

1. Choose a random site to be a starting site.

2. From the starting site, make a cluster with the
neighboring sites of the same spin through
active bonds chosen with probability

.

3. Expand the cluster by inspecting the neighbors
of newly joined sites until it stops growing.

4. Flip the spin of the cluster.

p = 1 − exp(−2βJ)

Wolff algorithm

U. Wolff, PRL 62, 361 (1989).

1. Choose a random site to be a starting site.

2. From the starting site, make a cluster with the
neighboring sites of the same spin through
active bonds chosen with probability

.

3. Expand the cluster by inspecting the neighbors
of newly joined sites until it stops growing.

4. Flip the spin of the cluster.

p = 1 − exp(−2βJ)

Python implementation
import numpy as np

from collections import deque

def wolff(k, S, A, p, m) :

 nc = 1

 s0 = S[k]

 deq = deque()

 deq.append(k)

 S[k] = -s0

 while deq :

 i = deq.popleft()

 for j in A[i] :

 if S[j] == s0 :

 if np.random.random() < p :

 deq.append(j)

 S[j] = -s0

 nc = nc + 1

 m = m - 2 * nc * s0

 return m, nc

mcs_max = 100000

pc = 1.0 - np.exp(-2.0 / T)

run like this:

for mcs in range(mcs_max) :

 loc = np.random.randint(N)

 mag, nc = wolff(loc, spin, neighbor, pc, mag)

Settings such as spin, mag, neighbor,
T, L, and N are the same as defined in

the implementation of MRT2.

Detailed Balance

W(σA → σB) ∝ (1 − p)dA

OLD STATE (A)

stopping dead bonds (red-red) = dA

transition probability

energy

EA = − JdA + JdB + (irrelevant)

other dead bonds (red-blue) = dB

Detailed Balance

W(σB → σA) ∝ (1 − p)dB

NEW STATE (B)

stopping dead bonds (blue-blue) = dB

transition probability

energy

EB = − JdB + JdA + (irrelevant)

other dead bonds (blue-red) = dA

Detailed Balance
W(σB → σA) ∝ (1 − p)dB

energy EB = − JdB + JdA + (irrelevant)

W(σA → σB) ∝ (1 − p)dAtransition probability

EA = − JdA + JdB + (irrelevant)

detailed balance
W(σA → σB)
W(σB → σA)

= exp[−β(EB − EA)]

(1 − p)dA−dB = exp[−2βJ(dA − dB)] p = 1 − e−2βJ

Improved estimators
Swendsen-Wang

Wolf

two spin term:

⟨m2⟩ = 1
N2 ∑ij ⟨sisj⟩ = 1

N2 ⟨∑k n2
k ⟩ : number of spins in cluster knk

⟨n⟩ = ⟨∑k pknk⟩ = 1
N ⟨∑k n2

k ⟩ = N⟨m2⟩

 : probability of choosing a cluster k of size nkpk =
nk

N

χ = β (⟨n⟩ − N⟨m⟩2)

<latexit sha1_base64="Pez1TP+vreF9SxvfE+AS+q5FiBI=">AAACiHicbVFNb9QwEHUChRK+FjhyGbECISGtkmqhcECqyoVjkdi20nq1cpxJ1q1jR/YEWEX5LfwnbvwbvLtRBS0jjfRm3nz5OW+08pSmv6P41u29O3f37yX3Hzx89Hj05Ompt62TOJNWW3eeC49aGZyRIo3njUNR5xrP8stPG/7sGzqvrPlK6wYXtaiMKpUUFFLL0U+uhak0gl+q4BfA3S7+CFxjSbxLeI6VMp1wTqz7zuk+yeAVcMIf1KlyB1SAPQhTXIUXIXQI1gCtwnRRI0jdekLXA+dJejXCBt59Vx77hKMphj0Jd6pa0WQ5GqeTdGtwE2QDGLPBTpajX7ywsq3RkNTC+3mWNrQIU0lJvdnRemyEvBQVzgM04TC/6LZC9vAyZAoorQtuCLbZvzs6UXu/rvNQWQta+evcJvk/bt5S+X7RKdO0hEbuFpWtBrKw+RUolENJeh2AkE6FW0GuhBMy6OWTIEJ2/ck3wenBJHs3mX6Zjo+OBzn22XP2gr1mGTtkR+wzO2EzJqO96E00jd7GSZzGh/GHXWkcDT3P2D8WH/8BNjrEaw==</latexit>

hsisji =
⇢

1 if i and j are on the same cluster
0 otherwise

Dynamical exponent
Wolff single-cluster update algorithm

τ = τsteps
⟨n⟩
Ld

= τsteps
χ

βLd

χ = β⟨n⟩

Lz ∼ Lzsteps ⋅ Lγ/ν ⋅ L−d

z = zsteps +
γ
ν

− d

Dimension M(RT)2 Wolff Swendsen-Wang

d = 2 z = 2.167(1) z = 0.25(1) z = 0.25(1)

d = 3 z = 2.02(2) z = 0.33(1) z = 0.54(2)

at T → T+
c

(T > Tc)

How much improved:

How much improved:

2.6. Other models and issues

q-state Potts model

H = − ∑
⟨i,j⟩

δ(σi, σj)

q-state Potts model

(σi = 1,…, q)

Two-state Potts model (q = 2) is equivalent to the Ising model

H = − ∑
⟨i,j⟩

δ(σi, σj) = −
1
2 ∑

⟨i,j⟩
[2δ(σi, σj) − 1] − ∑

⟨i,j⟩

1
2

= sisj

M(RT)2 and cluster algorithm should work for the q-state Potts model as well.

Heat-bath algorithm
M(RT)2 algorithm is inefficient at low temperature

in the Potts model with a large q.
σ1

σ4 σ2

σ3

σ0

Heat-bath algorithm

p(σ0 = n → m) =
exp[−βE(σ0 = m)]

∑q
l=1 exp[−βE(σ0 = l)]

M(RT)2 = selection (4/q to get alined)

and then there's a chance to get accepted.

No rejection.
All values of q are considered
to be a new state.

XY model
H = − J∑

⟨i,j⟩

si ⋅ sj = − J∑
⟨i,j⟩

cos(θi − θj)

M(RT)2 single-spin update Wolff cluster update

Just like the Ising model

Spin direction update:

θ′￼ = [θ − C/2,θ + C/2]

Choose parameter  
to adjust the acceptance ratio ~ 0.5

C

Choose a direction .n̂
Bond activation probability:

Padd = 1 − exp[−2β(n̂ ⋅ si)(n̂ ⋅ sj)]

Spin flip: si s′￼i
n̂⊥

reflection

Reweighting method
⟨O⟩β =

1
Zβ ∑

s

O exp[−βEs] =
1
Zβ ∑

s

O e−(β−β0)Es e−β0Es =
∑s O e−(β−β0)Es e−β0Es

∑s e−(β−β0)Es e−β0Es
=

⟨Oe−(β−β0)Es⟩β0

⟨e−(β−β0)Es⟩β0

1. Run an MC simulation at and save the record of measurement and .

2. Compute and at a new temperature .

β0 O(t) E(t)

∑
t

O(t) e−(β−β0)E(t) ∑
t

e−(β−β0)E(t) β ≈ β0

Histogram reweighting

For an energy-based observable O(E), ⟨O⟩β =
∑E gβ0

(E)O(E)e−(β−β0)E

∑E gβ0
(E)e−(β−β0)E

energy histogram measure at β0

First-order transition
The critical slowing down gets even worse!Almost impenetrable barrier occurs.

"super"critical slowing down

τ ∼ exp[2σLd−1]

pmin

pmax
∝ exp[−2σLd−1]

Multicanonical Monte Carlo

Pmuca(s) ∝ exp[−βEs − f(Qs)] ≡ Pcan(Q)W(Q)

⟨O⟩ =
⟨O(Q)W−1(Q)⟩muca

⟨W−1(Q)⟩muca

Reweighting can be generalized. ⟨O⟩ =
∑s Os exp[−βEs]

∑s exp[−βEs]
=

∑s OsW−1
s ⋅ Ws exp[−βEs]

∑s W−1
s ⋅ Ws exp[−βEs]

B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)
B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)
W. Janke, Physica A 254, 164 (1998)

MUCA (MUltiCAnonical) algorithm

W(Q) ∝ [Pcan(Q)]−1

Wang-Landau method
F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001)

Exploring energy space with flat histogram

Pmuca(s) ∝ exp[−βEs − f(Es)]

Pmuca(E) → Γ(E) W(E)

W(E) = 1/Γ(E)

Choice of weight in the Wang-Landau algorithm

Acceptance probability (Metropolis)

A(E1 → E2) = min [1,
W(E2)
W(E1)]

= min [1,
Γ(E1)
Γ(E2)]

Run until you get a "flat" histogram of E.

Wang-Landau methodWang-Landau sampling algorithm

Department of Physics & Photon Science

�(E) H(E)Density of states: Histogram:

Random walk exploring energy landscape

1. Set H(E) = 0

2. Try a single-spin flip update

p(E1 ! E2) = min

✓
�(E1)

�(E2)
, 1

◆

H(E) ! H(E) + 1

ln�(E) ! ln�(E) + ln f

0. Set �(E) = 1

accepted with

3. Record the current state

until
H is “flat”.

restart with f !
p

f

ln f = 1,

Hmin/H̄ > �H

(e.g. 0.95,0.9,0.8)

terminates
when ln f < �f

(e.g. 10-8)

F. Wang and D. P. Landau, Phys. Rev. Lett. 86, 2050 (2001)
F. Wang and D. P. Landau, Phys. Rev. E 64, 056101 (2001)

Once you get ,Γ(E)
You can compute

⟨O⟩ =
∑E Γ(E)O(E)e−βE

Z

for all temperatures.

Remarks

• Pay enough attention to the equilibration and autocorrelation time.

• Be careful with issues like critical slowing down and impenetrable barrier.

• No one accepts Monte Carlo data without the error estimates.

• Finite-size-scaling analysis is sometimes very delicate. Practice.

• We have only covered "classic" techniques of Monte Carlo simulations.
There are many "modern" developments. A lot to study 😀

