
EXERCISES: A GUIDE TO NORMAL COMPLEX SURFACE SINGULARITIES

Ex1. Let N = Z2 and M = N∨. Consider the cone σ ⊂ NR bounded by v1 and v2 in N . For the following

cases, find a (finite) generating set of Sσ := σ∨ ∩M and describe the associated affine toric variety.

(a) v1 = (1, 0), v2 = (4,−3).

(b) v1 = (1, 0), v2 = (5,−2).

Ex2. Let N = Z2, and let v1 = (1, 0) and v2 = (1,
√

2) be vectors in NR = N ⊗Z R. Consider the convex

polyhedral cone

σ = R≥0 · v1 + R≥0 · v2.

Prove that the semigroup Sσ = σ∨ ∩M is not finitely generated.

Ex3. Let m > q > 0 be relative prime integers, N ′ = Z2 and N = Z2 + Z · 1
m (1, q). Describe the dual

lattice M := HomZ(N,Z) as a sublattice of M ′ = HomZ(N ′,Z).

Ex4. Let σ = R≥0 · (1, 0) + R≥0 · (0, 1) be the first quadrant, but regarded as a cone in NR where

N = Z2 +Z · 1
m (1, q) (here, m and q < m are positive integers that are relatively prime). Prove that

the affine toric variety Xσ associated to σ is the space C2/G where

(a) G = Z/mZ is the cyclic group generated by ζ = exp
(

2π
√
−1

m

)
, and

(b) the action of G on C2 is given by

ζ · (x, y) = (ζx, ζqy).

Ex5. Assume q = 1 in Ex4.

(a) Describe the affine coordinate ring of X := C2/G.

(b) Compute the resolution of 0 ∈ X, and the associated Hirzebruch-Jung continued fraction.

Repeat (a) and (b) for q = m− 1.

Divisors and linear equivalences. Let N = Z2, andM = HomZ(N,Z), and let Σ be a complete fan

in NR with one-dimensional rays ρ1, . . . , ρd. Let ui ∈ N be the primitive vector in the ray ρi. Then,

for each m ∈M , the associated divisor

div(χm) :=

d∑
i=1

〈m,ui〉Dρi

is linearly equivalent to zero.

If the toric variety XΣ is singular, then Dρi are not necessarily Cartier. A divisor D =
∑
aiDρi ∈

ClXΣ is Cartier if and only if D is locally principal at each maximal cone, or equivalently, for each

maximal cone σ, there exists mσ such that 〈mσ, ui〉 = ai whenever ui ∈ σ.
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Ex6. Consider the complete fan Σ spanned by primitive vectors (0, 1), (1, 0), and (−1,−1) in N = Z2.

Prove that these rays define a unique divisor up to linear equivalences.

Ex7. Consider the fan Σ in N = Z2 given as follows.

σ1

σ2

σ3

ρ3=(0,−1)

ρ2=(−1,0)

ρ1=(1,d)

(a) Prove thatDρ3 is Cartier, but others are not. Find the smallest integers such that aiDρi becomes

Cartier.

(b) Let Σ′ be the fan obtained by subdividing σ3 by ρ0 := (0, 1). The toric variety X ′ associated

to X ′ is the Hirzebruch surface Fd. The following figure displays the curves Dρi decorated with

the self-intersection numbers:

−d

d

0 0

Identify Dρ0 , . . . , Dρ3 in this figure.

Ex8. Let X be a complete toric surface whose fan contains a cone σ bounded by the primitive vectors

v1, v2 in N = Z2. It defines a singularity 1
m (1, q) for m > 0 and q > 0 relatively prime to m.

(a) Let v1 = (a, b) and v2 = (c, d), and let A be the 2× 2 matrix of integers: a c

b d

 .

Prove that m = |detA|.
(b) Let Di be the divisor associated to the ray ρi := R≥0 · vi. Prove that

(D1 ·D2) =
1

m
.

(Hint: observe that it is harmless to take any complete toric surface which contains σ)

Ex9. Let X be a complete toric variety whose fan contains three consecutive rays, say ρ1, ρ2, ρ3 ⊂ NR.

Let vi be the primitive vector in N which generates ρi.

There are three cases: v1, v2, v3 are convex(left) / flat(middle) / concave(right).

Let C be the curve corresponding to the ray ρ2. Prove that
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v1

v2

v3····
·
·
·
· ·

v1

v2

v3····
·
·
·
· ·

v1

v2

v3····
·
·
·
· ·

(a) (KX · C) < 0⇐⇒ v1, v2, v3 are convex;

(b) (KX · C) = 0⇐⇒ v1, v2, v3 are flat;

(c) (KX · C) > 0⇐⇒ v1, v2, v3 are concave.

Ex10. For integers b1, . . . , br ≥ 2, define

A(b1, . . . , br) = det



b1 −1 0 . . . 0 0

−1 b2 −1 . . . 0 0

0 −1 b3 . . . 0 0
...

. . .
...

0 0 0 . . . br−1 −1

0 0 0 . . . −1 br


.

(a) Show that for each k ≤ r − 1,

A(bk, . . . , br) = bkA(bk+1, . . . , br)−A(bk+2, . . . , bk),

where we put A(∅) = 1 for convenience.

(b) Fix m
q = [b1, . . . , br]. Let {αk} be a sequence of integers such that

αk
αk+1

= [bk, . . . , br].

Prove that αk = bkαk+1 − αk+2 for each k ≤ r − 1 (put αr+1 = 1).

Conclude that m = A(b1, . . . , br) and q = A(b2, . . . , br).

Ex11. Let A be a ring, I ⊂ A an ideal. The Rees algebra is the graded A-algebra S =
⊕

d≥0 Sd such that

1. S0 = A;

2. Sd ' Id for d > 0;

3. the product Sd ⊗ Se → Sd+e is induced by Id ⊗ Ie → Id+e.

The associated projective variety ProjS over A is the blow up of A along I.

(a) Let A = C[x, y] and I = (x, y). Prove that the Rees algebra S is isomorphic to

A[X,Y ]/(xY − yX),

showing that ProjS =
{

((x, y), [X : Y ]) ∈ A2 × P1
∣∣ xY = yX

}
is the blow up of C2 at the

origin.

(b) Let A = C[x, y] and I = (x2, y2). Compute the blow up of A along I, and check that it contains

a non-normal singularity.
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Ex12. Consider the configuration Γ of smooth rational curves with the following dual intersection graph

−3−3

−3 −3

−2

(a) Prove that the intersection matrix is negative definite.

(b) Let S be a smooth projective surface containing the Γ and let S → X be the contraction of Γ.

Compute the discrepancies of the irreducible components of Γ with respect to the singularity in

X.

(c) Find the fundamental cycle and determine the rationality of the singularity.
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