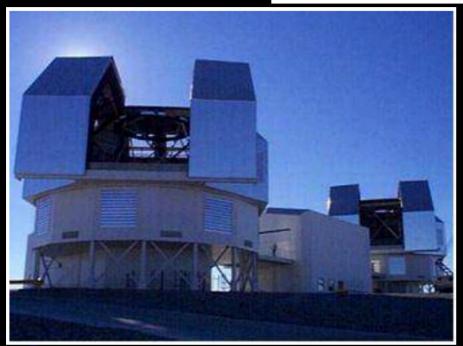
Focal Plane Hardware, Metrology System and Fiber Assignment Algorithm

Hwang, Ho Seong^{1,2}, Kim, Jae-Woo¹,

Young-Man Choi³, Moo Young Chun¹, Sang-Hyun Chun², Haeun Chung⁴, Sungwook E. Hong¹, Donghui Jeong^{5,6}, Ueejeong Jeong², Kang-Min Kim², Donggok Kim², Yunjong Kim¹, Jongwan Ko¹, Chung-Uk Lee¹, Ho-Gyu Lee¹, Jong Chul Lee¹, Sungho Lee¹, Yongseok Lee¹, Hyun-Ho Lim³, Heeyoung Oh¹, Chan Park¹, Changbom Park⁶, Junsup Shim⁶, Hyunmi Song⁷, Yongmin Yoon⁶

¹KASI, ²SNU, ³Ajou, ⁴UoA, ⁵PSU, ⁶KIAS, ⁷CNU

February 14, 2022



In 2006/2007...

RevMexAA (Serie de Conferencias), 28, 39–48 (2007)

SPM-TWIN TELESCOPES: PROJECT OVERVIEW

J. Jesús González¹ and The SPM-Twin Project Team

	Wide-Field Telescope (WFT) (Modified Magellan/MMT)	Standard Field Telescope (SFT) (Updated Magellan/MMT)
Optimized for:	Wide-Integral-Field Spectroscopy	Multi-purpose Seeing-limited Visible-IR Astronomy and AO prepared
Field of view:	$\Phi \geq ~\sim~ 1.5^\circ$	$\Phi \sim 1.5^{'}$ (seeing limited) $\Phi \sim 1^{'}$ (with AO)
Operation Range:	Visible to NIR (0.32–1.8 μ m)	Visible to Mid-IR ($\sim 0.4-28 \mu {\rm m})$
Spatial Resolutions	Seeing-limited (Narrow-Band imaging) $\sim 1'' - 3''$ Spaxel-limited sampling (Integral-Field Spectroscopy)	Seeing-limited (normal mode) Diffraction limited (AO mode)
Spectral Resolutions	\sim 4000 (IF Spectroscopy) $\leq \sim 1000$ (Tunable N-B imaging)	Wide range (science instrument suite)
1 st Generation Instrumentation	 a) Wide-Field & Atmospheric Dispersion Corrector system b) Deployable single-spaxel and Integral- Field units, coupled to a suit of spectro- graphs, for simultaneous full-range spectra spectra of thousands of objects c) Wide-Field Imager (Tunable Narrow-Band) 	 a) Secondary set (Nass/Cass/AO) b) High-Resolution Visible & Near-Infrared Spectrographs c) NIR/AO Science Instrument d) Mid-IR New-Generation Instrument Ready to accommodate: (i) Artificial-Star System & Adaptive secondary mirror (ii) Guest & Replicated Instruments

TABLE 1

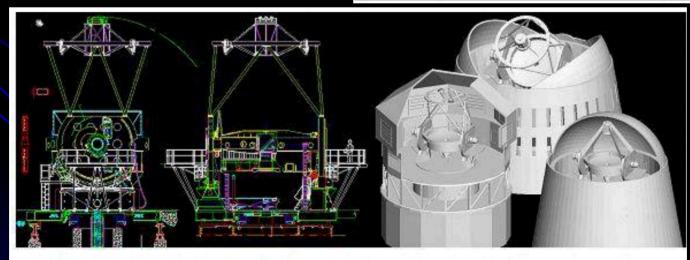


Fig. 6. Examples of detailed Magellan proprietary drawings and design updates. Some potential upgrades and optimizations are also shown: a higher building (for better seeing at SPM), wind-flow optimized dome, top-end of telescope optimizations for a wide-field secondary of WFT and low-emissivity SFT.

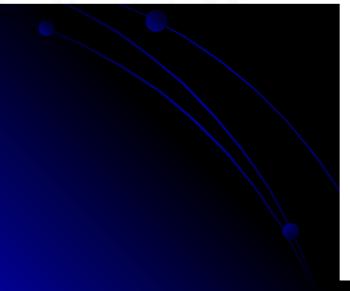
KI<mark>&</mark>S 🎫

The 8th Survey Science Group Workshop

High1 Resort, Jeongsun

		7486797417.9 ·			
Main	Program	Accommodation	Lecture Hall & Meals	Photo	Previous Workshop

Main


우주 탐사 연구회 (Survey Science Group)가 제 8 회 워크샵을 개최합니다.

우주 탐사 연구회는 그간 정기 모임을 통해서 국내외의 우주관측사업과 이와 관련된 경쟁력 있는 과학적 연구들을 검토하고 참여 방안을 논의하였습니 다.

본 워크샵을 통해서 한국 천문학계에서 진행 및 계획되고 있는 여러 사업들에 대한 집중적이고 구체적인 논의와 검토가 이루어지는 자리를 마련하고자 합니다.

* 일시: 2019년 2월 20일(수)부터 22일(금)까지

* 장소: 하이원 리조트 (세미나: 마운틴 프라자, 객실: 마운틴 콘도)

Home > Main	07:30 - 09:30		Breakfast		
ıs Workshop	Time		Details		
1010	Thursday (21st)		1000	1	
en int	📑 Facebook 🔞 ADS Search	Skyserver.sdss.or	Daum 미디어다음	D Daum 어학사전	🝐 All items - Google.
///////////////////////////////////////	?pageNo=3625				

Session II. Development of Optical Instruments (Chair: Hong Bae Ann)

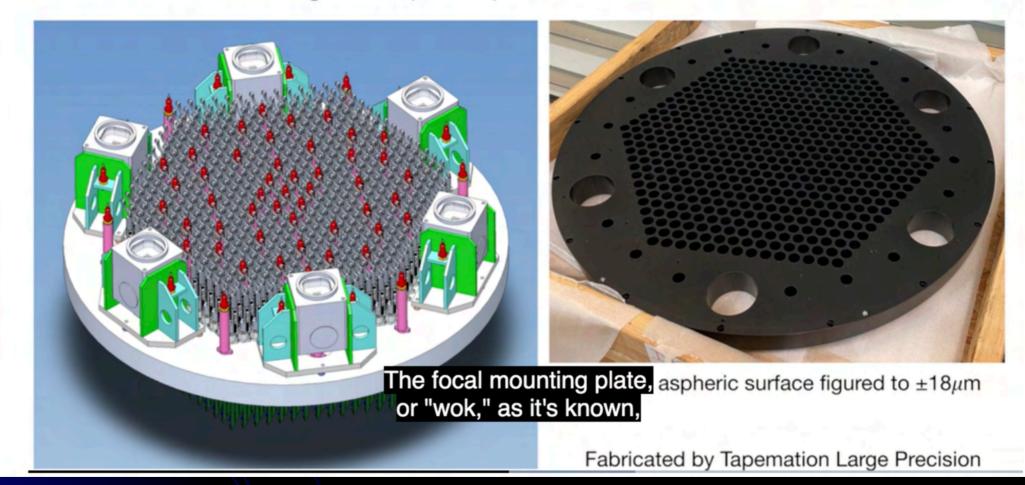
	09:30 - 09:45	YoonKyung Shin (KASI): Current status of MOS facilities in the World	
	09:45 - 10:00	Changbom Park(KIAS): MOS (TBD)	
	10:00 - 10:15	Jong Chul Lee (KASI): External Galaxy researches using IFS in Korea	
	10:15 - 10:45	Ho Seong Hwang (KASI): 중대형 망원경 기기개발 관련 토의	
	10:45 - 11:05	Coffee Break	
	Session	III. Surveys with Optical Telescopes (Chair: Hong Bae Ann)	
	11:05 - 11:20	Jongwan Ko (KASI): A pathfinder telescope: probing the Universe down to hitherto unexplored SB levels	
	11:20 - 11:35	Hong Soo Park (KASI): Current Status of the KMTNet Supernova Program (KSP)	
	11:35 - 11:50	Narae Hwang (KASI): Korean 8m Class Optical Facility: Gemini	
	11:50 - 12:20	Ho Seong Hwang (KASI): East Asian Observatory and Subaru 관련 토의	
	12:20 - 14:00	Photo / Lunch	
-			_

Banquet (18:00 ~)

Survey Science Group Workshop 2020

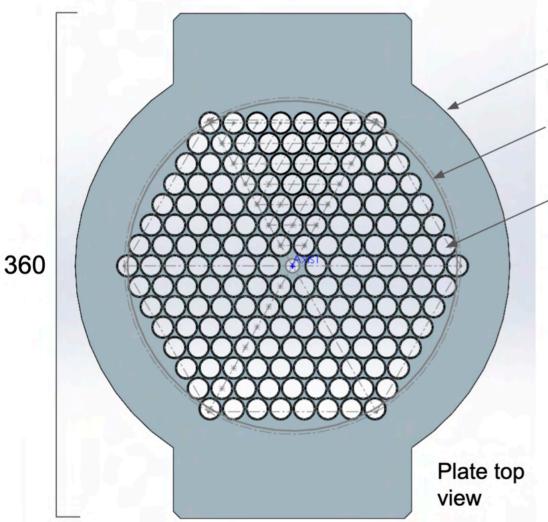
Feb. 10 (Mon.) - Feb. 12 (Wed.) / High1 Resort

5	Session VII. Local and Nearby Universe (Chair: Hong Bae Ann)
10:45 - 11:00	Sungsoo S. Kim (KHU): ³ He Distribution on the Lunar Surface
11:00 - 11:15	Ho Seong Hwang (KASI): Complete 3D Mapping of the Local Accelerating Universe
11:15 - 11:25	Ho-Gyu Lee (KASI): MOS Stellar Survey
11:25 - 11:40	Jongwan Ko (KASI): CLEVOR's Activities to Explore the Low Surface Brightness Universe
11:40 - 11:50	Yun Hee Lee (KNU): Bar Classification based on the Potential Map
11:50 - 12:05	Chunglee Kim (EWU): What we have been learned about NS/BH populations via GW observations?
12:05 - 12:25	Discussion
12:25 - 14:00	Lunch


Focal Plance Hardware (Oh, heeyoung; Lee, Yongseok)

 Mounting Plate
 Cage for the Fiber Positioner System

 Metrology System (Kim, Dongkok)
 Fiber Assignment Algorithm (Kwon, Min Sung; Lee, Jong Chul)


Reference example: SDSS-V

Focal Plane Mounting Plate ("wok")

준비: 오희영 (천문연)

Design Concept

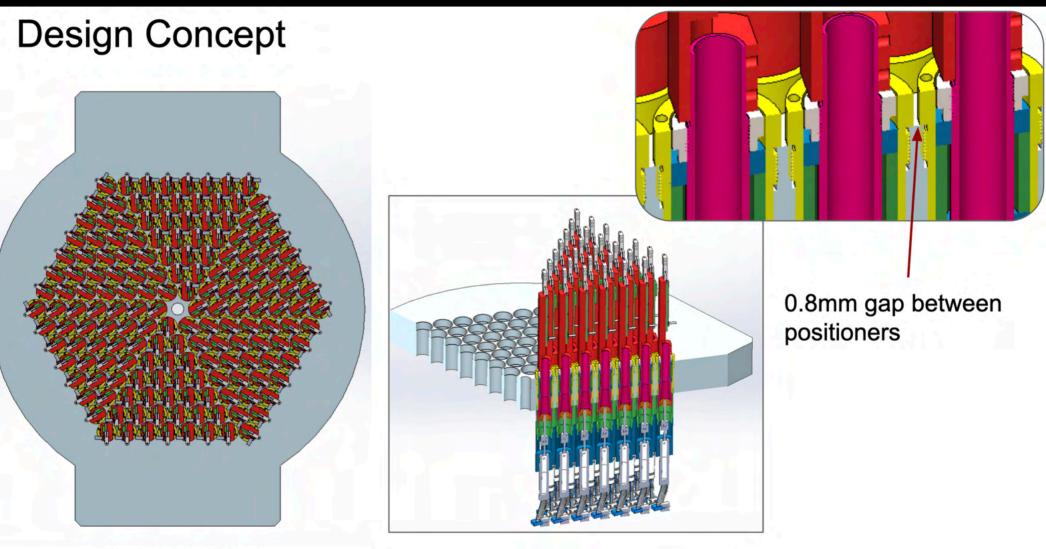
Φ 310

Φ 235.2 -- 최외곽 fiber hole 중심 기준 지름

Φ 14 holes

- 169 holes for fiber positioner + fiducials
- Central hole: possible use of guide cam?

준비: 오희영 (천문연)



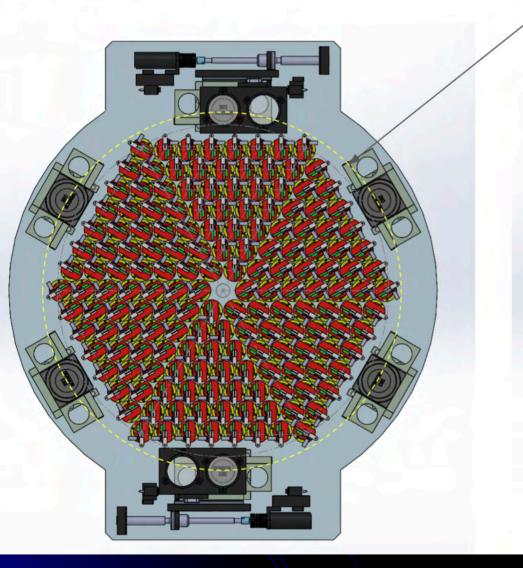


Plate + Fibers

Design Concept

Φ 260 -- diameter of guide camera center

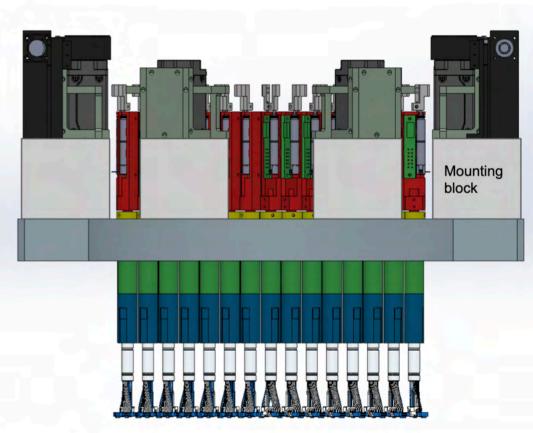
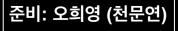
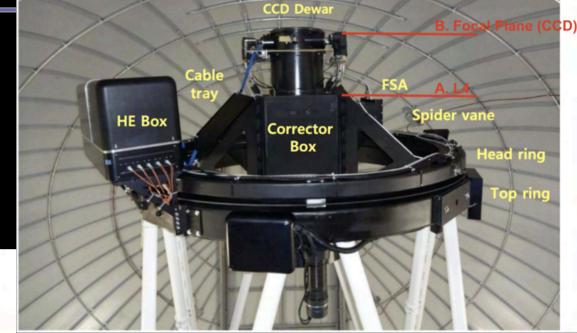





Plate + Fibers + Guide Cameras

1-2. Cage for the Fiber Positioner System

KMTNet Science Camera

준비: 이용석 (천문연)

1-2. Cage for the Fiber Positioner System

Preliminary design

- 유지보수 편의를 위해 3개의 단으로 나누어 조립
- 후단부 plate를 통과해야 되는 fiber, power, 통신 케이블 다발의 size에 따라 hole size 변경 필요
- 내부 냉각용 열교환기가 장착될 후단부 추가 필요

Plate standoff

Plate

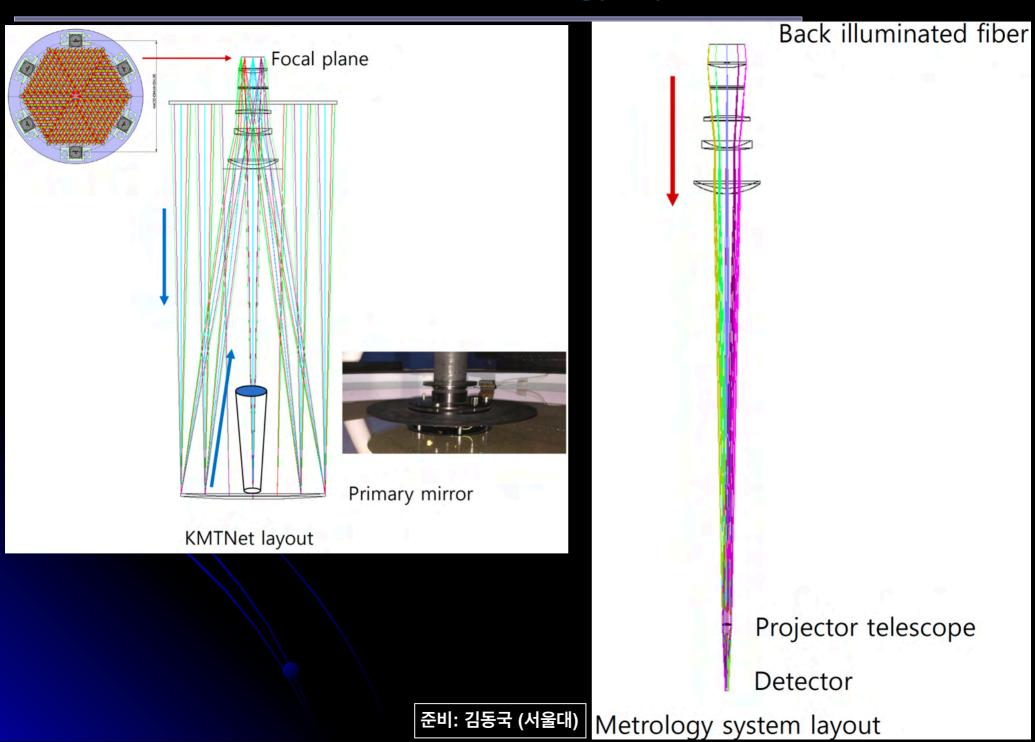
2nd section

1st section

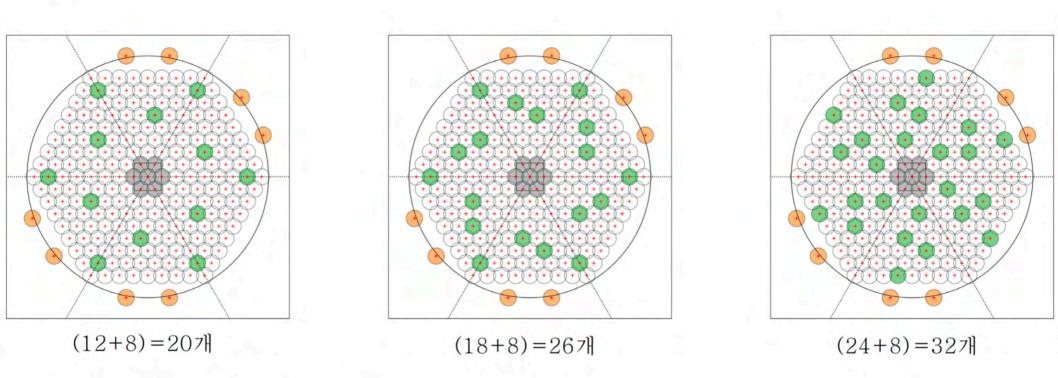
L4 cell

Metrology system?

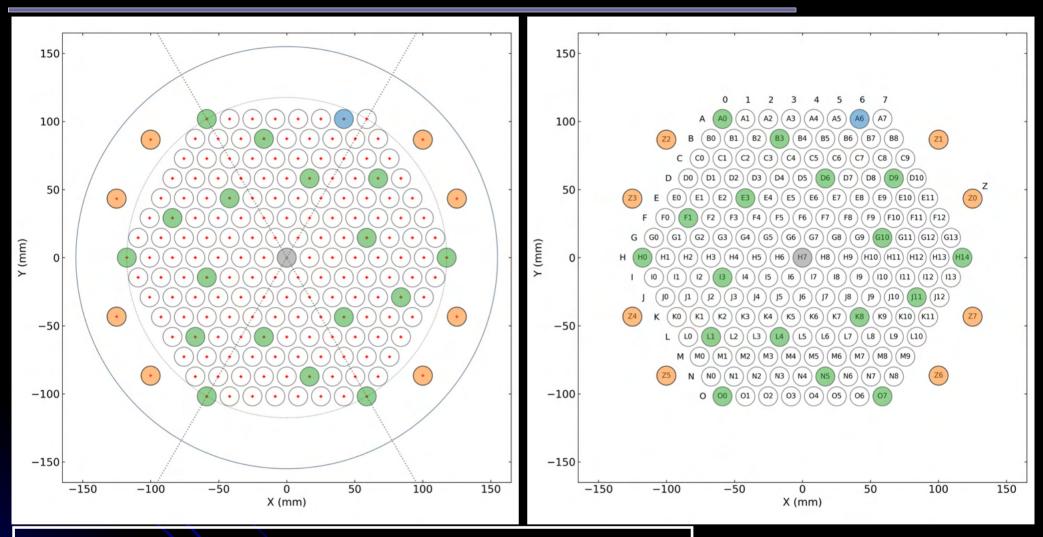
Fiber가 원하는 위치(타겟)에 잘 도달했는지 측정, 보정


- ① back illuminated fiber/fiducial 카메라로 촬영
- ② (카메라 좌표 → focal plane 좌표) 변환

③ 위치 보정


Requirements

1. (< ~5μm) 위치 정밀도 2. 촬영 후 위치 보정까지의 시간


3. Fiducial configuration

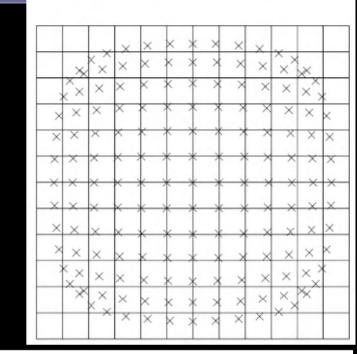
준비: 김동국 (서울대)

- 정확한 위치를 알고 있는 fiducial을 이용해 distortion 측정

- Target, sky에 최대한 많은 fiber를 할당하기 위해 개수를 최소화하는 것이 목표

- * Total number of holes: 177 (= 169 + 8)
 - * Number of Fiducials: 26 (= 8 orange + 18 green/blue)
 - * Number of hole used for guiding camera: 1 (gray)
 - * Number of fibers for scientific observation: 150
 - * For Targets: ~130
 - * For Skys: ~20

준비: 김동국 (서울대)


2. Fiber View Camera

준비: 김동국 (서울대) Distortion fitting

Back illuminated fiber The coordinate conversion between focal plane and fiber view detector plane is not straightforward <= mainly distortion! Projector telescope

Detector

Metrology system layout

2. Distortion fitting

(fiber positioner)

*DESI distortion model (cross term 모두 고려)

 $x_0 = a_{00} + (a_{10}x + a_{01}y) + (a_{20}x^2 + a_{11}xy + a_{02}y^2) + \cdots$ $y_0 = a_{00} + (b_{10}x + b_{01}y) + (b_{20}x^2 + b_{11}xy + b_{02}y^2) + \cdots$

모든 xⁱyⁿ⁻ⁱ 항이 고려되지만 같은 차수 다항식일때 Brown-Conrady model에 비해 parameter 개수가 더 많음.

*nth Brown-Conrady model

 $x_0 = x + x \cdot (k_{1x} \cdot r^2 + k_{2x} \cdot r^4 + \cdots) + [p_{1x} \cdot (r^2 + 2x^2) + 2p_{2x}xy] \cdot (1 + p_{3x} \cdot r^2 + p_{4x} \cdot r^4 + \cdots)$ $y_0 = y + y \cdot \left(k_{1y} \cdot r^2 + k_{2y} \cdot r^4 + \cdots\right) + \left[p_{1y} \cdot (r^2 + 2y^2) + 2p_{2y}xy\right] \cdot \left(1 + p_{3y} \cdot r^2 + p_{4y} \cdot r^4 + \cdots\right)$

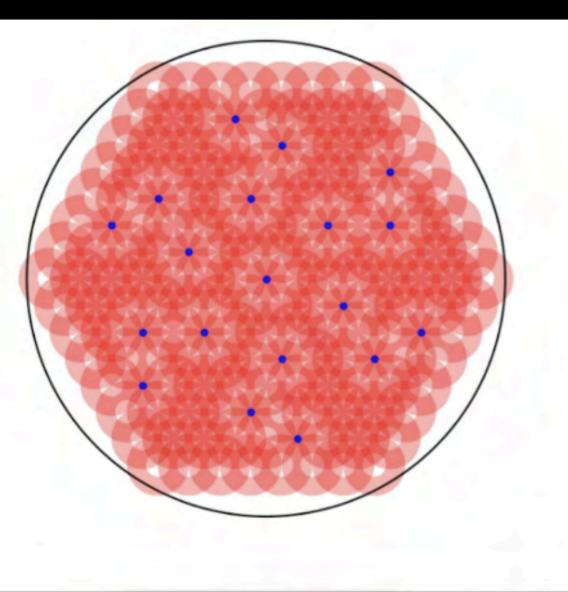
2. Fiber View Camera

ASI174MM

REE

.

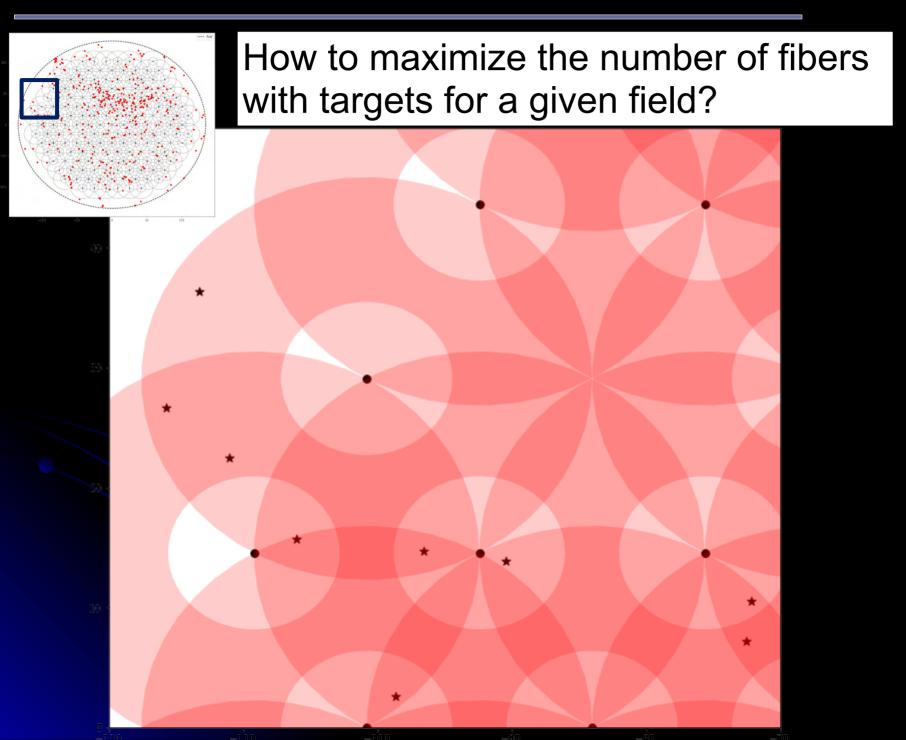
EXPL OF


10

-

* 456 +++ = (192)

준비: 김동국 (서울대)


3. Fiber Assignment Algorithm 준비: 권민성 (서울대)

	extn
FoV diameter	260 mm
pitch	16.8
α arm	5.2
βarm	11.6
patrol radius	6.4-16.8

- 19 fiducial
- 20 Sky fiber
- Minimum distance (3mm)

3. Fiber Assignment Algorithm 준비: 권민성 (서울대)

3. Fiber Assignment Algorithm

준비: 권민성 (서울대)

(8)

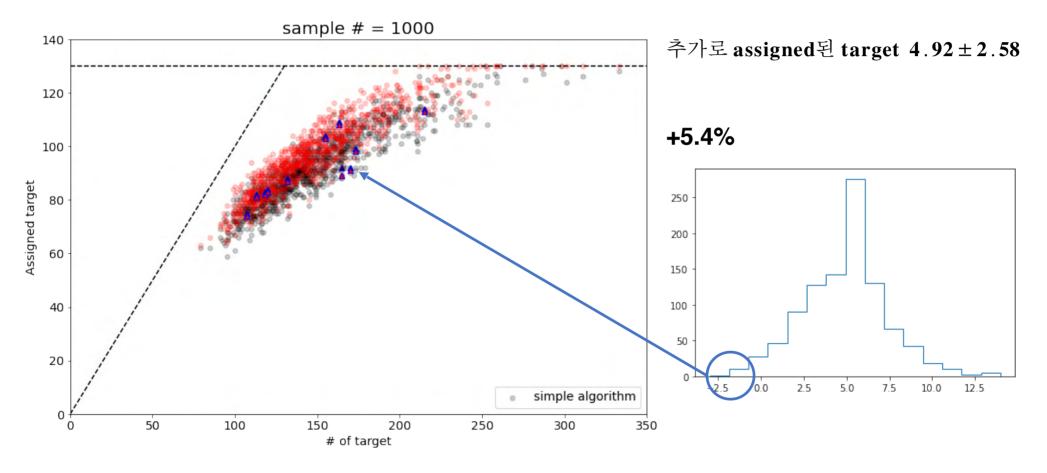
1. Simple Algorithm: Assign a fiber to a target with a lower rank

2. Algorithm I

- 1. When there is only one target within a region covered by a fiber, assign the fiber to that target first
- 2. Assign other fibers to minimize the cost function

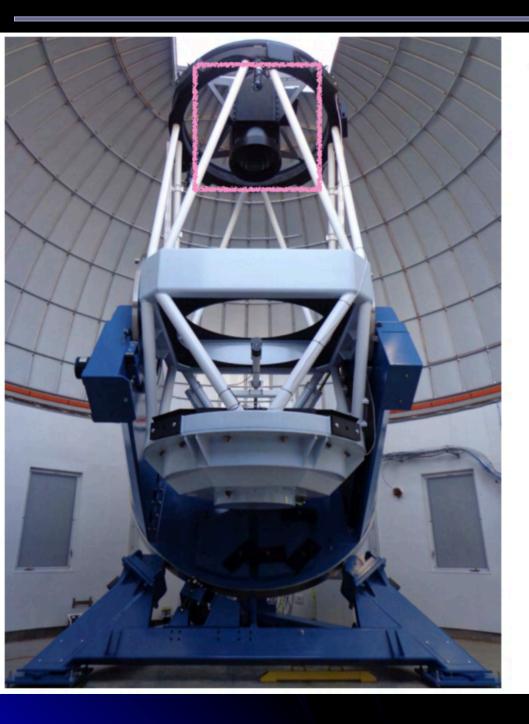
the minimization of which simultaneously satisfies the both optimal criteria,

$$\frac{\|q_i - q_t\|_2}{\|q_i - \overline{\mathcal{Q}}\|_2} \quad (\forall i : 1 \le i \le \|\Gamma_t^{\mathcal{P}}\|)$$


3. Algorithm II

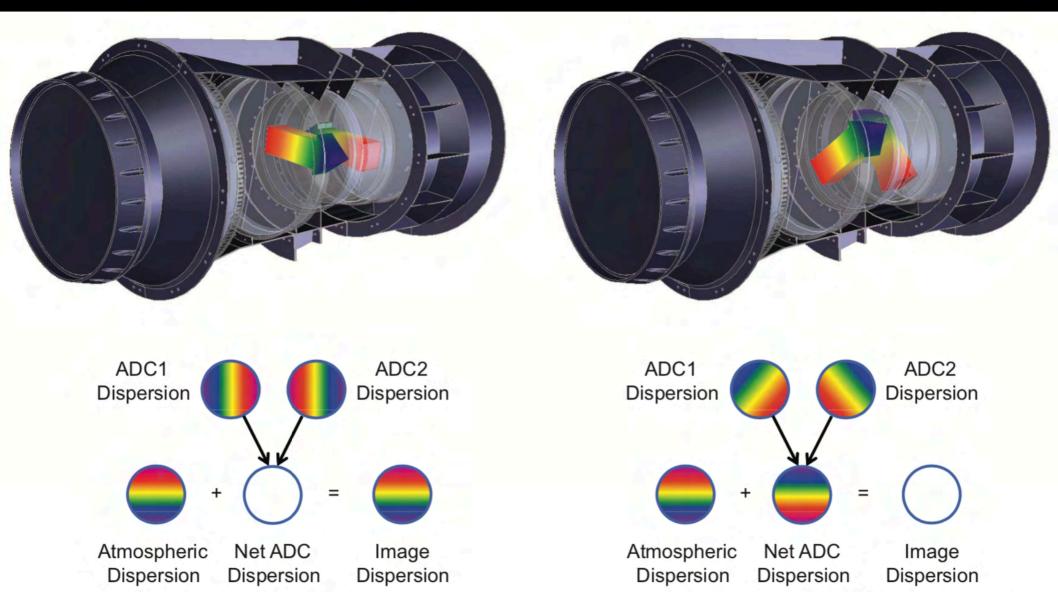
- 1. Assign a fiber to a target covered by a smaller number of fibers first
- **2.** Apply the 3mm separation condition to reassign the fibers

준비: 권민성 (서울대)

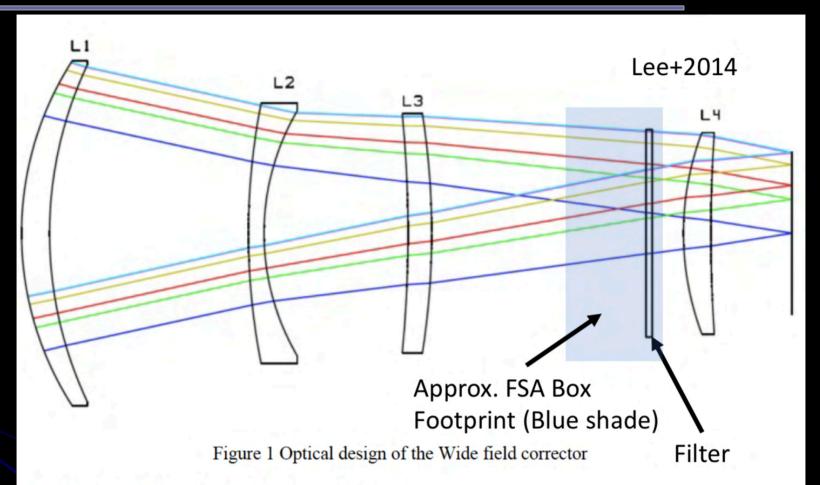

Fiber Assignment Algorithm

Simple algorithm과 비교

There are still many things to improve...


4. Wide-Field Corrector

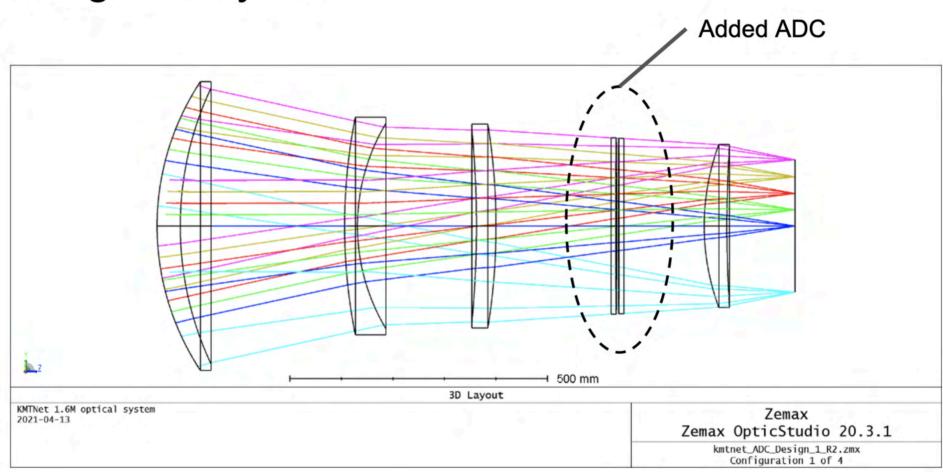
KMTNet WFC + new ADC


- Current KMTNet WFC with 4 lenses
- Filter shutter assembly (FSA)
- Adding new ADCs instead of FSA
- Rotating ADC

4. Wide-Field Corrector (e.g. DESI)

준비: 김윤종/오희영 (천문연)

4. Wide-Field Corrector



Lens number	Edge diameter	Clear aperture	Thickness	Material
L1	552 mm	546 mm	45 mm	BK7
L2	416 mm	410 mm	25 mm	BK7
L3	382 mm	374 mm	38 mm	BK7
L4	322 mm	316 mm	44 mm	Fused Silica

Table 1 Wide field corrector lenses specifications

4. Wide-Field Corrector

ADC Design -- Layout

Φ341, 10T Add ADC_F-Silica

In Summary

Focal Plance Hardware (Oh, heeyoung; Lee, Yongseok)
 Mounting Plate

2. Cage for the Fiber Positioner System

2. Metrology System (Kim, Dongkok)

3. Fiber Assignment Algorithm (Kwon, Min Sung; Lee, Jong Chul)