EXERCISES: A GUIDE TO NORMAL COMPLEX SURFACE SINGULARITIES

- **Ex1.** Let $N = \mathbb{Z}^2$ and $M = N^{\vee}$. Consider the cone $\sigma \subset N_{\mathbb{R}}$ bounded by v_1 and v_2 in N. For the following cases, find a (finite) generating set of $S_{\sigma} := \sigma^{\vee} \cap M$ and describe the associated affine toric variety.
 - (a) $v_1 = (1,0), v_2 = (4,-3).$
 - (b) $v_1 = (1,0), v_2 = (5,-2).$
- **Ex2.** Let $N = \mathbb{Z}^2$, and let $v_1 = (1, 0)$ and $v_2 = (1, \sqrt{2})$ be vectors in $N_{\mathbb{R}} = N \otimes_{\mathbb{Z}} \mathbb{R}$. Consider the convex polyhedral cone

$$\sigma = \mathbb{R}_{\geq 0} \cdot v_1 + \mathbb{R}_{\geq 0} \cdot v_2$$

Prove that the semigroup $S_{\sigma} = \sigma^{\vee} \cap M$ is not finitely generated.

- **Ex3.** Let m > q > 0 be relative prime integers, $N' = \mathbb{Z}^2$ and $N = \mathbb{Z}^2 + \mathbb{Z} \cdot \frac{1}{m}(1,q)$. Describe the dual lattice $M := \operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ as a sublattice of $M' = \operatorname{Hom}_{\mathbb{Z}}(N', \mathbb{Z})$.
- **Ex4.** Let $\sigma = \mathbb{R}_{\geq 0} \cdot (1,0) + \mathbb{R}_{\geq 0} \cdot (0,1)$ be the first quadrant, but regarded as a cone in $N_{\mathbb{R}}$ where $N = \mathbb{Z}^2 + \mathbb{Z} \cdot \frac{1}{m}(1,q)$ (here, m and q < m are positive integers that are relatively prime). Prove that the affine toric variety X_{σ} associated to σ is the space \mathbb{C}^2/G where
 - (a) $G = \mathbb{Z}/m\mathbb{Z}$ is the cyclic group generated by $\zeta = \exp(\frac{2\pi\sqrt{-1}}{m})$, and
 - (b) the action of G on \mathbb{C}^2 is given by

$$\zeta \cdot (x, y) = (\zeta x, \zeta^q y).$$

Ex5. Assume q = 1 in **Ex4**.

- (a) Describe the affine coordinate ring of $X := \mathbb{C}^2/G$.
- (b) Compute the resolution of $0 \in X$, and the associated Hirzebruch-Jung continued fraction.
- Repeat (a) and (b) for q = m 1.

Divisors and linear equivalences. Let $N = \mathbb{Z}^2$, and $M = \text{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$, and let Σ be a complete fan in $N_{\mathbb{R}}$ with one-dimensional rays ρ_1, \ldots, ρ_d . Let $u_i \in N$ be the primitive vector in the ray ρ_i . Then, for each $m \in M$, the associated divisor

$$\operatorname{div}(\chi^m) := \sum_{i=1}^d \langle m, u_i \rangle D_{\rho_i}$$

is linearly equivalent to zero.

If the toric variety X_{Σ} is singular, then D_{ρ_i} are not necessarily Cartier. A divisor $D = \sum a_i D_{\rho_i} \in Cl X_{\Sigma}$ is Cartier if and only if D is locally principal at each maximal cone, or equivalently, for each maximal cone σ , there exists m_{σ} such that $\langle m_{\sigma}, u_i \rangle = a_i$ whenever $u_i \in \sigma$.

- **Ex6.** Consider the complete fan Σ spanned by primitive vectors (0,1), (1,0), and (-1,-1) in $N = \mathbb{Z}^2$. Prove that these rays define a unique divisor up to linear equivalences.
- **Ex7.** Consider the fan Σ in $N = \mathbb{Z}^2$ given as follows.

- (a) Prove that D_{ρ_3} is Cartier, but others are not. Find the smallest integers such that $a_i D_{\rho_i}$ becomes Cartier.
- (b) Let Σ' be the fan obtained by subdividing σ_3 by $\rho_0 := (0, 1)$. The toric variety X' associated to X' is the Hirzebruch surface \mathbb{F}_d . The following figure displays the curves D_{ρ_i} decorated with the self-intersection numbers:

Identify $D_{\rho_0}, \ldots, D_{\rho_3}$ in this figure.

Ex8. Let X be a complete toric surface whose fan contains a cone σ bounded by the primitive vectors v₁, v₂ in N = Z². It defines a singularity 1/m(1,q) for m > 0 and q > 0 relatively prime to m.
(a) Let v₁ = (a, b) and v₂ = (c, d), and let A be the 2 × 2 matrix of integers:

$$\left(\begin{array}{cc}a&c\\b&d\end{array}\right)$$

Prove that $m = |\det A|$.

(b) Let D_i be the divisor associated to the ray $\rho_i := \mathbb{R}_{\geq 0} \cdot v_i$. Prove that

$$(D_1 \cdot D_2) = \frac{1}{m}.$$

(Hint: observe that it is harmless to take any complete toric surface which contains σ)

Ex9. Let X be a complete toric variety whose fan contains three consecutive rays, say $\rho_1, \rho_2, \rho_3 \subset N_{\mathbb{R}}$. Let v_i be the primitive vector in N which generates ρ_i .

There are three cases: v_1, v_2, v_3 are **convex**(left) / **flat**(middle) / **concave**(right).

Let C be the curve corresponding to the ray ρ_2 . Prove that

- (a) $(K_X \cdot C) < 0 \iff v_1, v_2, v_3$ are convex;
- (b) $(K_X \cdot C) = 0 \iff v_1, v_2, v_3$ are flat;
- (c) $(K_X \cdot C) > 0 \iff v_1, v_2, v_3$ are concave.

Ex10. For integers $b_1, \ldots, b_r \ge 2$, define

$$A(b_1, \dots, b_r) = \det \begin{pmatrix} b_1 & -1 & 0 & \dots & 0 & 0 \\ -1 & b_2 & -1 & \dots & 0 & 0 \\ 0 & -1 & b_3 & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & b_{r-1} & -1 \\ 0 & 0 & 0 & \dots & -1 & b_r \end{pmatrix}.$$

(a) Show that for each $k \leq r - 1$,

$$A(b_k, \dots, b_r) = b_k A(b_{k+1}, \dots, b_r) - A(b_{k+2}, \dots, b_k)$$

where we put $A(\emptyset) = 1$ for convenience.

(b) Fix $\frac{m}{q} = [b_1, \ldots, b_r]$. Let $\{\alpha_k\}$ be a sequence of integers such that

$$\frac{\alpha_k}{\alpha_{k+1}} = [b_k, \dots, b_r]$$

Prove that $\alpha_k = b_k \alpha_{k+1} - \alpha_{k+2}$ for each $k \le r - 1$ (put $\alpha_{r+1} = 1$).

Conclude that $m = A(b_1, \ldots, b_r)$ and $q = A(b_2, \ldots, b_r)$.

Ex11. Let A be a ring, $I \subset A$ an ideal. The *Rees algebra* is the graded A-algebra $S = \bigoplus_{d>0} S_d$ such that

- 1. $S_0 = A;$
- 2. $S_d \simeq I^d$ for d > 0;
- 3. the product $S_d \otimes S_e \to S_{d+e}$ is induced by $I^d \otimes I^e \to I^{d+e}$.

The associated projective variety $\operatorname{Proj} S$ over A is the blow up of A along I.

(a) Let $A = \mathbb{C}[x, y]$ and I = (x, y). Prove that the Rees algebra S is isomorphic to

$$A[X,Y]/(xY - yX),$$

showing that $\operatorname{Proj} S = \{((x, y), [X : Y]) \in \mathbb{A}^2 \times \mathbb{P}^1 \mid xY = yX\}$ is the blow up of \mathbb{C}^2 at the origin.

(b) Let $A = \mathbb{C}[x, y]$ and $I = (x^2, y^2)$. Compute the blow up of A along I, and check that it contains a non-normal singularity.

- (a) Prove that the intersection matrix is negative definite.
- (b) Let S be a smooth projective surface containing the Γ and let $S \to X$ be the contraction of Γ . Compute the discrepancies of the irreducible components of Γ with respect to the singularity in X.
- (c) Find the fundamental cycle and determine the rationality of the singularity.