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Preface

This note is prepared for the five-hours lecture in the 19th

KIAS-APCTP Winter School on Statistical Physics 2022 held
at APCTP, Pohang in January 10–14, 2022.

The renormalization group theory is a key to understand the
scale invariance in the equilibrium and dynamical critical phe-
nomena. It explains the reason why the critical phenomena are
universal and characterized with the power laws. Moreover, it
provides useful and practical tools to investigate phase transi-
tions and critical phenomena.

The renormalization group transformation has multiple faces.
The position space method using the block spin concept of
Kadanoff is intuitively appealing and applicable straightfor-
wardly to lattice systems, but less systematic. The momentum
shell method is less intuitive but applicable systematically to
continuous systems. The field theoretical method is powerful
but highly sophisticated and least intuitive.

This lecture covers the position space and the momentum
shell renormalization group theory for the equilibrium Ising
model and the φ4 theory. It also covers the dynamic renor-
malization group theory for dynamic critical phenomena of the
Kardar-Parisi-Zhang equation. Finally, if time permits, we will
learn how the renormalization group transformation can be as-
sisted with numerical methods such as the Monte Carlo simu-
lations.

The main reference of this lecture is the textbook Lectures on

phase transitions and the renormalization group written by N. Gold-
enfeld [Gol92].
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1
Basic concepts of

renormalization group

theory

1.1 Block spins

We start with the story of a block spin which serves as a step-
ping stone for the development of the renormalization group (RG)
theory. Kadanoff [Kad66] proposed an interesting idea to justify
the scaling ansatz of Widom [Wid65]. The block spin concept
plays a central role in his idea, which makes the meaning of the
scale invariance at the critical point transparent.

Consider a ferromagnetic Ising model in a d-dimensional lat-
tice. Each lattice site i at ri P a0Z

d with lattice constant a0 is
occupied by an Ising spin σi = ˘1. The system is close to the
critical point with a small reduced temperature ǫ ” (T ´ Tc)/Tc

and an external magnetic field h.
The lattice can be divided into cells or blocks of bd sites (see

Fig. 1.1). The cell size b is chosen to satisfy ba0 ! ξ with the
correlation length ξ. Now we will make reasonable assump-
tions: (i) Spins in a cell fluctuate coherently. Then, their collec-
tive states can be described by a single variable µα = ˘1, called
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1 Basic concepts of renormalization group theory

Figure 1.1: Block spin transformations with b = 2.

a block spin:

µα »
1

bdxσyb

ÿ

iPα

σi, (1.1)

where xσyb =
b

b´2d
ř

i,jPαxσiσjy is the magnitude of the lo-

cal magnetization. The lattice constant for the block spins is
a1

0 = ba0. (ii) Local fluctuations of spins within cells and long
distance fluctuations over cells are decoupled. Then, the free
energy density f (ǫ, h) is the sum of the contributions from the
local spins [ fb(ǫ)] and from the block spins [b´d f (ǫ1, h1)]:

f (ǫ, h) » fb(ǫ) + b´d f (ǫ1, h1). (1.2)

The block spin has the same symmetry as the original spin. It
justifies the use of the same free energy function f . The fac-
tor b´d accounts for the increase of the lattice constant. The
reduced temperature ǫ1 and the magnetic field h1 for the block
spins should satisfy the constraint

ξ(ǫ, h) = bξ(ǫ1, h1). (1.3)
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1 Basic concepts of renormalization group theory

Given a finite b, fb(ǫ) should be an analytic function of ǫ and
can be ignored. Likewise, ǫ1 and h1 should also be analytic in ǫ

and h.
We can infer the information on ǫ1 and h1 using the power

law scaling behavior near the critical point. Since ξ(ǫ, h = 0) „
|ǫ|´ν, Eq. (1.3) implies that

ǫ1 = byt ǫ with yt = 1/ν. (1.4)

Since the spontaneous magnetization scales as m(ǫ, 0) = ´ B f
Bh

ˇ

ˇ

ˇ

h=0
„

| ´ ǫ|β, Eq. (1.2) implies that

h1 = byh h with yh = d ´ β/ν. (1.5)

Kadanoff shows that the scale invariance underlies the power
law scaling behavior of critical phenomena. He justifies the
Widom’s scaling hypothesis

f (ǫ, h) » b´d f (byt ǫ, byh h), (1.6)

and demonstrates that the scaling from is nothing but the recur-
sion relation of the free energy at different coupling constants
linked by a scale change. Then, the following question arises:
Can we understand the critical scaling behavior by deriving

the mapping between coupling constants at different length

scales? The renormalization group theory answers to this ques-
tion.

3



1 Basic concepts of renormalization group theory

1.2 Formal definition of renormalization

group transformation

Consider Ising spins σ = tσiu on the d-dimensional lattice. The
Hamiltonian can be written in the form

´βH[σ] =
ÿ

n

KnΘn(σ), (1.7)

where Kn’s are coupling constants for operators Θ0 = 1, Θ1 =
ř

i σi, Θ2 =
ř

xi,jy σiσj, and so on. We divide the lattice into cells

of size bd, and coarse-grain the system by mapping bd spins
σα = tσi|i P αu in a cell α to a block spin µα. The coarse-graining

is represented by a conditional probability Pc.g. (µα|σα). Any
choice consistent with the Z2 symmetry

Pc.g.(´µα| ´σα) = Pc.g.(µα|σα) (1.8)

will be okay. Among others, common choices for Pc.g. are

Pc.g. (µα|σα) = δ(µα, σα0) [decimation]

= δ

(

µα, sgn

[

ÿ

iPα

σi

])

[majority rule].
(1.9)

The statistical weight of a block spin configuration µ = tµαu is
given by

e
ř

n K1

nΘn(µ) = Trσ

[

ź

α

Pc.g.(µα|σα)

]

e
ř

m KmΘm(σ). (1.10)

This relation defines the RG equation

K 1 = R(b)(K) (1.11)
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1 Basic concepts of renormalization group theory

Figure 1.2: RG flow in the parameter space.

with a map or flow function R(b). We add the superscript (b)

explicitly to specify the scale factor b. Applying the RG transfor-
mation successively, one obtains a sequence K Ñ K 1 Ñ K2 Ñ
¨ ¨ ¨ , which is called the RG flow. The RG transformation relates
physical quantities of the system along the RG flow generated
by Eq. (1.11).

To compare both systems of σ and µ on the equal footing,
one needs to rescale the length scaling. It is done by measuring
the distance in units of a lattice constant in discrete lattices
or calibrating the distance r1 = r/b in the continuum space.
Thus, the correlation length decreases by the factor b: ξ(K 1) =
ξ(K)/b.

The coarse-graining and the rescaling complete the RG trans-
formation. Figure 1.2 shows a RG flow schematically in the cou-
pling constant parameter space. It also illustrates the change of
the length scale along the RG flow. Table 1.1 summarizes the
relations between the original and the renormalized systems.

5



1 Basic concepts of renormalization group theory

Table 1.1: Transformations under the RG.

quantities transformations

coupling constant K 1 = R(b)(K)

partition function Z1(K 1) = Z(K)

free energy density f (K 1) = bd f (K)

observable On = ´ B f
BKn

On(K 1) = bd
ř

m
BKm
BK1

n
Om(K)

susceptibility χmn = B2 f
BKnBKm

χmn(K 1) = ¨ ¨ ¨

lattice constant a1
0 = ba0

displacement ∆r1 = b´1∆r

correlation length ξ(K 1) = b´1ξ(K)

correlation function C(r1;K 1)9C(r = br1;K)

6



1 Basic concepts of renormalization group theory

1.3 Fixed points

The fixed point K˚ of the RG equation is of special importance.
It is determined by

K˚ = R(b)(K˚). (1.12)

The relation ξ1 = ξ/b implies that the correlation length at the
fixed point is either 0 or 8. A fixed point with ξ = 0 is called a
trivial fixed point. It represents a phase of the system. On the
other hand, a fixed point with ξ = 8 is called the critical fixed

point governing critical phenomena.
We can distinguish the trivial and critical fixed points with

the linear stability analysis. In the vicinity of a fixed point K˚,
the RG equation for δK = K ´ K˚ can be linearized

δK 1 = Λ
(b) ¨ δK (1.13)

with a linear RG transformation matrix Λ
(b). Diagonalizing Λ

(b),
we can rewrite Eq (1.13) in the form







u1
1

u1
2
...






=







by1

by2

. . .













u1

u2
...






, (1.14)

where un and yn are called a scaling variable and a scaling

dimension, respectively. There are three types of scaling vari-
ables:

• yn ą 0: un is a relevant scaling variable. The fixed point is
unstable in this direction.

• yn ă 0: un is an irrelevant scaling variable. The fixed point
in stable in this direction.

7



1 Basic concepts of renormalization group theory

• yn = 0: un is a marginal scaling variable. It may be truly
marginal, marginally relevant, or marginally irrelevant.

In terms of scaling variables, the free energy transforms as

f (u1, u2, ¨ ¨ ¨ , un, ¨ ¨ ¨ ) = b´d f (by1 u1, by2u2, ¨ ¨ ¨ , byn un, ¨ ¨ ¨ ).
(1.15)

It suffices to consider only relevant scaling variables because
irrelevant scaling variables vanish in the large b limit (unless
there exist dangerously irrelevant scaling variables).

A magnetic system usually has two relevant scaling variables:
a reduced temperature u1 = ǫ with yt and a magnetic field

u2 = h with yh. Thus, the free energy satisfies the Widom scal-
ing form

f (ǫ, h) » b´d f (byt ǫ, byh h). (1.16)

All the critical exponents are determined by the scaling dimen-
sions of relevant scaling variables.

The coupling constant can flow into a critical fixed point
along the irrelevant directions. The basin of attraction of a criti-
cal fixed point is called the critical manifold. It corresponds to
the phase boundary separating phases at either side.

1.4 RG flow and phase diagram

We illustrate typical RG flows for Ising-type systems in Fig. 1.4.
Figure 1.4 (b) is for the Ising model with nearest and next
nearest neighbor interactions with strength Knn = βJnn and
Knnn = βJnnn. The critical fixed point has a relevant direction
and an irrelevant direction. The irrelevant direction defines a
critical manifold. Given Jnn and Jnnn, the model moves along
a line as the inverse temperature β = 1/(kBT) varies. Such a
line is called a physical line. A phase transition takes place

8



1 Basic concepts of renormalization group theory

Figure 1.3: Typical RG flows of Ising systems in the (T, h)
plane (a) and in the (Knn, Knnn) plane (b). The
zero-temperature fixed point (ZFP) and the infinite-
temperature fixed point (IFP) are the trivial fixed
points with ξ = 0. They represent the paramagnetic
and the ferromagnetic phases, respectively. The crit-
ical manifold (CM) is drawn with a dashed line in
(b). It is the phase boundary separating the ferro-
magnetic phase and the paramagnetic phase.

when the physical line crosses the critical manifold. The criti-
cal behavior is governed by the critical fixed point into which
the critical manifold flows. Note that any models with different
ratio Jnnn/Jnn display the same critical behavior. This example
hints a reason why critical phenomena are classified to the uni-

versality class.

1.5 Exercise

1. From the scaling ansatz of Widom in Eq. (1.16), derive the
critical exponents α for the specific heat, β for the order
parameter, γ for the susceptibility, and ν for the correla-

9



1 Basic concepts of renormalization group theory

tion length in terms of the scaling dimensions yt and yh.

2. Phase transitions take place in the thermodynamic limit
where the linear size L of a system goes to infinity. Thus,
the uL = 1/L can be regarded as a relevant scaling vari-
able with the scaling dimension yL = 1. Write down the
extended scaling ansatz including the additional relevant
scaling variable uL. Find the L dependence of the specific
heat, the order parameter, and the susceptibility on L at
the critical point ǫ = h = 0.

3. Explain why there are two independent scaling dimen-
sions yt and yh describing the critical scaling behavior of
the magnetic system.

4. In Fig. 1.4(a), the fixed point denoted as ZFP is often
called the discontinuity fixed point because the system un-
dergoes a discontinuous phase transition at that point as
one varies h. Show that yh = d at the discontinuity fixed
point.

10



2
Position space RG for Ising

models

We will exercise the RG transformation for the Ising model on
discrete lattices. In the following examples, the RG transforma-
tion can be done exactly owing to the special properties of the
underlying lattice structure. We warn that the RG transforma-
tion can be done only approximately in most cases.

2.1 1-d Ising spin chain

The Hamiltonian of the 1-d Ising spin chain is given by

H[σ] ” βH = ´K
ÿ

iPZ

σiσi+1 ´ h
ÿ

iPZ

σi, (2.1)

where K = βJ and h = βh0.
We coarse-grain the system with a scale factor b = 2 by

replacing a pair of spins (σ2i, σ2i+1) with a block spin µi =
σ2i [decimation]. Note that decimated spins (blue filled circles
in Fig. 2.1) do not interact with other decimated spins. Thus,
the partial trace over tσ2i+1u can be taken independently. The

11



2 Position space RG for Ising models

coarse graining by decimation

rescaling

σ

µ

Figure 2.1: RG transformation of the 1d Ising spin chain and
the RG flow. The green lines are physical lines.

RG equation is derived from

eK1µµ1+h1(µ+µ1)/2 = c
ÿ

σ=˘1

eKσ(µ+µ1)+h(σ+(µ+µ)/2). (2.2)

In terms of x = e´4K and y = e´2h, we obtain

x1 = x
(1 + y)2

(x + y)(1+ xy)
, y1 = y

x + y

1 + xy
. (2.3)

It has a critical fixed point at (x˚, y˚) = (0, 1) with T = h = 0.
Thus, the 1d Ising spin system is in the paramagnetic disor-
dered phase at any finite temperatures.

2.2 Ising model on a hierarchical lattice

The Ising model on a hierarchical lattice is also solved exactly
by using the RG transformation [KG81]. The hierarchical lattice
is generated iteratively as shown in Fig. 2.2. Due to the hierar-
chical structure, decimation by reversing the iteration leads to
the exact RG transformation. Decimated spins do not interact

12



2 Position space RG for Ising models

Figure 2.2: Recursive rule for a hierarchical lattice and the RG
flow. The green lines are physical lines.

with each other. Thus, the coarse-graining is done trivially as in
the 1d Ising model. In terms of x ” e´4K and y = e´2h, the RG
equation is given by

x1 = x2 (1 + y)4

(x + y)2(1 + xy)2
, y1 = y

(x + y)2

(1 + xy)2
. (2.4)

The RG flow is drawn schematically in Fig. 2.2. There is
a critical fixed point at (xc, 1) where xc is determined with
(1 + xc)4 = 16xc. It governs the critical behavior of the spon-
taneous symmetry breaking transition. Near the critical fixed
point, the RG equation can be linearized as δx1 = Λtδx and
δy1 = Λhδy with Λt = 1.67857 . . . = Λh ´ 1. Decimation reduces
the number of total sites by factor b̃ = 4. The scaling dimensions
of the temperature-like scaling variable δx and of the magnetic-
field-like scaling variable δy are yt = ln Λt/ ln b̃ = 0.373616 . . .
and yh = ln Λh/ ln b̃ = 0.710731 . . .. The exponent ν̃ = 1/yt is
then interpreted as a correlation volume exponent.

13



2 Position space RG for Ising models

2.3 Exercise

1. The ferromagnetic q-state Potts model has the Hamilto-
nian

βH = ´K
ÿ

xi,jy

δ(σi, σj), (2.5)

where σi = 1, ¨ ¨ ¨ , q is the Potts spin and δ(, ) is the Kro-
necker δ symbol. Perform the position space RG transfor-
mation for the Potts model on the hierarchical network,
and find the critical point Kc(q).

2. The Ising model on the two-dimensional triangular lat-
tice is a pedagogical example for the approximate posi-
tion space RG transformation. Following standard text-
books such as Ref. [Gol92], perform the RG analysis of
the phase transition in the model.

14



3
Dynamical RG Theory

In this chapter, we will learn how to study long time and long
distance scaling behavior of a dynamical system using the RG
theory. A dynamical system is defined by an equation of mo-
tion, which is specified by a set of parameters K . The dy-

namic RG transformation means the coarse-graining of the
length scale by a factor of b and the time scale by a factor of
bz followed by the rescaling. The resulting effective equation of
motion allows us to find the RG flow equation K 1 = Rb(K).
The asymptotic scaling behavior is also obtained from the fixed

points of the RG flow. To be concrete, we explain all the details
of the dynamic RG for the model system of the Kardar-Parisi-

Zhang (KPZ) equation.

3.1 Kardar-Parisi-Zhang equation

The KPZ equation [KPZ86] describes the stochastic growth of
an interface over a d-dimensional substrate. The interface height
h(r P R

d, t) P R follows

Bh

Bt
= ν∇2h +

λ

2
|∇h|2 + η(r, t), (3.1)

15



3 Dynamical RG Theory

where η(r, t) is a Gaussian white noise characterized by

xη(r, t)y = 0, xη(r, t)η(r1, s)y = Dδ(r ´ r1)δ(t ´ s) (3.2)

with the noise strength D. The KPZ equation with colored noises
is studied in [MHKZ89]. The KPZ equation is specified by the
parameter set K = tν, D, λu.

Starting from the flat initial configuration h(r, 0) = 0, the
interface roughens satisfying the dynamic scaling

A

(h(r, t)´ h(r1, t))2
E

„
"

|r ´ r1|2χ, |r ´ r1| ! t1/z

t2χ/z, |r ´ r1| " t1/z (3.3)

where χ is the roughness exponent and z is the dynamic ex-

ponent. The spatial growth of the interface fluctuations is de-
scribed by the roughness exponent χ and the temporal growth
by the growth exponent χ/z. The dynamic exponent z describes
the relation between the time scale and the length scale, τ „ ξz.

When the nonlinear or KPZ term λ is equal to zero, Eq. (3.1)
reduces to the linear Edwards-Wilkinson (EW) equation. In the
linear theory, the exponents take the values χ = χEW = (2 ´
d)/2 and z = zEW = 2. We will investigate the effect of the KPZ
term using the RG.

3.2 Power counting

It is instructive to perform the naive power counting or di-

mensional analysis. It corresponds to the RG transformation
without coarse-graining. Consider a rescaled field h1(r, t) that
is a reduced copy of the original field:

h(r, t) Ñ h1(r, t) = b´χ h(br, bzt) (3.4)

16



3 Dynamical RG Theory

with a scale factor b ą 1. The reduction ratios for the length
scale and the time scale are different in general. The rescaled
field follows the equation of motion

bχ´z Bh1

Bt
= bχ´2ν∇2h1 + b2χ´2 λ

2
|∇h1|2 + η(br, bzt)

Bh1

Bt
= bz´2ν∇2h1 + bχ+z´2 λ

2
|∇h1|2 + bz´χη(br, bzt).

(3.5)

This form is identical to the original KPZ equation with the
modified parameters

ν1 = bz´2ν, D1 = bz´2χ´dD, λ1 = bχ+z´2λ . (3.6)

Note that the rescaled noise η1(r, t) = bz´χη(br, bzt) is also a
Gaussian white noise, whose strength D1 follows from

@

η1(r, t)η1(r1, s)
D

= bz´2χ´dDδ(r ´ r1)δ(t ´ s). (3.7)

The power counting confirms that the EW equation is scale-

invariant (v1 = v, D1 = D, λ1 = λ = 0) with the choice of
z = zEW and χ = χEW . Plugging the EW exponents into (3.6),
one obtains that λ1 = bχEW´zEW´2λ = b1´d/2λ. When d ă 2, a
nonzero λ grows indefinitely as b increases. It implies that the
nonlinear term is a relevant perturbation to the EW equation
for d ă 2. The simple power counting fails to predict the scaling
exponents of the KPZ equation for d ă 2, which calls for the RG
approach.

17



3 Dynamical RG Theory

3.3 KPZ equation in the Fourier space

and diagram representation

It is convenient to work in the Fourier space with wavevector
k P R

d and angular frequency ω. For simplicity, we introduce a
momentum variable p = (k, ω) and a shorthand notation

ż

d̄p ”
ĳ

d̄kd̄ω ”
ĳ

ddk

(2π)d

dω

2π
. (3.8)

The Fourier and inverse Fourier transformations are defined as

h(p) =

ĳ

ddrdt h(r, t)e´i(k¨r´ωt)

h(r, t) =

ż

d̄p h(p)ei(k¨r´ωt).

(3.9)

The KPZ equation in the Fourier space becomes

h(p) = G0(p)η(p)

´
λ

2
G0(p)

ż

d̄p1
(

k2

4
´ k12

)

h
(p

2
´ p1

)

h
(p

2
+ p1

)

,
(3.10)

where

G0(p) ”
1

νk2 ´ iω
(3.11)

is called the free propagator. The noise in the Fourier space
η(p) has the correlator

xη(p)η(p1)y = D δ̄(p+ p1), (3.12)

where
δ̄(p+ p1) ” (2π)d+1δ(k+ k1)δ(ω + ω1). (3.13)

One can handle the algebraic relations conveniently by using
a diagram method. We introduce the following rules:

18



3 Dynamical RG Theory

Figure 3.1: Diagram representation of the KPZ equation.

• (Thick line) = h(p), (thin line) = G0(p), and (ˆ symbol)
= η(p). They are assigned to a momentum variable.

• (3-vertex associated with an incoming momentum p and

two outgoing momenta p1 and p2) =
ş

d̄p1 d̄p2

(

´ λ
2

)

(k1 ¨

k2) δ̄(p ´ p1 ´ p2).

The diagram representation of the KPZ equation is shown in
Fig. 3.1.

We introduce additional rules to represent the noise average.

• (Empty circle ˝ associated with two momentum variables
p and p1) = D δ̄(p + p1). This symbol replaces the aver-
age of the product of two noise variables [constraction].
Equation (3.12) can be written as

xˆpˆp1y = ˝p,p1 (3.14)

where the subscripts are added to specify associated mo-
menta and can be omitted.

• The noises are Gaussian distributed. Thus, the contrac-
tion of multiple noise variables follows from the Wick’s

theorem. For example,

xˆ1 ˆ2 ˆ3ˆ4y = ˝1,2 ˝3,4 + ˝1,3 ˝2,4 + ˝1,4 ˝2,3 . (3.15)

19



3 Dynamical RG Theory

3.4 Momentum shell RG transformation

The momentum shell RG transformation with a scale factor b ą
1 proceeds in the following way [MM75] (see also Fig. 3.2):

1. Momentum shell: Introduce an ultraviolet cutoff Λ and
assume that |k| ă Λ. Its inverse corresponds to a lattice
constant a0 = 2π/Λ of a lattice system. The momentum
shell BΛ is the region where Λ/b ă |k| ă Λ. We will use
a subscript ą(ă) to specify that a quantity is associated
with a long wavelength wavevector (k P CΛ) or a short
wavelength wavevector (k P BΛ).

2. Coarse-graining: Solve the equation of motion to obtain
hą in terms of hă and η. Eliminating hą from the equa-
tion of motion and averaging over ηą the remaining terms,
one can obtain the effective equation of motion for hă
with a renormalized parameter K 1 = tν1, D1, λ1u.

3. Rescaling: Rescale the momentum and the field variables
to define the renormalized field

hR(k, ω) = b´χ hă(k/b, ω/bz). (3.16)

with free parameters χ and z.

4. RG flow: Comparing the equations of motion for hR and
for h, one can derive the RG equation Kb = Rb(K).

5. Fixed point: The fixed point condition K˚ = Rb(K
˚)

determines the scaling exponents z and χ describing the
long time and long distance scaling behavior.

The coarse-graining is the hardest step in the RG transforma-
tion. We will adopt the perturbative RG scheme where the
coarse-graining is carried out perturbatively as a series in λ.
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Figure 3.2: Momentum shell RG procedure.

3.5 Coarse graining

An integration over a momentum variable p = (k, ω) can be

split into
ş

d̄p =
ş

d̄ω
(

ş

BΛ
d̄k+

ş

CΛ
d̄k
)

. To distinguish diagrams

associated with k P CΛ and k P BΛ, we will add a slash to the
latter. Then, the equations of motion for hă(p) and hą(p) have
the diagrammatic representation as shown in Fig. 3.3.

Figure 3.3: KPZ equation for hă and hą.

Diagrams for hą include hą itself. Successive iterations then
lead to the perturbation series for hą. Upon iteration, the num-
ber of vertices remains the same or increases by one. Thus, n

iteration yields the perturbative solution for hą which is exact
up to O(λn). Figure 3.4 shows the solution for hą up to O(λ2).

Plugging these diagrams into the equation of motion for hă,
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Figure 3.4: hą(p) up to O(λ2).

Figure 3.5: Effective equation of motion for hă up to O(λ2).
The diagrams will be rearranged to have the form
of the KPZ equation with the renormalized propa-
gator G1, noise η1, and nonlinear coupling constant
λ1. Diagrams contributing to the effective propaga-
tor, noise, and nonlinear coupling are marked with
p©, n©, and λ©, respectively.
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Figure 3.6: Renormalization diagram for the noise strength.

one obtains the effective equation of motion for hă. It is pre-
sented in Fig. 3.5. The diagrams will be rearranged to find the
effective propagator G1, the effective noise η1, and the effective
nonlinear coupling strength λ1. One also needs the diagrams of
the order of O(λ3) for λ1, which are omitted in Fig. 3.5.

3.5.1 Effective noise η1(p)

The three diagrams marked with n© in Fig. 3.5 include only
propagators and noises. Thus, their sum, denoted as Ση(p), is
equal to G0(p)η

1(p). The effective noise amplitude D1(p) is de-
fined by

xΣη(p)Ση(p
1)y = G0(p)G0(p

1)D1(p) δ̄(p+ p1). (3.17)

The contraction is represented by the diagram in Fig. 3.6 up to
O(λ2), which yields

D1(p) =D + 2

(

´
λD

2

)2 ż

BΛ

d̄k1
ż

d̄ω1
(

k2

4
´ k12

)2

ˆ

ˇ

ˇ

ˇ

ˇ

G0

(

k

2
´ k1,

ω

2
´ ω1

)

G0

(

k

2
+ k1,

ω

2
+ ω1

)ˇ

ˇ

ˇ

ˇ

2

+O(λ4).

(3.18)

The coarse-grained noise becomes colored whilst the bare
noise is white. Since we are interested in the long time and
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long distance property, we approximate the noise as a white
noise whose strength is given by the value D1 = D1(p=0) at
zero momentum. The integral in (3.18) can be evaluated analyt-
ically d. When b = eδs with infinitesimal δs, it is given by

D1 » D

(

1 +
Dλ2

8ν3
Kdδs

)

+O(λ4), (3.19)

where Kd is a non-universal constant depending on d and Λ.

3.5.2 Effective propagator G1(p)

As evident from Fig. 3.5, the effective propagator G1 is the re-
sponse function of the field to the effective noise:

G1(p) =

B

δhă(p)

δη1(p)

F

η

. (3.20)

In addition to the diagrams Ση = G0η1, the diagrams marked
with p© in Fig. 3.5 also contribute to the propagator. The renor-
malized propagator G1 has the diagram representation as shown
in Fig. 3.7. It is given by

G1(p)

G0(p)
=1 + 4G0(p)

(

´
λ

2

)2

D

ż

BΛ

d̄k1
ż

d̄ω1

"(

k

2
´ k1

)

¨
(

k

2
+ k1

)* "(

´
k

2
´ k1

)

¨ k
*

G0

(

k

2
´ k1,

ω

2
´ ω1

) ˇ

ˇ

ˇ

ˇ

G0

(

k

2
+ k1,

ω

2
+ ω1

)ˇ

ˇ

ˇ

ˇ

2

+ O(λ4)

(3.21)

Note that the second p© diagram in Fig. 3.5 vanishes identically
due to the momentum conservation.
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Figure 3.7: Renormalization diagram for the propagator.

The integral can be evaluated analytically near k = 0 and
ω = 0. It is given by

G1(k, 0) =
1

ν1k2
= G0(k, 0)

[

1 +
Dλ2(d ´ 2)Kd

8dν3
δs + O(k2, ω2, λ4)

]

.

(3.22)
Thus, the parameter ν renormalizes to

ν1 = ν

(

1 ´
Dλ2(d ´ 2)

8dν3
Kdδs

)

. (3.23)

where b = eδs with infinitesimal δs.

3.5.3 Effective nonlinear coupling λ1

In Fig. 3.5, diagrams contributing to the renormalization of λ

are marked with λ©. Nontrivial diagrams appear at the order of
O(λ3). Diagrams renormalizing λ1 up to O(λ3) are presented
in Fig. 3.8. The expression for λ1 also depends on momenta of
emanating edges. The long time and long distance behavior is
dominated by the value at zero momentum. A straightforward
algebra yields all the higher order diagrams are summed up to
zero and only the bare diagram survive. Thus,

λ1 = λ. (3.24)

It is not an accidental coincidence but the consequence of the
Gallilean invariance of the KPZ equation [KPZ86].
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Figure 3.8: Renormalization diagrams for λ1.

3.6 RG flow equation

The RG transformation is completed by rescaling. We have al-
ready learned how the parameters are modified under rescal-
ing. Applying Eq. (3.6) to ν1, D1, λ1, we finally obtain the RG
equation

νb = bz´2ν1, Db = bz´d´2χD1, λb = bχ+z´2λ1. (3.25)

For infinitesimally small δs (b = eδs), the RG equation can be
written in the differential equation form. They are given by

dν

ds
= lim

δsÑ0

νb=eδl ´ ν

δs
=

(

z ´ 2 ´
(d ´ 2)Dλ2

8dν3
Kd

)

ν

dD

ds
=

(

z ´ d ´ 2χ +
Dλ2

8ν3
Kd

)

D

dλ

ds
= (χ + z ´ 2) λ.

(3.26)
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3.7 Fixed point at d = 1

The fixed point condition for λ yields the scaling relation

χ + z = 2. (3.27)

To find χ and z, we need to know the fixed point value of
λ̄ ”

a

DKdλ2/ν3. Combining the RG equation in Eq. (3.26),
we obtain

dλ̄

ds
= B(λ̄) =

(

2 ´ d

2

)

λ̄ +

(

2d ´ 3

8d

)

λ̄3. (3.28)

The flow function B is plotted in Fig. 3.9. When d ą 2, the
EW fixed point at λ̄ = 0 is a stable fixed point. The nonlinearity
is irrelevant at the EW fixed point. In addition to the stable EW
point, there is an unstable fixed point (open circular symbol).
It raises a question whether there exists a strong coupling KPZ
fixed point at dimensions d ą 2. This issue is beyond the scope
of the perturbative RG approach.

When d ă 3/2, the EW point is unstable and there appears
the stable KPZ fixed point (red circular symbol) at

λ̄˚ =
b

4d(2 ´ d)/(3 ´ 2d). (3.29)

The scaling exponents at the KPZ fixed point are

zKPZ = 2 ´
2 ´ d

8d
(λ̄˚)2 = 2 ´

(2 ´ d)2

2(3 ´ 2d)

χKPZ = 1 ´
d

2
+

(d ´ 1)

8d
(λ̄˚)2 = 1 ´

d

2
+

(d ´ 1)(2 ´ d)

2(3 ´ 2d)
.

(3.30)
In particular, at d = 1, the scaling exponents at the KPZ fixed
point are given by

zKPZ =
3

2
, χKPZ =

1

2
. (3.31)
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EW
KPZ

λ̄

dλ̄
dl d < 3/2

3/2 < d < 2

d > 2

Figure 3.9: RG flow of λ̄.

28



4
Momentum shell RG for

the φ4 theory

This chapter covers the renormalization group transformation
for the φ4 theory in the d-dimensional continuum space. The
φ4 theory for a continuous field φ(r) in volume V is defined by
the Hamiltonian

H[φ(r)] = βH[φ(r)] =

ż

V
ddr

[

1

2
|∇φ|2 +

1

2
u2φ2 +

1

4
u4φ4 ´ hφ

]

(4.1)
with the partition function

Z(u2, u4, h; V) =

ż

[Dφ]e´H[φ(r)]. (4.2)

It is customary to set the coefficient of the gradient term to a
constant value 1/2 redefining the field variable. One may call
H an effective Hamiltonian or an action. One can derive this
form of the action from a microscopic model system on a dis-
crete lattice by using the Hubbard-Stratonovich transforma-

tion. We refer the readers to (Exercise 3-3) and (Exercise 6-3) of
Ref. [Gol92].

The Ginzburg-Landau theory ignores any thermal fluctua-
tions and approximates the path integral in (4.2) with the ex-
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tremal value at the optimal field φ̄(r) satisfying

´∇2φ̄(r) + u2φ̄(r) + u4φ̄3(r) ´ h(r) = 0. (4.3)

When the magnetic field is uniform h(r) = h, it reduces to the
mean field theory with

u2φ̄ + u4φ̄3 = h. (4.4)

If one takes into account the fluctuations around the optimal
fields up to the second order in δφ(r) = φ(r) ´ φ̄(r), then it
reduces to the Gaussian model. All these approximate theories
belong to the mean field universality class and fail to describe
the correct critical phenomena in dimensions below the upper

critical dimension du = 4.

4.1 Power counting and dimensional

analysis

The action H in Eq. (4.1) is dimensionless. Using this, one finds
the dimensions of the field φ and the coupling constants in
terms of the powers of length L:

[r] = L1, [φ] = L1´d/2, [u2] = L´2, [u4] = Ld´4, [h] = L´(1+d/2).
(4.5)

The dimensional analysis reveals how the system transforms
under the simple rescaling (RG without coarse graining)

r Ñ r1 = r/b, φ(r) Ñ φ1(r1) = b´1+d/2φ(r). (4.6)

Changing the variables in Eq. (4.2), one finds that

Z(u2, u4, h; V) = Z(b2u2, b4´du4, b1+d/2h; V/bd). (4.7)
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up to a constant.
When d ą du = 4, the quartic term, which vanishes as the

scale factor b grow, is irrelevant. Thus, the φ4 field theory be-
comes equivalent to the Gaussian field theory and the mean
field theory becomes exact. On the contrary, when d ă du, the
quartic term is a relevant perturbation to the Gaussian field
theory. The simple rescaling does not provide any useful infor-
mation on the critical behavior.

4.2 Momentum shell RG

It is convenient to work in the Fourier space:

φ(r) =

ż

Λ

d̄k ϕ(k)eik¨r,

ϕ(k) =

ż

ddr φ(r)e´ik¨r = ϕ(´k)˚,

(4.8)

where
ş

Λ
d̄k denotes the integration within the ultraviolet cutoff

Λ = 2π/a0. Since φ(r) is a real field, ϕ(´k) = ϕ(k)˚. The
action is written as

H[ϕ] =

ż

Λ

d̄k

[

1

2
(k2 + u2)|ϕ(k)|

2

]

+
u4

4

ż

Λ

1,2,3,4
ϕ1 ϕ2 ϕ3 ϕ4 δ̄(k1 + k2 + k3 + k4),

(4.9)

where we used the shorthand notation

ż

i
=

ż

d̄ki =

ż

ddki

(2π)d
and ϕi = ϕ(ki). (4.10)
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The momentum shell RG proceeds in the following proce-
dure:

1. Introduce a scale factor b and separate the field ϕ(k) into
the long and short wavelength components.

ϕ(k) =

#

ϕl(k) for k P CΛ (|k| ă Λ/b)

ϕs(k) for k P BΛ (Λ/b ă |k| ă Λ)
(4.11)

2. (Coarse graining) Perform the partial integration over ϕs

in the momentum shell BΛ to derive the effective action
H1 for ϕl .

e´H1[ϕl ] =

ż

[Dϕs]e
´H[ϕl+ϕs]. (4.12)

The coarse-graining yields effective coupling constants

u1
2 = f2(u2, u4; b), u1

4 = f4(u2, u4; b), h1 = fh(h; b).
(4.13)

3. (Rescaling) Rescale the momentum variable k Ñ kR = bk

and the field ϕl(k) Ñ ϕR(kR) = z´1
b ϕl(kR/b) to complete

the RG transformation. This procedure is the same as the
power counting or the dimensional analysis.

4. (RG equation) Combining the coarse-graining and the
rescaling, one finally obtain the RG equation

u2,b = b2u1
2, u4,b = b4´du1

4, hb = b1+d/2h1. (4.14)

5. Draw the RG flow and find the fixed points and relevant

scaling variables and scaling exponents.

In this lecture, we focus on the case without external magnetic
field.
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4.3 Perturbative expansion for coarse

graining (h = 0)

The coarse-graining of (4.12) is the hardest task in the RG calcu-
lations. It demands some mathematical techniques such as the
diagram expansion, linked cluster theorem, Wick’s theorem,
and so on. These techniques are repeatedly used in the ana-
lytic calculations. This section may be useful for those who are
interested in the analytic methods.

The action in Eq. (4.9) is the sum of three terms:

H = H0,l [ϕl ] +H0,s[ϕs] + V[ϕs; ϕl ] (4.15)

where

H0,l[ϕl ] =

ż

Λ/l

d̄k

[

1

2
(k2 + u2)|ϕl(k)|

2

]

H0,s[ϕs] =

ż

BΛ

d̄q

[

1

2
(q2 + u2)|ϕs(q)|2

]
(4.16)

are the Gaussian (free) Hamiltonian for the long and short
wavelength components, and V[ϕs; ϕl ] = O(u4) is the φ4 term.
The renormalized action is then written as

e´H1[ϕl ] = Z0,se´H0,l [ϕl ]
ż

[Dϕs]e
´V[ϕs;ϕl ]

1

Z0,s
e´H0,s[ϕs ]

= Z0,se´H0,l [ϕl ]
A

e´V[ϕs;ϕl ]
E

s
,

(4.17)

where Z0,s =
ş

[Dϕs]e´H0,s[ϕs ] is the partition function for the
Gaussian model for ϕs. It only contribute to the analytic part
of the free energy and does not renormalize any coupling con-
stants. It will be ignored. x()ys stands for the canonical ensem-
ble average with respect to the Gaussian Hamiltonian H0,s. The
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Figure 4.1: Diagram rules

renormalized Hamiltonian is given by

H1[ϕl ] = H0,l[ϕl ] ´ ln
A

e´V[ϕs;ϕl ]
E

s
. (4.18)

4.3.1 Cumulant expansion

In principle, the ensemble average over the Gaussian Hamilto-
nian can be evaluated. However, since e´V is highly nonlinear,
the closed form expression for

@

e´V
D

s
is not available. Thus, we

rely on the cumulant expansion

ln
A

e´V
E

s
= ´xVys +

1

2

(

xV2ys ´ xVy2
s

)

+ ¨ ¨ ¨ , (4.19)

which is equivalent to the series expansion in u4.

4.3.2 Diagram method

Expressions for xVnys are too lengthy to manipulate. The dia-
gram method is an efficient way to handle such complicated ex-
pressions. We introduce the rule depicted in Fig. 4.1: (i) A thick

line corresponds to a field variable ϕ(k). It is associated with a
momentum variable, which may be omitted or written explic-
itly with an arrow. If k P CΛ, the field variable is represented
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Figure 4.2: Diagram representation of V[ϕs; ϕl ].

with a thin line. If k P BΛ, the field variable is represented with
a dashed line. (ii) A four-vertex means the integration over all
incoming momentum variables adding up to zero (momentum

conservation) with the amplitude u4/4.
Using these rules, V[ϕs; ϕl ] is represented with the diagram

in Fig. 4.2. Note that a thick line (ϕ) attached to a four-vertex
can be either a thin line (ϕl) or a dashed line (ϕs). Thus, the
original diagram is the sum of 16 diagrams, which are grouped
into five independent diagrams.

4.3.3 Gaussian average and Wick’s theorem

For the cumulants of V, we need to evaluate the correlation
functions xϕs(q1) ¨ ¨ ¨ ϕs(qn)ys with respect to the Gaussian Hamil-
tonian H0,s in Eq. (4.16). A correlation function of odd number
of fields is identically zero. The 2-point correlation function is
given by

C(q1, q2) ” xϕs(q1)ϕs(q2)ys = δ̄(q1 + q2)G0(q1) (4.20)

where

G0(q) =
1

q2 + u2
. (4.21)

is called the free propagator.

35



4 Momentum shell RG for the φ4 theory

Figure 4.3: Diagrammatic rule for contraction

A (2n)-point correlation function is given by a combination of
free propagators. The Wick’s theorem states that it is the sum,
over all ways pairing up of 2n fields into n pairs [contraction],
of the products of pairwise two-point correlation functions. For
example,

xϕs(1)ϕs(2)ϕs(3)ϕs(4)ys =C(1, 2)C(3, 4)+ C(1, 3)C(2, 4)

+ C(1, 4)C(2, 3).

(4.22)

We have already seen this this example in the discussion of the
KPZ system.

In a diagram method, the free propagator is represented with
a thin line. A propagator line should not be confused with a
field line. A propagator appears when two fields are contracted.
Thus, both ends of a propagator line are attached to a vertex.
On the other hand, one end of a field line is attached to a vertex
and another end is free. Figure 4.3 illustrates the diagram rule
for contraction.

4.4 Feynman rule for the coarse-graining

One can perform the coarse-graining by enumerating all the
cases where thick field lines (ϕ) are replaced with thin field
lines (ϕl) and dashed field lines (ϕs). We have done this in the
analysis of the KPZ equation. Careful readers may realize that

36



4 Momentum shell RG for the φ4 theory

such an enumeration is in fact unnecessary when one evaluates
the Gaussian average of the nth cumulant of V. It suffices to
contract any pairs of field lines directly by joining them to form
a propagator line. Remaining uncontracted edges should be re-
garded as the field lines ϕl . Here is the concise rule for the nth
order cumulant of V:

1. Draw n vertices . Each vertex has four edges.

2. Among 4n edges, pair up some of them and contract the
pairs. A contracted (uncontracted) edge will be called an
internal (external) edge. Contraction patterns of the same

topology contribute the same weight to the cumulants.
Thus, it is wise to find the set of topologically distinct con-
traction patterns and their degeneracy. According to the
linked cluster theorem, only connected diagrams con-
tribute to the cumulant. Disconnected diagrams do not
contribute to the cumulant and should be ignored.

3. A weight of a contraction pattern is obtained by replacing
an internal edge with a free propagator G0(q P BΛ) and
an external edge with a field ϕl(k P CΛ) and integrating
over all internal momenta q’s. Each vertex is assigned to a
factor (u4/4) and imposes the momentum conservation.

4. The cumulant is then given by the sum of the weights of
all contraction-generated connected diagrams.
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Figure 4.4: Diagrams for the first and the second order cumu-
lants of V.

4.5 Cumulants of V

We are now ready to calculate the cumulants of V[ϕs; ϕl ]. The
diagrams for the first and second order cumulants are given in
Fig. 4.4. The diagrams with two (four) external edges renormal-
ize u2 (u4). Those with no external edges contribute to the non-
singular part of the free energy density and do not renormal-
ize any coupling constants. There appears a diagram with six
external edges, which corresponds to a φ6 term. Higher order
non-linear terms are generated under the RG. The dimensional
analysis tells us that φ6 terms or higher order terms are less rel-
evant to the φ4 term. As far as the critical behavior is concerned,
we can ignore the RG-generated higher order terms. Note that
two diagrams in Fig. 4.4 vanish because they are not consistent
with the momentum conservation.
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The diagrams are evaluated to yield the renormalized action

H1[ϕl ] =

ż

CΛ

d̄k
1

2
(k2 + u2

2)|ϕl(k)|
2

+ 6
u4

4

(
ż

CΛ

d̄k|ϕl(k)|
2

)

I1(u2; b)

+
u4

4

ż

1,2,3,4PCΛ

ϕ
(1)
l ϕ

(2)
l ϕ

(3)
l ϕ

(4)
l δ̄1,2,3,4

´ 36
(u4

4

)2
ż

1,2,3,4PCΛ

ϕ
(1)
l ϕ

(2)
l ϕ

(3)
l ϕ

(4)
l δ̄1,2,3,4I2(u2; 1, 2, b),

(4.23)

where

I1(u2; b) =

ż

BΛ

d̄qG0(q)

I2(u2;k,k1, b) =

ż

BΛ

d̄qG0(q)G0(k+ k1 ´ q).

(4.24)

It is evident that the diagram with I1 renormalizes u2. The di-
agram with I2 renormalizes u4 with a momentum dependent
factor. The large length scale property is dominated by the cou-
plings at zero momentum. So, we will keep only the zero mo-
mentum component

I2(u2; b) = I2(u2;k1 = 0,k2 = 0; b). (4.25)

The coarse-graining renormalizes the coupling constants as

u1
2 = u2 + 3u4 I2(u2; b) + O(u2

4)

u1
4 = u4

(

1 ´ 9u4 I2(u2; b) +O(u2
4)
)

.
(4.26)
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4.6 RG equation

The RG transformation is completed by rescaling the momen-
tum and the field variable. The coupling constants acquire the
factor obtained in the dimensional analysis. Therefore, we fi-
nally obtain the RG flow equations:

u2
coarse-graining
ÝÝÝÝÝÝÝÝÝÝÝÝÑ u1

2

rescaling
ÝÝÝÝÝÝÝÑu2(b) = b2u1

2

u4
coarse-graining
ÝÝÝÝÝÝÝÝÝÝÝÝÑ u1

4

rescaling
ÝÝÝÝÝÝÝÑu4(b) = b4´du1

4.

(4.27)

It is convenient to consider the RG equation in the differ-

ential form. Let the scale factor b = eδs with an infinitesimal
logarithmic scale factor δs. Then,

I1 =

ż

Λ

Λe´δs
dq

Kdqd´1

q2 + u2
»

KdΛd

Λ2 + u2
δs

I2 »
KdΛ

d

(Λ2 + u2)2
δs

(4.28)

where Kd ” Sd´1/(2π)d with Sd´1 = 2πd/2/Γ(d/2) the surface
area of the unit d-sphere. The differential RG flow equation is
given by

du2

ds
= 2u2 +

3KdΛd

Λ2 + u2
u4 + O(u2

4)

du4

ds
= u4

(

(4 ´ d) ´
9KdΛd

(Λ2 + u2)2
u4 +O(u2

4)

)

.

(4.29)

4.7 Fixed points and ǫ-expansion

The RG flow equation in (4.29) predicts two fixed points: one
at u˚

4 = 0 and another at u˚
4 » (4 ´ d)(Λ2 + u˚

2 )
2/(9KdΛ4). The
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result of the perturbative RG is meaningful when the magni-
tude of u˚

4 is small. Thus, we expect that the perturbative RG
becomes accurate when the spatial dimensionality is close to
the upper critical dimension du = 4.

Let ǫ ” 4 ´ d. The fixed points are located at

(u˚
2 , u˚

4 ) =

$

&

%

(0, 0) (Gaussian)
(

´ Λ2

6 ǫ, 1
9K4

ǫ
)

+O(ǫ2) (Wilson-Fisher)

(4.30)
The Gaussian model appears as a fixed point of the RG transfor-
mation. In addition, there emerges a non-Gaussian fixed point
with u˚

4 = O(ǫ1), which is called the Wilson-Fisher fixed point 1.
The RG flow equation linearized around the fixed points are

d

ds

(

δu2

δu4

)

=

(

2 3K4Λ2

0 ǫ

)

G

(

δu2

δu4

)

d

ds

(

δu2

δu4

)

=

(

2 ´ ǫ
3 3K4Λ

2(1 + ǫ/6)
0 ´ǫ

)

WF

(

δu2

δu4

)

,

(4.31)

where ()G and ()WF are the linearize RG matrix at the Gaussian
and the Wilson-Fisher fixed points, respectively. The diagonal
elements are the scaling dimensions of the scaling fields δu2 and
δũ4 (linear combination of δu2 and δu4). The scaling exponents
are given by

(y2, y4) = (2, ǫ) at the Gaussian f.p.

= (2 ´
ǫ

3
, ´ǫ) at the Wilson-Fisher f.p.

(4.32)

The schematic RG flow in the parameter space is presented in
Fig. 4.5.

1Higher order cumulant expansions lead to the ǫ-expansion to higher order.
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Note that the sign of y4 changes as the sign of ǫ changes. The
nature of the phase transition also changes accordingly:

• d ă 4: The quartic term is relevant and makes the Gaus-
sian fixed point unstable. The system undergoes a phase
transition as one crosses the critical manifold flowing
into the Wilson-Fisher fixed point. The critical behavior
is therefore determined by the scaling exponents at the
Wilson-Fisher fixed point. The temperature-like scaling
variable δu2 = u2 ´ u˚

2 is relevant with the scaling dimen-
sion yt = y2 = 2 ´ ǫ/3 + O(ǫ2). The scaling dimension of
the magnetic field is given by yh = 2 ´ ǫ/2 +O(ǫ2).

• d ą 4: The quartic term is irrelevant and the Gaussian
fixed point is stable against the quartic term. The critical
manifold flows into the Gaussian fixed point. Thus, the
critical behavior is governed by the Gaussian fixed point.
The scaling dimensions are given by the mean field value
yt = 2 and yh = 3.
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Figure 4.5: RG flow of the φ4 model in dimensions below and
above the upper critical dimension du = 4. The
Wilson-Fisher (Gaussian) fixed points are marked
with red (black) dots. The critical manifolds sepa-
rating the ordered and the disordered phases are
drawn with blue lines.
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