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Background

Quantum computing technologies have been rapidly developing recently.

• Various experimental platforms: Superconducting qubits, Ion traps,
Photon, Atoms, Quantum Dot, Topological Qubit, NV Center, ...

• Decent-sized systems: 30 ⇠ 100 qubits
• Beyond 40 qubits, exact classical simulation becomes very difficult.

• There are plans to build O(100) qubit quantum computers and more.
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General Motivation

Quantum Computers seem to provide exponential advantage for certain
problems.

Examples

• Factoring [Shor (1994)]

• Simulation of physical systems [Feynman (1982)]
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Physics Motivation

• Quantum many-body problem becomes classically intractable as we scale
the system size.

• Physics deals with simple models, which often makes implementation of
quantum simulation algorithms easier (compared to realistic quantum
chemical models).

• Physical property of the phase is often robust to small perturbations, so
perhaps even a noisy quantum computer can make a useful prediction.

• There is an interest in using quantum computer in a certain subset of
researchers in computational condensed matter/lattice QCD researchers.
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Physics Application

Rigorous Approaches

• Hamiltonian Simulation

• Quantum Phase Estimation/Eigenstate Filtering

Pro: Rigorous guarantee
Con: Need a large fault-tolerant quantum computer

Heuristic Approaches

• Variational Quantum Eigensolver

• Quantum Machine Learning

Pro: Near-term friendly
Con: Hard to guarantee anything

5

I

143 entry

I



Prerequisites

• Undergraduate-level quantum mechanics
• Bra-Ket notation

• Linear algebra
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Part 1. Basics of Quantum Information
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Hilbert Space and Born Rule

Notation

• Hd : Hilbert space of dimension d .

• B(H): Space of (bounded) operators acting on Hilbert space H.

Born Rule

For a state | i,
Pr[Measure |xi] = |h |xi|2
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Tensor Product: Hilbert Space

Composite quantum systems

If we have two spin- 1
2 particles, what is the Hilbert space that describes

their joint state?
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Tensor Product: Operators

Composite quantum systems

If we have two spin- 1
2 particles, how do we express the operators acting

on this Hilbert space?
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Tensor Product: Basic properties

• Associative: (A⌦ B)⌦ C = A⌦ (B ⌦ C)

• Not commutative in general: |�i ⌦ | i 6= | i ⌦ |�i
• If we exchange one spin with another spin, obviously sometimes we will get

a different state.
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Density matrix

A state | i 2 H in the density matrix version:

| ih |.

More generally, a density matrix is a positive semi-definite matrix with unit
trace.

Born Rule (Generalization)

Pr[Measure |xi] = hx |⇢|xi
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Density matrix in a tensor product Hilbert space

Let the Hilbert space be HA ⌦HB .

• ⇢ is separable if
⇢ =

X

i

pi⇢A,i ⌦ ⇢B,i .

for some {⇢A,i}, {⇢B,i} and a probability ditsribution {pi}.
• ⇢ is entangled otherwise.
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Partial trace

Let ⇢ be a density matrix acting on HA ⌦HB .

TrB(⇢) =
X

i

(IA ⌦ hi |)⇢(IA ⌦ |ii),

where {|ii} is an orthonormal basis set for HB .
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Measurement

Let {|ii} be an orthonormal basis set for H. When we measure a state
| i 2 H, what happens?
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Partial Measurement

Let {|ii} be an orthonormal basis set for HA and let | i 2 HA ⌦HB . When we
measure a state | i, what happens?
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Measurement Process

We can model the measurement as a unitary process involving a “probe.” Let
| i =

P
i ↵i |ii  

X

i

↵i |ii
!

⌦ |0iP !
X

i

↵i |ii ⌦ |iiP
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Partial Measurement Process

We can model the measurement as a unitary process involving a “probe.” Now
let’s think about the partial measurement process.
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Partial Measurement

Let {|ii} be an orthonormal basis set for HA and let | i 2 HA ⌦HB . When we
measure a state | i, what happens?

• Probability of measuring |ii: TrA((IA ⌦ hi |)⇢(IA ⌦ |ii)).
• Post-measurement state: Normalized version of (IA ⌦ hi |)⇢(IA ⌦ |ii).
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Part 2. Basic Concepts in Quantum Computing
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Qubit and Qubits

• Qubit: H2

• Qubits: H2 ⌦ . . .⌦H2

21

dim 27 27



Gates

• A gate often means a unitary acting on a few (⇡ 1, 2, 3) qubits.

• Some people call measurement as gates. In this lecture, we will simply
refer to those as measurements. Gates will be assumed to be unitary.
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Circuits

• A circuit is a sequence of unitary gates.

• Useful concepts: Depth and Width
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What is Quantum Computation?

• Gate-based model

• Quantum Turing Machine [Duetsch (1974)]

• Adiabatic model [Farhi, Goldstone, Guttman, Sipser (2000)]
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Part 3. Some computer science concepts
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Efficient and Inefficient

Computer scientists are interested in algorithms. When it comes down to assess-
ing whether an algorithm is “efficient” or not, the absolute time does not matter.
What matters is the scaling.

ex)

• An algorithm that takes 210�100n seconds would be “efficient.”

• An algorithm that takes 1010100
n seconds would not be efficient.
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Complexity

• Gate complexity: Number of few-qubit (or few-bit) gates needed to solve a
problem.

• Query complexity: Number of invocations to some “black box.”

Guiding Example

Complexity of e i
PN

n=1 ZnZn+1?
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Big-O notation

• O(f (n)): “Upper bounded”

• ⌦(f (n)): “Lower bounded”

• ⇥(f (n)): “On the order of”

• o(f (n)): “Subleading”
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Classical vs. Quantum Computation

• Classical computation can be decomposed into a sequence of classical
gates, e.g., NOT, AND, XOR, NAND, ...

• Quantum computation can be decomposed into a sequence of
quantum gates.

Remarkably, there are problems which are “easy” for quantum computers
that seem to be “hard” for classical computers.
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Part 4. Classical vs. Quantum Computation
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Unitarity Constraint

One of the basic units of classical computation is AND gate. Let’s think about
whether this gate is unitary.

31

AND

11,5



Reversible Computation

How can we implement AND gate unitarily?
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Classical vs. Quantum Computation

The class of problems that can be solved efficiently classically is a subset of the
problems that can be solved efficiently quantumly.
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Exponential Speedups

There appears to be a problem that can be solved efficiently on a quantum
computer which cannot be solved efficiently on a classical computer.

[Shor (1994), Feynman (1982)]
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Some comments

While this is beyond the scope of this lecture series, I should note that quan-
tum computers probably cannot efficiently solve NP-hard problems, e.g., finding
ground states of a spin glass. One generally shouldn’t expect to be able to get
an exponential speedup to search problems unless there is a special structure to
the problem one can exploit.

Without much structure, one often only get a quadratic speedup.

• Database search [Grover (1996)]

• Amplitude amplification/estimation [Brassard (2002)]

• Speedup for Monte Carlo
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Recap

1. Basics of Quantum Information

2. Basics in Quantum Computation

3. Computer Science Concepts

4. Classical vs. Quantum Computation

Next lecture: Basic facts about quantum circuits

Questions?
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