

Searching for Proto-clusters in HR5

Formation of a cluster in HR5

SSG 2022

Jaehyun Lee, Changbom Park, Juhan Kim **& HR5 collaboration**

- What are proto-clusters?
 - In theory A structure that will collapse into a galaxy cluster
 - Valid only when progenitors/descendants are able to be traced

- In observations A structure that is sufficiently overdense compared to surroundings
 - Progenitors that have not developed density peaks yet can be missed

- Main aim of this study
 - Investigating (physically) a robust definition of a proto-cluster region
 - Finding relevant tracers of proto-clusters, to support observational studies
 - Providing theoretical predictions for proto-clusters and their galaxies

- Horizon Run 5 (HR5)
 - Adaptive Mesh Refinement code, **RAMSES** (Teyssier02, Dubois+14),
 - Optimized for MPI+OMP hybrid computing by KIAS+KISTI for Nurion at KISTI
 - Simulation box
 - Volume (1049 cMpc)³

 - Resolution down to 1kpc in the zoomed region
 - Final snapshot z=0.625
 - Cosmology h=0.684, Ω_m =0.3, Ω_{Λ} =0.7 (compatible with Planck)
 - Outputs- snapshots, lightcone space data, and 5 cluster data with high time resolution

• Zoomed region - $1049 \times 115 \times 115$ cMpc³ (~1/80 of the entire volume), effectively ~ $(240 \text{ cMpc})^3$

- Identifying cluster candidates in Horizon Run 5 (HR5) \bullet
 - The final snapshot of HR5 : z~0.63 \bullet
 - Haloes with M_{tot} >10¹⁴ M_{\odot} are defined as "galaxy clusters" \bullet
 - ~200 clusters are expected in the zoomed region of HR5 at z=0
 - In Horizon Run 4, majority of haloes with M_{tot}>5×10¹³M_☉ at $z \sim 0.63$ form cluster-scale haloes until z=0
 - In the zoomed region of HR5, 190 haloes are found in $M_{tot} > 5 \times 10^{13} M_{\odot}$ at z=0.63
 - 63 haloes already reach M_{tot}=10¹⁴M_☉ before z~0.63
 - The progenitors of the cluster candidates are traced across the cosmic time along merger trees

The final mass of haloes at z=0.64 in Horizon Run4 (DM only)

• A cluster at z=0.63 and its progenitors at z=3.11

Background shade: matter density (DM+gas+star)

- Mass functions of cluster (progenitor) galaxies \bullet
 - Massive-end is dominated by cluster (progenitor) galaxies in the entire volume \bullet

- SFR-M* relation \bullet
 - No difference is seen between cluster progenitors and the rest at z~3.1 \bullet

- Progenitors are widely distributed in varying environments at high redshifts lacksquare
 - They do not necessarily represent the densest environments ullet

- What is the boundary of (proto-)clusters? ullet
 - Turnaround radius the distance from the center of a cosmic structure to the shell at which the Hubble flow counterbalances gravitational collapse (e.g. Gunn&Gott 72, Peebles 80)
 - Radial velocity is computed for spherical shells from the density \bullet peaks of (proto-)cluster regions

$$v_r = H(z)r + \hat{r} \cdot (\vec{v_p} - i)$$

$$\int_{\mathbf{F}} Hubble flow \qquad \text{peculiar} \quad (proto-)cluster center \qquad velocity \qquad (proto-)cluster center \qquad (proto-)cluster \ (proto-)cluster \ (proto-)cluster \ (proto-)cluster \ (proto-)cluster \ (proto-)cluster \ (proto-)clust$$

(Proto-)cluster

Velocity field around (proto-)clusters and turnaround radii ullet

- sSFR as a function of turnaround radius lacksquare
 - star formation of small galaxies in well developed structures in r<R_{turn} at z~0.63

• Environmental effects are weekly seen at z~3.1 around proto-clusters while it strongly suppresses

- Turnaround radius and overdensity
 - $\delta_m \sim 5.5$, $\delta_{ngal} \sim 20$ at z~3.11 inside R_{turn}

- Summary & Future work
 - 190 cluster candidates are found in HR5 at z=0.63 lacksquare
 - Environmental effects are evident in the cluster candidates
 - The progenitors of the cluster galaxies are identified using the merger trees of HR5
 - Cluster candidates are more massive (or formed earlier) than field galaxies
 - Cluster progenitors do not have particularly distinguished properties at z=3.1
 - In the turnaround radius, proto-clusters have $\delta_m \sim 5.5$, $\delta_{ngal} \sim 20$ at z=3.1 \bullet
 - Environmental effects become effective at r<R_{turn}