EXERCISES: A GUIDE TO NORMAL COMPLEX SURFACE SINGULARITIES

Ex1. Let $N=\mathbb{Z}^{2}$ and $M=N^{\vee}$. Consider the cone $\sigma \subset N_{\mathbb{R}}$ bounded by v_{1} and v_{2} in N. For the following cases, find a (finite) generating set of $S_{\sigma}:=\sigma^{\vee} \cap M$ and describe the associated affine toric variety.
(a) $v_{1}=(1,0), v_{2}=(4,-3)$.
(b) $v_{1}=(1,0), v_{2}=(5,-2)$.

Ex2. Let $N=\mathbb{Z}^{2}$, and let $v_{1}=(1,0)$ and $v_{2}=(1, \sqrt{2})$ be vectors in $N_{\mathbb{R}}=N \otimes_{\mathbb{Z}} \mathbb{R}$. Consider the convex polyhedral cone

$$
\sigma=\mathbb{R}_{\geq 0} \cdot v_{1}+\mathbb{R}_{\geq 0} \cdot v_{2}
$$

Prove that the semigroup $S_{\sigma}=\sigma^{\vee} \cap M$ is not finitely generated.

Ex3. Let $m>q>0$ be relative prime integers, $N^{\prime}=\mathbb{Z}^{2}$ and $N=\mathbb{Z}^{2}+\mathbb{Z} \cdot \frac{1}{m}(1, q)$. Describe the dual lattice $M:=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$ as a sublattice of $M^{\prime}=\operatorname{Hom}_{\mathbb{Z}}\left(N^{\prime}, \mathbb{Z}\right)$.

Ex4. Let $\sigma=\mathbb{R}_{\geq 0} \cdot(1,0)+\mathbb{R}_{\geq 0} \cdot(0,1)$ be the first quadrant, but regarded as a cone in $N_{\mathbb{R}}$ where $N=\mathbb{Z}^{2}+\mathbb{Z} \cdot \frac{1}{m}(1, q)$ (here, m and $q<m$ are positive integers that are relatively prime). Prove that the affine toric variety X_{σ} associated to σ is the space \mathbb{C}^{2} / G where
(a) $G=\mathbb{Z} / m \mathbb{Z}$ is the cyclic group generated by $\zeta=\exp \left(\frac{2 \pi \sqrt{-1}}{m}\right)$, and
(b) the action of G on \mathbb{C}^{2} is given by

$$
\zeta \cdot(x, y)=\left(\zeta x, \zeta^{q} y\right) .
$$

Ex5. Assume $q=1$ in Ex4.
(a) Describe the affine coordinate ring of $X:=\mathbb{C}^{2} / G$.
(b) Compute the resolution of $0 \in X$, and the associated Hirzebruch-Jung continued fraction.

Repeat (a) and (b) for $q=m-1$.

Divisors and linear equivalences. Let $N=\mathbb{Z}^{2}$, and $M=\operatorname{Hom}_{\mathbb{Z}}(N, \mathbb{Z})$, and let Σ be a complete fan in $N_{\mathbb{R}}$ with one-dimensional rays $\rho_{1}, \ldots, \rho_{d}$. Let $u_{i} \in N$ be the primitive vector in the ray ρ_{i}. Then, for each $m \in M$, the associated divisor

$$
\operatorname{div}\left(\chi^{m}\right):=\sum_{i=1}^{d}\left\langle m, u_{i}\right\rangle D_{\rho_{i}}
$$

is linearly equivalent to zero.
If the toric variety X_{Σ} is singular, then $D_{\rho_{i}}$ are not necessarily Cartier. A divisor $D=\sum a_{i} D_{\rho_{i}} \in$ $\mathrm{Cl} X_{\Sigma}$ is Cartier if and only if D is locally principal at each maximal cone, or equivalently, for each maximal cone σ, there exists m_{σ} such that $\left\langle m_{\sigma}, u_{i}\right\rangle=a_{i}$ whenever $u_{i} \in \sigma$.

Ex6. Consider the complete fan Σ spanned by primitive vectors $(0,1),(1,0)$, and $(-1,-1)$ in $N=\mathbb{Z}^{2}$. Prove that these rays define a unique divisor up to linear equivalences.

Ex7. Consider the fan Σ in $N=\mathbb{Z}^{2}$ given as follows.

(a) Prove that $D_{\rho_{3}}$ is Cartier, but others are not. Find the smallest integers such that $a_{i} D_{\rho_{i}}$ becomes Cartier.
(b) Let Σ^{\prime} be the fan obtained by subdividing σ_{3} by $\rho_{0}:=(0,1)$. The toric variety X^{\prime} associated to X^{\prime} is the Hirzebruch surface \mathbb{F}_{d}. The following figure displays the curves $D_{\rho_{i}}$ decorated with the self-intersection numbers:

Identify $D_{\rho_{0}}, \ldots, D_{\rho_{3}}$ in this figure.

Ex8. Let X be a complete toric surface whose fan contains a cone σ bounded by the primitive vectors v_{1}, v_{2} in $N=\mathbb{Z}^{2}$. It defines a singularity $\frac{1}{m}(1, q)$ for $m>0$ and $q>0$ relatively prime to m.
(a) Let $v_{1}=(a, b)$ and $v_{2}=(c, d)$, and let A be the 2×2 matrix of integers:

$$
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)
$$

Prove that $m=|\operatorname{det} A|$.
(b) Let D_{i} be the divisor associated to the ray $\rho_{i}:=\mathbb{R}_{\geq 0} \cdot v_{i}$. Prove that

$$
\left(D_{1} \cdot D_{2}\right)=\frac{1}{m}
$$

(Hint: observe that it is harmless to take any complete toric surface which contains σ)

Ex9. Let X be a complete toric variety whose fan contains three consecutive rays, say $\rho_{1}, \rho_{2}, \rho_{3} \subset N_{\mathbb{R}}$. Let v_{i} be the primitive vector in N which generates ρ_{i}.

There are three cases: v_{1}, v_{2}, v_{3} are convex(left) / flat(middle) / concave(right).
Let C be the curve corresponding to the ray ρ_{2}. Prove that

(a) $\left(K_{X} \cdot C\right)<0 \Longleftrightarrow v_{1}, v_{2}, v_{3}$ are convex;
(b) $\left(K_{X} \cdot C\right)=0 \Longleftrightarrow v_{1}, v_{2}, v_{3}$ are flat;
(c) $\left(K_{X} \cdot C\right)>0 \Longleftrightarrow v_{1}, v_{2}, v_{3}$ are concave.

Ex10. For integers $b_{1}, \ldots, b_{r} \geq 2$, define

$$
A\left(b_{1}, \ldots, b_{r}\right)=\operatorname{det}\left(\begin{array}{cccccc}
b_{1} & -1 & 0 & \ldots & 0 & 0 \\
-1 & b_{2} & -1 & \ldots & 0 & 0 \\
0 & -1 & b_{3} & \ldots & 0 & 0 \\
& \vdots & & \ddots & & \vdots \\
0 & 0 & 0 & \ldots & b_{r-1} & -1 \\
0 & 0 & 0 & \ldots & -1 & b_{r}
\end{array}\right)
$$

(a) Show that for each $k \leq r-1$,

$$
A\left(b_{k}, \ldots, b_{r}\right)=b_{k} A\left(b_{k+1}, \ldots, b_{r}\right)-A\left(b_{k+2}, \ldots, b_{k}\right)
$$

where we put $A(\varnothing)=1$ for convenience.
(b) Fix $\frac{m}{q}=\left[b_{1}, \ldots, b_{r}\right]$. Let $\left\{\alpha_{k}\right\}$ be a sequence of integers such that

$$
\frac{\alpha_{k}}{\alpha_{k+1}}=\left[b_{k}, \ldots, b_{r}\right] .
$$

Prove that $\alpha_{k}=b_{k} \alpha_{k+1}-\alpha_{k+2}$ for each $k \leq r-1\left(\right.$ put $\left.\alpha_{r+1}=1\right)$.
Conclude that $m=A\left(b_{1}, \ldots, b_{r}\right)$ and $q=A\left(b_{2}, \ldots, b_{r}\right)$.

Ex11. Let A be a ring, $I \subset A$ an ideal. The Rees algebra is the graded A-algebra $S=\bigoplus_{d \geq 0} S_{d}$ such that

1. $S_{0}=A$;
2. $S_{d} \simeq I^{d}$ for $d>0$;
3. the product $S_{d} \otimes S_{e} \rightarrow S_{d+e}$ is induced by $I^{d} \otimes I^{e} \rightarrow I^{d+e}$.

The associated projective variety $\operatorname{Proj} S$ over A is the blow up of A along I.
(a) Let $A=\mathbb{C}[x, y]$ and $I=(x, y)$. Prove that the Rees algebra S is isomorphic to

$$
A[X, Y] /(x Y-y X)
$$

showing that $\operatorname{Proj} S=\left\{((x, y),[X: Y]) \in \mathbb{A}^{2} \times \mathbb{P}^{1} \mid x Y=y X\right\}$ is the blow up of \mathbb{C}^{2} at the origin.
(b) Let $A=\mathbb{C}[x, y]$ and $I=\left(x^{2}, y^{2}\right)$. Compute the blow up of A along I, and check that it contains a non-normal singularity.

Ex12. Consider the configuration Γ of smooth rational curves with the following dual intersection graph

(a) Prove that the intersection matrix is negative definite.
(b) Let S be a smooth projective surface containing the Γ and let $S \rightarrow X$ be the contraction of Γ. Compute the discrepancies of the irreducible components of Γ with respect to the singularity in X.
(c) Find the fundamental cycle and determine the rationality of the singularity.

