Selberg trace formula and its applications

Lecture 1 Statement of Selberg trace formula

1.1 Laplacian on a Riemannian manifold

undergraduate differential geometry

parametrized surface S: r(u,v) = (z(u,v),y(u,v), z(u,v)), (u,v) € D, where D is a domain in
RQ

first fundamental form E du? + 2 F dudv + G dv?

EFE=r,-r,, F=r,r,, G=r, 1,

arclength of parametrized curve (u(t),v(t)), a <t <b:

/b VEW ()2 +2F o/ (t)v'(t) + G o' (t)2 dt

surface area

// VEG— F?2dudv
D

main theme : express interesting quantities about S in terms of F, F), G (e.g. Gaussian curvature)

Riemannian manifold (M, g) : smooth manifold M equipped with a positive-definite inner prod-
uct g, : T,M x T, M — R on the tangent space T, M at each point p € M.

In local coordinates, (z!,...,2™): U C M — R", the vectors

o0
63:1 P

T G
form a basis of T, M. g is determined by n? functions
0

gii (@' (p), -, 2" () = gp <3Ii

0

, —
J
» or

p)
¢ is often specified by ds? = Zj’k gjkdacjdxk, line element
dV = \/det(g)dx!...dx™ : volume element

Laplace-Beltrami operator (Laplacian) A on M : operator taking functions into functions
1 0 ( o,
A=-> ——(gg '“)
j.k Vg 0 Vo Ok

where g7 entries of the inverse of the matrix (g;x), and g = det(g;)-
Assume M is compact, connected and orientable.
A has non-negative discrete eigenvalues

02/\0<)\1§)\2§...—>OO,

with corresponding eigenfunctions

Ag; = N

which form an orthonormal basis of L?(M).
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Example 1.1 (circle). Laplacian on S' =R/Z : A = —%
eigenfunctions ¢,, () = ™™ m =0,+1,42,...

eigenvalues 472m?

Example 1.2 (unit sphere). r(6,¢) = (sin 8 cos @, sin 0 sin @, cos §)
metric ds? = df? + sin? 0 d¢?

Laplacian:
1 0 0 1 02
A= ~ (sing— -7
Sin 6 26 (Sm ae) T 2 092

eigenfunctions : spherical harmonics f =Y, for { =0,1,2,..., m = 0,%£1,£2,..., %/, where

@20+ 1) (I —m)!
dr (I+m)!

1/2
Y (0.0) = (1" | | Artcosgyems
and P/ associated Legendre function of the first kind.
eigenvalues: A = [(I + 1) with multiplicity 2 + 1

Example 1.3 (flat torus). flat torus T = quotient of R™ by any lattice A

lattice : set of all integral linear combinations of a basis of R™

f(z) = ?™&2) ¢ € R™ is well-defined on T exactly when (¢, z) € Z for all x € A.

Those £ form a lattice AV, called the dual lattice of A.

eigenfunctions : e2™&%) for ¢ € AV with eigenvalue 472[€]2.

Milnor (1964) : there are non-isomorphic isospectral tori of dimension 16; there two lattices
whose number of points having a given norm is always the same

In general, almost always impossible to find explicit eigenvalues and eigenfunctions
Selberg trace formula for compact hyperbolic surfaces : model for other general trace formulas;
relates eigenvalues of the Laplacian and length spectrum of geodesics

1.2 Hyperbolic plane

two models of hyperbolic plane :
two models : unit disk D = {z : |z| < 1} and upper-half plane H = {z : Im z > 0}
line element ds, volume element dy, distance d(z, z’) between z, 2’:

ds? dp coshd(z, ")
D 4(dx? + dy?) 4dx dy L+ 2]z — 2'?
(P | (e 7P | OO
o x® 4+ dy x dy 14 |z — 2|
32 > 2Im z Im 2’
Exercise 1.4. Laplacian takes the following form:
—-A
T (P
4 0x?  Oy?
0? 0?
H =+ =
i ((9962 i 81/2)
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PSL(2,R) = SL(2,R)/{+1} acts on H :

b
g:H—H, zng::ﬂ <a b

d> € SL(2,R)
An element of PSL(2,R) is an isometry of H.

s (S0 g ca)

s = (30 ) o)

_N= (1 t),teR

0 1
Let g € PSL(2,R) with g # Id.
1. Jtr(g)| < 2 iff g is conjugated to an element of K iff ¢ fixes a single point in H.

(
2. |tr(g)| = 2 iff g is conjugated to an element of N iff g fixes a single point in OH.
3. |tr(g)|] > 2, iff g is conjugated to an element of A iff g fixes two points in OH.
length of ¢

Ug) := inf d(gz, 2).
I(g) > 0 only for hyperbolic g and is given by

£(g) = 2arccosh(|tr(g)|/2).

1.3 Selberg trace formula

Let F' be a compact Riemann surface of genus g > 2.

Uniformization theorem : F' is conformally equivalent to I'\H, where T is discrete, torsion-free
subgroup of PSL(2,R).

Each element v € I' — {I} is hyperbolic since T" is torsion-free (and so does not contain any
elliptic elements) and cocompact (and so does not contain any parabolic elements);

metric on H induces metric on F', and so Laplacian makes sense.

Exercise 1.5. For a hyperbolic P € T', the centralizer Z(P) = {g € T : gP = Pg} is an infinite
cyclic group.

There exists unique generator Py of Z(P) such that P = P} for n € Z~o.
Theorem 1.6 (Selberg). Let h be an analytic function on |Im(r)| < 1 + & such that

h(—=r)=h(r) and |h(r)| < A[L1+[r]]>° (A>0,6>0).

Then
> area(F) [ U Py)
nz_% () = 2 /_ _7h(r) tanh(r)dr + {zp; (P,

where the sum 1is over all conjugacy classes of hyperbolic elements; { P} denotes the conjugacy class
containing P; g(u) = 5= [*_h(r)e”"dr.
The sums and mtegmls are all absolutely convergent.
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The sum can be rewritten as

= ((P,
2.2 2sinh[7(1€(()3—70) T 9(nt(F)

{fb}n:l

where the sum is over all conjugacy classes of primitive hyperbolic elements.

Lecture 2 Applications

2.1 Spectrum of the Bolza surface

Use the disk model.
The Bolza surface is defined as the quotient

G\D

where G is subgroup of SU(1,1)/{£1}, generated by

2 ikm/4 D)
Ik = efikf/4\/§£ ‘ €2f§ :| , where § = V 1+ \/5

g and g4 are inverses of each other
We can the regular octagon as a fundamental domain.

This is a compact Riemann surface of genus 2. As an algebraic curve, its affine model is

y? = —z.

The translations gj all have the same length
¢ (gr) = 2arccosh(1 + v2) ~ 3.05714,k = 0,1,...,7

Fact: for any hyperbolic P € G, ¢(P) is of the form 2 arccosh(m + nv/2) for some m,n € Z~.
We apply the trace formula.
Choose any € > 0 and define

h.(r) = exp {f (z—1)? /62] + exp [f (z41)? /62:| .

For fixed r, h,(r) is sum of two Gaussians around r as a function of z; e standard deviation
fourier transform of h, (as a function of r):

(u) = x /OO h.(rye” " dr = icos(zu)e —iu2
gz - 27T e z - ﬁ Xp 4
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spectral side:

As a function of z € R, it has peaks around 7,,.

geometric side: Consider the multiset {¢(Py) : {Po}} of lengths of conj. classes. of primitive
hyperbolic elements.

Order its elements 0 < I3 <l < ... and let g, be the multiplicity of I,; e.g. I3 = 3.057... and
g1 = 24.

> € e gnln 62 2
tanh h.(r)dr+ —— _— kl, —— (kl,
[wr anh (7r) h,(r) dr + 2ﬁ;;sinh(kln/2) cos (z )exp[ 1 (kln) ]
By evaluating RHS for many z, we can plot it as a graph of z.

From all words of length < 11, we find 206796230 primitive hyperbolic conjugacy classes; need
2.5 GB to save words; See https://github.com/chlee-0/bolza.
2.2 Weyl’s law
Let F =T\H, I C PSL(2,R) as before.

Let
NA) =#{j: N <AL
Weyl’s law:
Area(F
Ny~ AT
4

2.3 Prime geodesic theorem

Let 7(x) be the number of prime closed geodesics v such that e/ < z.

Prime geodesic theorem:
x

" log()’

T — o0

m(x)

Lecture 3 Sketch of proof

Assume F' = T\H so that F' is a compact Riemann surface of genus > 2.
§ : compact fundamental domain of T' (one can take this as a geodesic polygon)
inner product on L?(T'\H) :

(o) = [ BRI,
where
_ dx dy

dp(z) 7

Recall
Au = 9> (Upg + Uyy)


https://github.com/chlee-0/bolza
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O=X <A <A< A<

A‘:Dn = /\nﬂon

L2(I\H) = &7ZoCen

We can assume that ¢, is real-valued.
For a careful treatment of analytic issues, see Spectral Theory and the Trace Formula by Bump
(http://sporadic.stanford.edu/bump/match/trace.pdf)).

3.1 point-pair invariant and integral operator
Let @ : R — C be a smooth function with compact support. Define k£ : H x H — C by

E

Ha = [nnmm(w)

The function k (z,w) is called a point-pair invariant.
Define an integral operator L with kernel k:

Lf(@::jgk(%UOf@@du&w

Fact: An eigenfunction f : H — C of A is also an eigenfunction of L. In particular, if Af = Af,
then

Af@wﬁwmmm=hMﬂ@

where A = i + 72 and h is the Selberg/Harish-Chandra transform of & defined by

Q(x)z/oc o) dt, x>0

t—x

glu)=Q (e"+e ™ —2), uck.

h(r) = / T e du,

— 00
Then g and h are even functions; g has compact support and h decays faster than any polynomial

(.

Define automorphic kernel

K(z,w) Lef Z k(Tz,w) for (z,w) e HxH
Ter

and restrict the domain of integral operator L to functions in L?(I'\H).
Compute the trace of L two different ways.
First,
Lo = h(rn)en

implies tr(L) = Y07 h(ry).

n=0


http://sporadic.stanford.edu/bump/match/trace.pdf
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3.2 spectral expansion of kernel

Claim: .

Z Tn)@n(2)en(w)

Proof. Let G(z) = K(z,w) for w fixed. Since G € C*°(I'\H), it follows that G(z) = > cpn(2),
where

e — «3,¢n>::.[;k<z,w>wn<z>du<z>

The integral is
(Lgn)(w) = h(rn)en(w).

From K(z,z) = EZO:() h(ry)en(2)en(2)

oo

2
[ K G2)n) = Y hir).
§ n=0

3.3 geometric side
The integral can be written as a sum over the conjugacy classes:

/Kzzdu Z/ (Tz, z)du(z

Tel §

*ZZ/ (Tz, z)du(z

{P}Te{r}

The inner sum can be rewritten as a single integral: note that T = 7-!Pr for unique 7 €

Z(P)\T.
Z /k:(Tz,z)d,u(z): Z /kz(T_lPTz,z) dp(z)

Te{pP}’S TEZ(P)\

/ k(Prz,7z)du(z)

reZ(P)\r'”’%

/ k(Pw,w)du(w)
7(3)

r€Z(P)\T

= / k(Pw,w)du(w)
FD|Z(P)]

where F'D[Z(P)] denotes a fundamental domain for Z(P).
P identity :

/gk(w,w)du(w) = /gq)(O)du(w) = area(F)®(0) = area(F) /00 rh(r) tanh(mr)dr.

4 oo
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The final integral allows to remove ® in the statement.
P hyperbolic:
Let P = P¥ for Py primitive and k € Z>g.
Let Ag = e/ and \ = /),
Inside PSL(2,R), P, is conjugate to Qo(z) = Aoz and we can replace the integral:

[ kPwwda) = [ kQu.wda(w).
FD|Z(P)| FD{Qo)

11’1)\0
kPw,wd,uw:igln)\
/FD|Z(P)| ( Jdps(w) N2 \-1/2 (InA)

This proves a weaker version of Selbert trace formula with the assumption that g has compact
support and h is its inverse Fourier transform From here, one can use an approximation argument
to upgrade this to the version stated before.

Lecture 4 Advanced topics

4.1 Selbert trace formula for PSL(2,Z)

I' =PSL(2,7Z)
I'\H is no longer compact, and the spectrum has a continuous part

K(zw) = S hry) (=) () + i /O; hr)E (z % + z'r) E (w % + ir) dr

E(z, s) is the Eisenstein series
Geometric side : parabolic, elliptic conjugacy classes
1 1
0 1
elliptic conj. class: <(1) 01> (order 2), (? 11) (order 3)

parabolic conj. class: power of

00 1 400
jz::oh(rj) =13 /_OC rh(r) tanh(7r) dr
L [ h(r)dr 2V3 [ cosh(mr/3)
+ Z[oo cosh(7r) + T[m hlr) cosh(rr) dr
(P
+ Z ol(P)/2 (_ Z)_g(p)/Q g(e(P))
{r}
[e’e] n o0 / /
+g(0)log(m/2) +2) %g@logn) - %/ h(r) [I;(; +ir) + %(1 +ir)| dr
n=1 -
where

A(n) = log(p) if n = p* with p prime and k € Z~q
=10 otherwise
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4.2 Jacquet-Langlands correspondence

Let F be a field and let a,b € F*. The quaternion algebra D, ,(F) is the ring
{$0+1‘1i+$2j—|—$3]€ | Tg,..., T3 € F}

with multiplication
i2 =a,j% =b,ij = k = —ji.
Example 4.1. D_; _;(R) : Hamilton’s quaternions.

The conjugate of « is
a=uxg— x1t — T2 — w3k,
) =

and the reduced norm of « is Nyeq (@) := ad = aq; trace Tr(a) = a + a.
A quaternion algebra is a division algebra if every non-zero element « admits an inverse (iff

red( ) 7£ 0)
A subring O of D, ;(Q) is an order when 1 € O and O is a free Z-module of rank 4, i.e.,

0= {xlel + XTo€9 + T3€3 + T4€4 | X1,...,24 € Z}

where (e1, ea, e3,€4) is a basis of A over Q.
The discriminant of an order O = Z [e1, es, €3, e4] is defined to be:

d( ) det [TI‘ (61 )]1<z ,j<4

This is of the form 72 for a positive integer .
Fact : Every order is contained in a maximal order, i.e., an order which is not strictly contained
in any other one.

Example 4.2. Assume

ab>1
a = 1(mod4), b odd

= —1 for every prime p dividing a

= —1 for every prime p dividing b.

ASHISEERSHIS

D, ,(Q) is a division algebra and

k
O=7Z-1+7- L+Z i+ 7 - ]JQF

is a maximal order, and d(O) = (ab)?.

Fix two positive integers a, b, relative prime and square-free.

Let Dy p(R) :={g € Dup(R) | Nyea(g) = 1}.

There exists an isomorphism ® : D, ,(R)! — SL(2, R).

Let O be an order in D, 4(Q) and O! := O N D, ,(R)*.

Fact : T9 = ®(0!) is cocompact (i.e. T'o\H is compact) iff D, ;(Q) is a division algebra iff
(0,0,0) is the unique solution in integers of the Diophantine equation x?— ay? — bz? = 0.



Selberg trace formula and its applications

Theorem 4.3. Let O be a mazimal order in a division algebra D (Q) with d(O) = r2. Then the
set of non-zero eigenvalues for T'o\H, counted with multiplicity, coincides with the set of eigenvalues
associated with primitive Maass forms for the group To(r)\H,

To(N) = {7 €SL(2,Z) | v = ( ; : ) (modN)}

This is a special case of the Jacquet-Langlands correspondence.

10
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Lecture 5 Exercises

Exercise 5.1. Compute the Laplacian A for I and H.

ds? —A
D Ada® +dy?) | A2 —y°)? (& n ki
(1d_ 52 _dy22)2 4 = aﬁgz 9y?
dr” +ay” 2 (9, 9
- 7 (35 * )

Exercise 5.2. Consider the following subgroups of SL(2,R):

cosf) —sind
.K{<Sin9 cos )’GGR}'

A0
{3 )

1 ¢
e

For any g € SL(2,R) there exists a unique (k,a,n) € K x A x N such that g = kan.

Exercise 5.3. Let I' be a discrete subgroup of PSL(2,R). For a hyperbolic P € I', the centralizer
Z(P)={g €T :gP = Pg} is an infinite cyclic group.

Exercise 5.4. The video at https://www.youtube.com/watch?v=ajDx_HCMIBg is intended to vi-
sualize the action of two hyperbolic elements gy and gpg3g4 on the unit disk, where

2 ikm /4 D)
9k = e—ikﬂg/él\/ig ‘ 52\/>§ } ) §= V 1+ V2.

Explain the computations required to produce it.

Exercise 5.5. Let F' = T'\H be a compact hyperbolic surface. A geodesic of F' is obtained as the
image under the canonical projection of a geodesic of H. A closed geodesic on F' is the projection
of a geodesic of H preserved by a non-trivial element v € I'. Two constant speed parametrizations
a,a/ : 81 =R/Z — F of a closed geodesic are equivalent if o/(t) = a(t + ¢) for some constant c.
An oriented closed geodesic is an equivalence class of closed parametrized geodesics. Then there is
a bijection between the set of conjugacy classes of hyperbolic elements in I and the set of oriented
closed geodesics on F'.

The video at https://www.youtube. com/watch?v=06pv6X8gaQQshows an oriented prime closed
geodesic on the Bolza surface. What is the corresponding primitive hyperbolic conjugacy class?
Find a representative.

Exercise 5.6 (optional). Let F' = I'\H be a compact hyperbolic surface of genus g > 2. Check
that area(F) = 4w (g — 1).

Exercise 5.7. Derive Weyl’s law:


https://www.youtube.com/watch?v=ajDx_HCMIBg
https://www.youtube.com/watch?v=06pv6X8gaQQ
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where
NA) =#{j: N <AL

Exercise 5.8 (optional). Prove that

®(0) ! /00 rh(r) tanh(7r)dr.

e
Exercise 5.9. Let Py(z) = Aoz, Ap > 1 and P(z) = Az with A = A\J,n € Zs,.
1. The fundamental domain for the cyclic group (Pp) is {z € H: 1 <y < Ag}.
2. Show that

ln)\o
k(\z, 2)du(z) = —————=g(In\).
/[1§Im(z)gxo] ( Jdp(z) AL/2 — \—1/2 ( )
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