Construction of a highly complete catalog of galaxy groups/clusters from an all-sky spectroscopic survey in the local universe

Hyunmi Song, Da Chan Kim (CNU), Jong Chul Lee (KASI), and K/A-SPEC collaboration

10th SSG WS | Jeongseon | 14-16 February 2022

Galaxy groups/clusters in the local universe

Bahcall and Cen (1993)

Why galaxy groups/clusters?

- Cosmological probes e.g. Cluster mass function
- Densest environment of galaxies e.g. Environmental effects on galaxy formation/evolution?

Why local universe

- The impact of dark energy on structure growth is strongest
- observations of individual galaxies in great detail are possible for follow-up studies

We need

- Large volume (cosmological) simulation data
- Wide, uniform spectroscopic galaxy survey data*

Alonso+(2012)

2MASS Redshift Survey (2MRS)

Huchra+(2012)

- 2MRS has mapped the distribution of galaxies in the local universe based on galaxy selection in the NIR from 2MASS.
 - Two Micron All-Sky Survey (2MASS) has mapped the all sky in the NIR J, H and K bands (complete Ks<~13.5)
 - o 97.6% complete at Ks<11.75 and 91% sky coverage
 - 44,599 galaxies and |b|>5deg (>8deg toward the Galactic bulge)

2MRS galaxy group/cluster catalog

- Lavaux & Hudson (2011)
- Tully (2015)
- Lu+(2016), Lim+(2017)
- Crook+(2017)
- Tempel+(2018)
- Lambert+(2020)

Group finding algorithm

- Lavaux & Hudson (2011) Friends-of-friends (FoF)
- Tully (2015) Halo-based group finder
- Lu+(2016), Lim+(2017) Halo-based group finder
- Crook+(2017) FoF
- Tempel+(2018) Bayesian group finder (marked point processes)
- Lambert+(2020) Graph-theory based FoF

Friends-of-friends

- A variable linking-length percolation algorithm
 - Two linking lengths should be introduced to take into account the redshift space distortion.
- These linking lengths are chosen somewhat arbitrary fashion.
- This algorithm can introduce systems that are not gravitationally bound.

Graph-theory based FoF

Lambert+(2020)

Drawbacks of the traditional FoF

- A static parameter choice is unable to deal with the range in size, density, and dispersion of galaxy groups/clusters
- The traditional FoF values all groups with the same confidence.
- A modified version of FoF that considers many different sets of linking lengths
 - With hard limits on the size of a FoF group (i.e. 2 Mpc, 3000 km/s)
 - To track galaxy-galaxy pairs through FoF runs of varying sets of linking length parameters (i.e. graph theory)
 - To weigh pairs depending on how often they appear in a same group among the runs

Bayesian group finder

"Potato" that composes a cluster pattern (Tempel+2018)

Probabilistic galaxy group detection algorithm Instead of focusing on the detection of points forming clusters, the spatial regions where those points belong to

- Based on marked point processes with interactions
- The probability becomes higher when there are more points in individual potatoes and potatoes are less overlapping.
- Implementable using Monte Carlo techniques

Halo-based group finder

$$\frac{r_{180}}{\text{Mpc}} = 1.33 \ h^{-1} \left(\frac{M_h}{10^{14} h^{-1} M_{\odot}} \right)^{1/3} (1 + z_{\text{group}})^{-1}$$

$$\frac{\sigma}{\text{km s}^{-1}} = 418 \left(\frac{M_h}{10^{14} h^{-1} M_{\odot}} \right)^{0.3367},$$

To identify groups based on dark matter halo properties Given knowledge of group mass, the group sizes (on the sky and along the line-of-sight) can be inferred, and galaxies within these sizes are group members.

- The knowledge of group mass based on luminosity (and luminosity gaps in Lim+2017)
- Iterative procedure until converged

2MRS Galaxy groups (Lim+2017)

2MRS Galaxy groups (Lim+2017)

(1) group ID	(2) cen ID	(3) ra (deg)	(4) dec (deg)	(5) z	$\log (M_h/h^{-1} \mathrm{M}_{\bigodot})$	$N_{\rm mem}$	$f_{\rm edge}$	(9) i-o	(10) known as
1	15	187.74899	12.20402	0.00362	14.290	109	1.00	1	Virgo
2	486	243.52157	-60.79748	0.01663	14.366	106	1.00	1	Norma
3	530	49.47894	41.53527	0.01748	14.297	92	1.00	1	Perseus
4	672	194.81308	27.97206	0.02476	14.639	88	1.00	1	Coma
5	386	192.33072	-41.18290	0.01437	14.342	62	1.00	1	Centaurus
6	1094	258.01088	-23.30095	0.03030	14.758	52	1.00	1	Ophiuchus
7	18	53.13952	-35.56552	0.00492	14.097	48	1.00	1	Fornax
8	257	210.67554	-33.83448	0.01527	14.534	47	1.00	1	_
9	608	17.31215	32.68145	0.01609	14.042	42	1.00	1	
10	432	207.35991	-30.43195	0.01628	14.220	41	1.00	1	_

Catalogue	Total galaxies	Total groups ^a	Total groups with reliable mass	$N^{b} = 1$	$N \ge 2$
2MRS(L)	43 249	30937	18 650	13 311	5339

Spectroscopic completeness of the local universe

Completeness at Ks<13.75 (Jong Chul Lee)

Test with A-Spec mock catalog (current status)

- Uchuu simulation (dark matter only)
 - o (2000 Mpc/h)^3
 - 12800^3 particles
 - Mpart=3.27e8 Msun/h
- Galaxy painting
 - Simple abundance matching (Dr. Jihye Shin @ KASI)
 - Machine-assisted Semi-Simulation Model (Songyoun Park @ SNU)
 - Conditional luminosity function (Da Chan Kim @ CNU)
- Applications of group finding algorithms to the mock data
 - FoF, halo-based group finder
 - To optimize parameters (e.g. linking lengths, relations between luminosity and group mass) to find genuine groups/clusters
 - To forecast the impact of A-Spec on constructing a complete/reliable group/cluster catalog of the local universe

Da Chan Kim @ CNU