Lecture 1 Statement of Selberg trace formula

1.1 Laplacian on a Riemannian manifold

undergraduate differential geometry
parametrized surface $S: \mathbf{r}(u, v)=(x(u, v), y(u, v), z(u, v)),(u, v) \in D$, where D is a domain in \mathbb{R}^{2}
first fundamental form $E d u^{2}+2 F d u d v+G d v^{2}$

$$
E=\mathbf{r}_{u} \cdot \mathbf{r}_{u}, \quad F=\mathbf{r}_{u} \cdot \mathbf{r}_{v}, \quad G=\mathbf{r}_{v} \cdot \mathbf{r}_{v}
$$

arclength of parametrized curve $(u(t), v(t)), a \leq t \leq b$:

$$
\int_{a}^{b} \sqrt{E u^{\prime}(t)^{2}+2 F u^{\prime}(t) v^{\prime}(t)+G v^{\prime}(t)^{2}} d t
$$

surface area

$$
\iint_{D} \sqrt{E G-F^{2}} d u d v
$$

main theme: express interesting quantities about S in terms of E, F, G (e.g. Gaussian curvature) Riemannian manifold (M, g) : smooth manifold M equipped with a positive-definite inner product $g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$ on the tangent space $T_{p} M$ at each point $p \in M$.

In local coordinates, $\left(x^{1}, \ldots, x^{n}\right): U \subset M \rightarrow \mathbb{R}^{n}$, the vectors

$$
\left\{\left.\frac{\partial}{\partial x^{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{n}}\right|_{p}\right\}
$$

form a basis of $T_{p} M . g$ is determined by n^{2} functions

$$
g_{i j}\left(x^{1}(p), \ldots, x^{n}(p)\right):=g_{p}\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p},\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)
$$

g is often specified by $d s^{2}=\sum_{j, k} g_{j k} d x^{j} d x^{k}$, line element $d V=\sqrt{\operatorname{det}(g)} d x^{1} \ldots d x^{n}:$ volume element
Laplace-Beltrami operator (Laplacian) Δ on M : operator taking functions into functions

$$
\Delta=-\sum_{j, k} \frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{j}}\left(\sqrt{g} g^{j k} \frac{\partial}{\partial x^{k}}\right)
$$

where $g^{j k}$ entries of the inverse of the matrix $\left(g_{j k}\right)$, and $g=\operatorname{det}\left(g_{j k}\right)$.
Assume M is compact, connected and orientable.
Δ has non-negative discrete eigenvalues

$$
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \ldots \rightarrow \infty
$$

with corresponding eigenfunctions

$$
\Delta \phi_{i}=\lambda_{i} \phi_{i}
$$

which form an orthonormal basis of $L^{2}(M)$.

Example 1.1 (circle). Laplacian on $S^{1}=\mathbb{R} / \mathbb{Z}: \Delta=-\frac{d^{2}}{d x^{2}}$
eigenfunctions $\varphi_{m}(x)=\mathrm{e}^{2 \pi \mathrm{i} m x}, m=0, \pm 1, \pm 2, \ldots$
eigenvalues $4 \pi^{2} m^{2}$
Example 1.2 (unit sphere). $\mathbf{r}(\theta, \varphi)=(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$
metric $d s^{2}=d \theta^{2}+\sin ^{2} \theta d \phi^{2}$
Laplacian:

$$
-\Delta=\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

eigenfunctions : spherical harmonics $f=Y_{l}^{m}$ for $l=0,1,2, \ldots, m=0, \pm 1, \pm 2, \ldots, \pm l$, where

$$
Y_{l}^{m}(\theta, \phi)=(-1)^{m}\left[\frac{(2 l+1)}{4 \pi} \frac{(l-m)!}{(l+m)!}\right]^{1 / 2} P_{l}^{m}(\cos \theta) \mathrm{e}^{\mathrm{i} m \phi}
$$

and P_{l}^{m} associated Legendre function of the first kind.
eigenvalues: $\lambda=l(l+1)$ with multiplicity $2 l+1$
Example 1.3 (flat torus). flat torus $T=$ quotient of \mathbb{R}^{n} by any lattice Λ
lattice : set of all integral linear combinations of a basis of \mathbb{R}^{n}
$f(x)=e^{2 \pi i\langle\xi, x\rangle}, \xi \in \mathbb{R}^{n}$ is well-defined on T exactly when $\langle\xi, x\rangle \in \mathbb{Z}$ for all $x \in \Lambda$.
Those ξ form a lattice Λ^{\vee}, called the dual lattice of Λ.
eigenfunctions : $e^{2 \pi i\langle\xi, x\rangle}$ for $\xi \in \Lambda^{\vee}$ with eigenvalue $4 \pi^{2}|\xi|^{2}$.
Milnor (1964) : there are non-isomorphic isospectral tori of dimension 16; there two lattices whose number of points having a given norm is always the same

In general, almost always impossible to find explicit eigenvalues and eigenfunctions
Selberg trace formula for compact hyperbolic surfaces : model for other general trace formulas; relates eigenvalues of the Laplacian and length spectrum of geodesics

1.2 Hyperbolic plane

two models of hyperbolic plane :
two models : unit disk $\mathbb{D}=\{z:|z|<1\}$ and upper-half plane $\mathbb{H}=\{z: \operatorname{Im} z>0\}$
line element $d s$, volume element $d \mu$, distance $d\left(z, z^{\prime}\right)$ between z, z^{\prime} :

	$d s^{2}$	$d \mu$	$\cosh d\left(z, z^{\prime}\right)$
\mathbb{D}	$\frac{4\left(d x^{2}+d y^{2}\right)}{\left(1-x^{2}-y^{2}\right)^{2}}$	$\frac{4 d x d y}{\left(1-x^{2}-y^{2}\right)^{2}}$	$1+\frac{2\left\|z-z^{\prime}\right\|^{2}}{(1-\|z\|)^{2}\left(1-\left\|z^{\prime}\right\|\right)^{2}}$
\mathbb{H}	$\frac{d x^{2}+d y^{2}}{y^{2}}$	$\frac{d x d y}{y^{2}}$	$1+\frac{\left\|z-z^{\prime}\right\|^{2}}{2 \operatorname{Im} z \operatorname{Im} z^{\prime}}$

Exercise 1.4. Laplacian takes the following form:

	$-\Delta$
\mathbb{D}	$\frac{\left(1-x^{2}-y^{2}\right)^{2}}{4}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$
\mathbb{H}	$y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$

$\operatorname{PSL}(2, \mathbb{R})=\operatorname{SL}(2, \mathbb{R}) /\{ \pm 1\}$ acts on $\mathbb{H}:$

$$
g: \mathbb{H} \rightarrow \mathbb{H}, \quad z \mapsto g z:=\frac{a z+b}{c z+d}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})
$$

An element of $\operatorname{PSL}(2, \mathbb{R})$ is an isometry of \mathbb{H}.
$-K=\operatorname{Stab}_{i}=\left\{\left(\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right), \theta \in \mathbb{R}\right\}$.
$-A=\operatorname{Stab}_{0, \infty}=\left\{\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right), \lambda>0\right\}$
$-N=\left\{\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right), t \in \mathbb{R}\right\}$
Let $g \in \mathrm{PSL}(2, \mathbb{R})$ with $g \neq \mathrm{Id}$.

1. $|\operatorname{tr}(g)|<2$ iff g is conjugated to an element of K iff g fixes a single point in \mathbb{H}.
2. $|\operatorname{tr}(g)|=2$ iff g is conjugated to an element of N iff g fixes a single point in $\partial \mathbb{H}$.
3. $|\operatorname{tr}(g)|>2$, iff g is conjugated to an element of A iff g fixes two points in $\partial \mathbb{H}$.
length of g :

$$
\ell(g):=\inf _{z \in \mathbb{H}} d(g z, z) .
$$

$l(g)>0$ only for hyperbolic g and is given by

$$
\ell(g)=2 \operatorname{arccosh}(|\operatorname{tr}(g)| / 2)
$$

1.3 Selberg trace formula

Let F be a compact Riemann surface of genus $g \geq 2$.
Uniformization theorem : F is conformally equivalent to $\Gamma \backslash \mathbb{H}$, where Γ is discrete, torsion-free subgroup of $\operatorname{PSL}(2, \mathbb{R})$.

Each element $\gamma \in \Gamma-\{I\}$ is hyperbolic since Γ is torsion-free (and so does not contain any elliptic elements) and cocompact (and so does not contain any parabolic elements);
metric on \mathbb{H} induces metric on F, and so Laplacian makes sense.
Exercise 1.5. For a hyperbolic $P \in \Gamma$, the centralizer $Z(P)=\{g \in \Gamma: g P=P g\}$ is an infinite cyclic group.

There exists unique generator P_{0} of $Z(P)$ such that $P=P_{0}^{n}$ for $n \in \mathbb{Z}_{>0}$.
Theorem 1.6 (Selberg). Let h be an analytic function on $|\operatorname{Im}(r)| \leq \frac{1}{2}+\delta$ such that

$$
h(-r)=h(r) \quad \text { and } \quad|h(r)| \leq A[1+|r|]^{-2-\delta} \quad(A>0, \delta>0)
$$

Then

$$
\sum_{n=0}^{\infty} h\left(r_{n}\right)=\frac{\operatorname{area}(F)}{4 \pi} \int_{-\infty}^{\infty} r h(r) \tanh (\pi r) d r+\sum_{\{P\}} \frac{\ell\left(P_{0}\right)}{e^{\ell(P) / 2}-e^{-\ell(P) / 2}} g(\ell(P))
$$

where the sum is over all conjugacy classes of hyperbolic elements; $\{P\}$ denotes the conjugacy class containing $P ; g(u)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} h(r) e^{-i r u} d r$.

The sums and integrals are all absolutely convergent.

Selberg trace formula and its applications

The sum can be rewritten as

$$
\sum_{\left\{P_{0}\right\}} \sum_{n=1}^{\infty} \frac{\ell\left(P_{0}\right)}{2 \sinh \left[n \ell\left(P_{0}\right) / 2\right]} g\left(n \ell\left(P_{0}\right)\right)
$$

where the sum is over all conjugacy classes of primitive hyperbolic elements.

Lecture 2 Applications

2.1 Spectrum of the Bolza surface

Use the disk model.
The Bolza surface is defined as the quotient

$$
G \backslash \mathbb{D}
$$

where G is subgroup of $\operatorname{SU}(1,1) /\{ \pm 1\}$, generated by

$$
g_{k}=\left[\begin{array}{cc}
\xi^{2} & e^{i k \pi / 4} \sqrt{2} \xi \\
e^{-i k \pi / 4} \sqrt{2} \xi & \xi^{2}
\end{array}\right], \text { where } \xi=\sqrt{1+\sqrt{2}}
$$

g_{k} and g_{k+4} are inverses of each other
We can the regular octagon as a fundamental domain.

This is a compact Riemann surface of genus 2. As an algebraic curve, its affine model is $y^{2}=x^{5}-x$.

The translations g_{k} all have the same length

$$
\ell\left(g_{k}\right)=2 \operatorname{arccosh}(1+\sqrt{2}) \approx 3.05714, k=0,1, \ldots, 7
$$

Fact: for any hyperbolic $P \in G, \ell(P)$ is of the form $2 \operatorname{arccosh}(m+n \sqrt{2})$ for some $m, n \in \mathbb{Z}_{>0}$. We apply the trace formula.
Choose any $\epsilon>0$ and define

$$
h_{z}(r)=\exp \left[-(z-r)^{2} / \epsilon^{2}\right]+\exp \left[-(z+r)^{2} / \epsilon^{2}\right] .
$$

For fixed $r, h_{z}(r)$ is sum of two Gaussians around r as a function of $z ; \epsilon$ standard deviation fourier transform of h_{z} (as a function of r):

$$
g_{z}(u)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} h_{z}(r) e^{-i r u} d r=\frac{\epsilon}{\sqrt{\pi}} \cos (z u) \exp \left[-\frac{\epsilon^{2}}{4} u^{2}\right]
$$

spectral side:

$$
\sum_{n=0}^{\infty} h_{z}\left(r_{n}\right)
$$

As a function of $z \in \mathbb{R}$, it has peaks around r_{n}.
geometric side: Consider the multiset $\left\{\ell\left(P_{0}\right):\left\{P_{0}\right\}\right\}$ of lengths of conj. classes. of primitive hyperbolic elements.

Order its elements $0<l_{1}<l_{2}<\ldots$ and let g_{n} be the multiplicity of l_{n}; e.g. $l_{1}=3.057 \ldots$ and $g_{1}=24$.

$$
\int_{-\infty}^{\infty} r \tanh (\pi r) h_{z}(r) d r+\frac{\epsilon}{2 \sqrt{\pi}} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{g_{n} l_{n}}{\sinh \left(k l_{n} / 2\right)} \cos \left(z k l_{n}\right) \exp \left[-\frac{\epsilon^{2}}{4}\left(k l_{n}\right)^{2}\right]
$$

By evaluating RHS for many z, we can plot it as a graph of z.
From all words of length ≤ 11, we find 206796230 primitive hyperbolic conjugacy classes; need 2.5 GB to save words; See https://github.com/chlee-0/bolza

2.2 Weyl's law

Let $F=\Gamma \backslash \mathbb{H}, \Gamma \subseteq \operatorname{PSL}(2, \mathbb{R})$ as before.
Let

$$
N(\lambda)=\#\left\{j: \lambda_{j} \leq \lambda\right\}
$$

Weyl's law:

$$
N(\lambda) \sim \frac{\operatorname{Area}(F)}{4 \pi} \lambda, \quad \lambda \rightarrow \infty
$$

2.3 Prime geodesic theorem

Let $\pi(x)$ be the number of prime closed geodesics γ such that $e^{\ell(\gamma)} \leqslant x$.
Prime geodesic theorem:

$$
\pi(x) \sim \frac{x}{\log (x)}, \quad x \rightarrow \infty
$$

Lecture 3 Sketch of proof

Assume $F=\Gamma \backslash \mathbb{H}$ so that F is a compact Riemann surface of genus ≥ 2.
\mathfrak{F} : compact fundamental domain of Γ (one can take this as a geodesic polygon) inner product on $L^{2}(\Gamma \backslash \mathbb{H})$:

$$
\left(f_{1}, f_{2}\right)=\int_{\mathfrak{F}} f_{1}(z) \overline{f_{2}(z)} d \mu(z)
$$

where

$$
d \mu(z)=\frac{d x d y}{y^{2}}
$$

Recall

$$
\Delta u=y^{2}\left(u_{x x}+u_{y y}\right)
$$

$$
\begin{gathered}
0=\lambda_{0}<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \leq \cdots \\
\Delta \varphi_{n}=\lambda_{n} \varphi_{n} \\
L^{2}(\Gamma \backslash \mathbb{H})=\oplus_{n=0}^{\infty} \mathbb{C} \varphi_{n}
\end{gathered}
$$

We can assume that φ_{n} is real-valued.
For a careful treatment of analytic issues, see Spectral Theory and the Trace Formula by Bump (http://sporadic.stanford.edu/bump/match/trace.pdf).

3.1 point-pair invariant and integral operator

Let $\Phi: \mathbb{R} \rightarrow \mathbb{C}$ be a smooth function with compact support. Define $k: \mathbb{H} \times \mathbb{H} \rightarrow \mathbb{C}$ by

$$
k(z, w)=\Phi\left[\frac{|z-w|^{2}}{\operatorname{Im}(z) \operatorname{Im}(w)}\right]
$$

The function $k(z, w)$ is called a point-pair invariant.
Define an integral operator L with kernel k :

$$
L f(z)=\int_{\mathbb{H}} k(z, w) f(w) d \mu(w)
$$

Fact: An eigenfunction $f: \mathbb{H} \rightarrow \mathbb{C}$ of Δ is also an eigenfunction of L. In particular, if $\Delta f=\lambda f$, then

$$
\int_{\mathbb{H}} k(z, w) f(w) d \mu(w)=h(r) f(z)
$$

where $\lambda=\frac{1}{4}+r^{2}$ and h is the Selberg/Harish-Chandra transform of k defined by

$$
\begin{gathered}
Q(x)=\int_{x}^{\infty} \frac{\Phi(t)}{\sqrt{t-x}} d t, x \geq 0 \\
g(u)=Q\left(e^{u}+e^{-u}-2\right), u \in \mathbb{R} \\
h(r)=\int_{-\infty}^{\infty} g(u) e^{i r u} d u .
\end{gathered}
$$

Then g and h are even functions; g has compact support and h decays faster than any polynomial (.

Define automorphic kernel

$$
K(z, w) \stackrel{\text { def }}{=} \sum_{T \in \Gamma} k(T z, w) \quad \text { for }(z, w) \in \mathbb{H} \times \mathbb{H}
$$

and restrict the domain of integral operator L to functions in $L^{2}(\Gamma \backslash \mathbb{H})$.
Compute the trace of L two different ways.
First,

$$
L \varphi_{n}=h\left(r_{n}\right) \varphi_{n}
$$

implies $\operatorname{tr}(L)=\sum_{n=0}^{\infty} h\left(r_{n}\right)$.

3.2 spectral expansion of kernel

Claim:

$$
K(z, w)=\sum_{n=0}^{\infty} h\left(r_{n}\right) \varphi_{n}(z) \varphi_{n}(w)
$$

Proof. Let $G(z)=K(z, w)$ for w fixed. Since $G \in C^{\infty}(\Gamma \backslash \mathbb{H})$, it follows that $G(z)=\sum c_{n} \varphi_{n}(z)$, where

$$
c_{n}=\left(G, \varphi_{n}\right)=\int_{\mathbb{H}} k(z, w) \varphi_{n}(z) d \mu(z) .
$$

The integral is

$$
\left(L \varphi_{n}\right)(w)=h\left(r_{n}\right) \varphi_{n}(w)
$$

From $K(z, z)=\sum_{n=0}^{\infty} h\left(r_{n}\right) \varphi_{n}(z) \varphi_{n}(z)$

$$
\int_{\mathfrak{F}} K(z, z) d \mu(z)=\sum_{n=0}^{\infty} h\left(r_{n}\right) .
$$

3.3 geometric side

The integral can be written as a sum over the conjugacy classes:

$$
\begin{aligned}
\int_{\mathfrak{F}} K(z, z) d \mu(z) & =\sum_{T \in \Gamma} \int_{\mathfrak{F}} k(T z, z) d \mu(z) \\
& =\sum_{\{P\}} \sum_{T \in\{P\}} \int_{\mathfrak{F}} k(T z, z) d \mu(z)
\end{aligned}
$$

The inner sum can be rewritten as a single integral: note that $T=\tau^{-1} P \tau$ for unique $\tau \in$ $Z(P) \backslash \Gamma$.

$$
\begin{aligned}
\sum_{T \in\{P\}} \int_{\mathfrak{F}} k(T z, z) d \mu(z) & =\sum_{\tau \in Z(P) \backslash \Gamma} \int_{\mathfrak{F}} k\left(\tau^{-1} P \tau z, z\right) d \mu(z) \\
& =\sum_{\tau \in Z(P) \backslash \Gamma} \int_{\mathfrak{F}} k(P \tau z, \tau z) d \mu(z) \\
& =\sum_{\tau \in Z(P) \backslash \Gamma} \int_{\tau(\mathfrak{F})} k(P w, w) d \mu(w) \\
& =\int_{F D|Z(P)|} k(P w, w) d \mu(w)
\end{aligned}
$$

where $F D[Z(P)]$ denotes a fundamental domain for $Z(P)$.
P identity :

$$
\int_{\mathfrak{F}} k(w, w) d \mu(w)=\int_{\mathfrak{F}} \Phi(0) d \mu(w)=\operatorname{area}(F) \Phi(0)=\frac{\operatorname{area}(F)}{4 \pi} \int_{-\infty}^{\infty} r h(r) \tanh (\pi r) d r .
$$

The final integral allows to remove Φ in the statement.
P hyperbolic:
Let $P=P_{0}^{k}$ for P_{0} primitive and $k \in \mathbb{Z}_{\geq 0}$.
Let $\lambda_{0}=e^{\ell\left(P_{0}\right)}$ and $\lambda=e^{\ell(P)}$.
Inside $\operatorname{PSL}(2, \mathbb{R}), P_{0}$ is conjugate to $Q_{0}(z)=\lambda_{0} z$ and we can replace the integral:

$$
\begin{gathered}
\int_{F D|Z(P)|} k(P w, w) d \mu(w)=\int_{F D \mid\left\langle Q_{0}\right\rangle} k(Q w, w) d \mu(w) . \\
\int_{F D|Z(P)|} k(P w, w) d \mu(w)=\frac{\ln \lambda_{0}}{\lambda^{1 / 2}-\lambda^{-1 / 2}} g(\ln \lambda)
\end{gathered}
$$

This proves a weaker version of Selbert trace formula with the assumption that g has compact support and h is its inverse Fourier transform From here, one can use an approximation argument to upgrade this to the version stated before.

Lecture 4 Advanced topics

4.1 Selbert trace formula for $\operatorname{PSL}(2, Z)$

$\Gamma=\operatorname{PSL}(2, \mathbb{Z})$
$\Gamma \backslash \mathbb{H}$ is no longer compact, and the spectrum has a continuous part

$$
K(z, w)=\sum_{j} h\left(r_{j}\right) u_{j}(z) \overline{u_{j}(w)}+\frac{1}{4 \pi} \int_{-\infty}^{\infty} h(r) E\left(z, \frac{1}{2}+i r\right) \overline{E\left(w, \frac{1}{2}+i r\right)} d r
$$

$E(z, s)$ is the Eisenstein series
Geometric side : parabolic, elliptic conjugacy classes
parabolic conj. class: power of $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
elliptic conj. class: $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ (order 2), $\left(\begin{array}{cc}0 & -1 \\ 1 & 1\end{array}\right)$ (order 3)
$\sum_{j=0}^{\infty} h\left(r_{j}\right)=\frac{1}{12} \int_{-\infty}^{+\infty} r h(r) \tanh (\pi r) d r$
$+\frac{1}{4} \int_{-\infty}^{\infty} \frac{h(r) d r}{\cosh (\pi r)}+\frac{2 \sqrt{3}}{9} \int_{-\infty}^{\infty} h(r) \frac{\cosh (\pi r / 3)}{\cosh (\pi r)} d r$
$+\sum_{\{P\}} \frac{\ell\left(P_{0}\right)}{e^{\ell(P) / 2}-e^{-\ell(P) / 2}} g(\ell(P))$
$+g(0) \log (\pi / 2)+2 \sum_{n=1}^{\infty} \frac{\Lambda(n)}{n} g(2 \log n)-\frac{1}{2 \pi} \int_{-\infty}^{+\infty} h(r)\left[\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1}{2}+i r\right)+\frac{\Gamma^{\prime}}{\Gamma}(1+i r)\right] d r$
where

$$
\Lambda(n)= \begin{cases}\log (p) & \text { if } n=p^{k} \text { with } p \text { prime and } k \in \mathbb{Z}_{>0} \\ 0 & \text { otherwise }\end{cases}
$$

4.2 Jacquet-Langlands correspondence

Let F be a field and let $a, b \in F^{\times}$. The quaternion algebra $D_{a, b}(F)$ is the ring

$$
\left\{x_{0}+x_{1} i+x_{2} j+x_{3} k \mid x_{0}, \ldots, x_{3} \in F\right\}
$$

with multiplication

$$
i^{2}=a, j^{2}=b, i j=k=-j i
$$

Example 4.1. $D_{-1,-1}(\mathbb{R})$: Hamilton's quaternions.
The conjugate of α is

$$
\bar{\alpha}=x_{0}-x_{1} i-x_{2} j-x_{3} k,
$$

and the reduced norm of α is $\mathrm{N}_{\text {red }}(\alpha):=\alpha \bar{\alpha}=\bar{\alpha} \alpha$; trace $\operatorname{Tr}(\alpha)=\alpha+\bar{\alpha}$.
A quaternion algebra is a division algebra if every non-zero element α admits an inverse (iff $\left.\mathrm{N}_{\mathrm{red}}(\alpha) \neq 0\right)$

A subring \mathcal{O} of $D_{a, b}(\mathbb{Q})$ is an order when $1 \in \mathcal{O}$ and \mathcal{O} is a free \mathbb{Z}-module of rank 4 , i.e.,

$$
\mathcal{O}=\left\{x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4} \mid x_{1}, \ldots, x_{4} \in \mathbb{Z}\right\}
$$

where $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)$ is a basis of A over \mathbb{Q}.
The discriminant of an order $\mathcal{O}=\mathbb{Z}\left[e_{1}, e_{2}, e_{3}, e_{4}\right]$ is defined to be:

$$
d(\mathcal{O})=\left|\operatorname{det}\left[\operatorname{Tr}\left(e_{i} e_{j}\right)\right]_{1 \leq i, j \leq 4}\right|
$$

This is of the form r^{2} for a positive integer r.
Fact : Every order is contained in a maximal order, i.e., an order which is not strictly contained in any other one.

Example 4.2. Assume

$$
\left\{\begin{array}{l}
a b>1 \\
a \equiv 1(\bmod 4), b \text { odd } \\
\left(\frac{b}{p}\right)=-1 \text { for every prime } p \text { dividing } a \\
\left(\frac{a}{p}\right)=-1 \text { for every prime } p \text { dividing } b
\end{array}\right.
$$

$D_{a, b}(\mathbb{Q})$ is a division algebra and

$$
\mathcal{O}=\mathbb{Z} \cdot 1+\mathbb{Z} \cdot \frac{1+i}{2}+\mathbb{Z} \cdot j+\mathbb{Z} \cdot \frac{j+k}{2}
$$

is a maximal order, and $d(\mathcal{O})=(a b)^{2}$.
Fix two positive integers a, b, relative prime and square-free.
Let $D_{a, b}(\mathbb{R})^{1}:=\left\{g \in D_{a, b}(\mathbb{R}) \mid \mathrm{N}_{\text {red }}(g)=1\right\}$.
There exists an isomorphism $\Phi: D_{a, b}(\mathbb{R})^{1} \rightarrow \mathrm{SL}(2, \mathbb{R})$.
Let \mathcal{O} be an order in $D_{a, b}(\mathbb{Q})$ and $\mathcal{O}^{1}:=\mathcal{O} \cap D_{a, b}(\mathbb{R})^{1}$.
Fact : $\Gamma_{\mathcal{O}}=\Phi\left(\mathcal{O}^{1}\right)$ is cocompact (i.e. $\Gamma_{\mathcal{O}} \backslash \mathbb{H}$ is compact) iff $D_{a, b}(\mathbb{Q})$ is a division algebra iff $(0,0,0)$ is the unique solution in integers of the Diophantine equation $x^{2}-a y^{2}-b z^{2}=0$.

Theorem 4.3. Let \mathcal{O} be a maximal order in a division algebra $D_{a, b}(\mathbb{Q})$ with $d(\mathcal{O})=r^{2}$. Then the set of non-zero eigenvalues for $\Gamma_{\mathcal{O}} \backslash \mathbb{H}$, counted with multiplicity, coincides with the set of eigenvalues associated with primitive Maass forms for the group $\Gamma_{0}(r) \backslash \mathbb{H}$,

$$
\Gamma_{0}(N)=\left\{\gamma \in \mathrm{SL}(2, \mathbb{Z}) \left\lvert\, \gamma \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right)(\bmod N)\right.\right\}
$$

This is a special case of the Jacquet-Langlands correspondence.

Lecture 5 Exercises

Exercise 5.1. Compute the Laplacian Δ for \mathbb{D} and \mathbb{H}.

	$d s^{2}$	$-\Delta$
\mathbb{D}	$\frac{4\left(d x^{2}+d y^{2}\right)}{\left(1-x^{2}-y^{2}\right)^{2}}$	$\frac{\left(1-x^{2}-y^{2}\right)^{2}}{4}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$
\mathbb{H}	$\frac{d x^{2}+d y^{2}}{y^{2}}$	$y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$

Exercise 5.2. Consider the following subgroups of $\operatorname{SL}(2, \mathbb{R})$:

- $K=\left\{\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right), \theta \in \mathbb{R}\right\}$.
- $A=\left\{\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right), \lambda>0\right\}$
- $N=\left\{\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right), t \in \mathbb{R}\right\}$

For any $g \in \mathrm{SL}(2, \mathbb{R})$ there exists a unique $(k, a, n) \in K \times A \times N$ such that $g=k a n$.
Exercise 5.3. Let Γ be a discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$. For a hyperbolic $P \in \Gamma$, the centralizer $Z(P)=\{g \in \Gamma: g P=P g\}$ is an infinite cyclic group.
Exercise 5.4. The video at https://www. youtube.com/watch?v=ajDx_HCMIBg is intended to visualize the action of two hyperbolic elements g_{0} and $g_{0} g_{3} g_{4}$ on the unit disk, where

$$
g_{k}=\left[\begin{array}{cc}
\xi^{2} & e^{i k \pi / 4} \sqrt{2} \xi \\
e^{-i k \pi / 4} \sqrt{2} \xi & \xi^{2}
\end{array}\right], \quad \xi=\sqrt{1+\sqrt{2}}
$$

Explain the computations required to produce it.
Exercise 5.5. Let $F=\Gamma \backslash \mathbb{H}$ be a compact hyperbolic surface. A geodesic of F is obtained as the image under the canonical projection of a geodesic of \mathbb{H}. A closed geodesic on F is the projection of a geodesic of \mathbb{H} preserved by a non-trivial element $\gamma \in \Gamma$. Two constant speed parametrizations $\alpha, \alpha^{\prime}: S^{1}=\mathbb{R} / \mathbb{Z} \rightarrow F$ of a closed geodesic are equivalent if $\alpha^{\prime}(t)=\alpha(t+c)$ for some constant c. An oriented closed geodesic is an equivalence class of closed parametrized geodesics. Then there is a bijection between the set of conjugacy classes of hyperbolic elements in Γ and the set of oriented closed geodesics on F.

The video at https://www. youtube.com/watch?v=06pv6X8gaQQ shows an oriented prime closed geodesic on the Bolza surface. What is the corresponding primitive hyperbolic conjugacy class? Find a representative.

Exercise 5.6 (optional). Let $F=\Gamma \backslash \mathbb{H}$ be a compact hyperbolic surface of genus $g \geq 2$. Check that $\operatorname{area}(F)=4 \pi(g-1)$.

Exercise 5.7. Derive Weyl's law:

$$
N(\lambda) \sim \frac{\operatorname{area}(F)}{4 \pi} \lambda, \quad \lambda \rightarrow \infty
$$

where

$$
N(\lambda)=\#\left\{j: \lambda_{j} \leq \lambda\right\}
$$

Exercise 5.8 (optional). Prove that

$$
\Phi(0)=\frac{1}{4 \pi} \int_{-\infty}^{\infty} r h(r) \tanh (\pi r) d r
$$

Exercise 5.9. Let $P_{0}(z)=\lambda_{0} z, \lambda_{0}>1$ and $P(z)=\lambda z$ with $\lambda=\lambda_{0}^{n}, n \in \mathbb{Z}_{>0}$.

1. The fundamental domain for the cyclic group $\left\langle P_{0}\right\rangle$ is $\left\{z \in \mathbb{H}: 1<y<\lambda_{0}\right\}$.
2. Show that

$$
\int_{\left[1 \leq \operatorname{Im}(z) \leq \lambda_{0}\right]} k(\lambda z, z) d \mu(z)=\frac{\ln \lambda_{0}}{\lambda^{1 / 2}-\lambda^{-1 / 2}} g(\ln \lambda)
$$

