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An algebraic fiber space is a surjective
morphism {: X5 Y between smooth projective

varieties X &Y with connected fibers F={(y),
y=general point of Y.
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Let D be a divisor on a smooth projective variety X
such that K )7 o

Prove that for all sufficiently large and divisible
integer m, Base(mD)= N iSprD \ WD« ~D'z } is
constant.

(It is defined as the stable base locus SB(D).)

Then there is a birational morphism f:Y X

such that %"(Q\D) =MVEE eloe Mt free s fived
This M defines the Iitaka fibration of D.
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A 2-3.

X = projective

H = ample Cartier divisor on X such that
IHl is free

G:F: coherent sheaf on X such that

WX, & ®0x(~i)=0°

%m/ a'~7 vZo .

’7‘: is generated by global sections.

Suppose f:X— Y is a SMOOTH algebraic fiber space.
Prove that -\F’: XXYX ———9\( is also a smooth
morphism.
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Lemma 2-5
V = projective variety
€ =locally free sheaf on V, Z %o
If there is a line bundle M such that

2®5® M\ is generated by global sections for
any s >0, then ¢ is nef.
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Let U be a smooth quasi-projective variety.
Let X be a smooth projective variety such that
U X and D=X-U is a simple normal crossing
divisor on X.

Then the Kodaira dimension of U is defined as

K= K (W92 ) = KCKstD)

Prove that K(w) is independent of the choice of the
compactification X.



