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Gate-based model

The standard model of quantum computation is a gate-based model of quantum
computation.

• A gate is a unitary transformation acting on O(1) qubits.

• A quantum circuit is a sequence of quantum gates.

In quantum computing literature, there are standard gates and gate identities
that are often used. The purpose of this lecture is to explain the motivation be-
hind these standard gate set and the ideas behind how the identities are derived.
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Circuit Diagram
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Part 1. Universal Gate set
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Quantum computation

Quantum computation, at the highest level, is a unitary transformation acting
on n qubits.

Fact

Arbitrary unitary U 2 B(H2 . . .H2) can be decomposed into a sequence
of one- and two-qubit gates.

Universal Gate Set

A gate set G is universal if any unitary can be approximated arbitrarily
well using the set of gates in G.

5

Nielsenand Chuang y



Is quantum computing analog?

The set of unitaries is not a finite set. So it appears that However, surprisingly,
any element in this set can be approximated arbitrarily well by a finite set of one-
and two-qubit gates. It is in this sense quantum computing is “digital.”
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Is quantum computing analog?

Some of the early critiques of quantum computing said that it will be impossible
to do quantum computation because coherence over exponentially many branches
will be very difficult to maintain. We now know that this is a fallacious argument.

In the theory of quantum error correction, one can detect the presence/absence
of error by performing a measurement. This measurement process “collapses” the
state onto one of discrete set of states, after which the error can be corrected.
This is another sense in which quantum computing is “digital.”
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Which gate set?

It is well-known that almost all discrete gate set is universal [Harrow, Recht,
Chuang (2001)]. So there is a natural question: which gate set should we
choose?

Experimental Constraint

• Current hardware error rate: 10�2
⇠ 10�3

• Number of gates needed to solve commercially useful problems:
1010

⇠ 1015.

! Error correction is absolutely necessary to do something useful.

Quantum Error Correction is compatible only with a rather specific set of gates.
All these gates can be cleanly organized into what is known as the Clifford Hierarchy.
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Part 2. Clifford Hierarchy
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High-level

1. Level-0: Paulis

2. Level-1: Unitaries that send Paulis to Paulis

3. Level-2: Unitaries that send Paulis to Level-1

4. Level-3: Unitaries that send Paulis to Level-2

5. . . .
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Single-Qubit Paulis

I =

 
1 0
0 1

!
,X =

 
0 1
1 0

!
,Y =

 
0 �i

i 0

!
,Z =

 
1 0
0 �1

!
.

For any Pauli P,Q 6= I ,

• P2 = I .

• {P,Q} = 0.

• XY = iZ ,YZ = iX ,ZX = iY .
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Multi-Qubit Paulis

P = ±P1 ⌦ P2 ⌦ . . .Pn�1 ⌦ Pn

I =

 
1 0
0 1

!
,X =

 
0 1
1 0

!
,Y =

 
0 �i

i 0

!
,Z =

 
1 0
0 �1

!
.

For any multi-qubit Paulis P,Q

• P2 = I

• [P,Q] = 0 or {P,Q} = 0.
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Clifford Unitaries

Definition

A n-qubit unitary U is Clifford if for all Pauli P, UPU† is a Pauli.

ex) H, S , CNOT , ...
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Single-qubit Clifford Unitaries

I =

 
1 0
0 1

!
,X =

 
0 1
1 0

!
,Y =

 
0 �i

i 0

!
,Z =

 
1 0
0 �1

!
.

H =
1
p

2

 
1 1
1 �1

!
, S =

 
1 0
0 i

!
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Two-qubit Clifford Unitaries

I =

 
1 0
0 1

!
,X =

 
0 1
1 0

!
,Y =

 
0 �i

i 0

!
,Z =

 
1 0
0 �1

!
.

ex) CX (=CNOT), CZ
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Clifford Unitaries

Clifford unitaries form a group, and this group can be generated by H, S , and
CNOT.

Gottesman-Knill theorem

The exact amplitude/expectation value of any Pauli over a state created
by applying a Clifford to |0 . . . 0i can be efficiently computed on a clas-
sical computer.
! Clifford unitaries are classically efficiently simulable.
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T -gate

T =

 
1 0
0

p
i

!

This gate is in the second level of the Clifford hierarchy.
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Toffoli gate

Toffoli gate is also in the second level of the Clifford hierarchy.
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A very important fact

The following gate sets are universal.

• Clifford + T

• Clifford + Toffoli

These are often the standard gate sets that people use in the literature.
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Part 2. Side comment: Algorithm to gates
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A question

Often a quantum algorithm is specified in terms of sequence of continuous
gates. How can this be translated into a sequence of discrete gate set?
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Solovay-Kitaev theorem

Theorem. Let G be a finite set of elements in SU(2) containing their inverses
such that the group they generate is dense in SU(2). For any ✏ > 0, there is
a constant c such that for any U 2 SU(2), there is a sequence of gates in G

(denoted as S) such that
kS � Uk  ✏.

* Remark: The proof is constructive.
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Approximating rotation by Clifford + T

The Solovay-Kitaev theorem is already pretty good, but for Clifford+T, we can
do much better. We can approximate any gate in SU(2) up to an error ✏ using
O(log 1/✏) gates. [Kliuchnikov and Mosca, Ross and Selinger]

From Ross and Selinger (2014).
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Compilation

Algorithm ! One- and Two-Qubit Gates ! Discrete Gate Sequence

Another evidence that quantum computing is digital!
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Part 3. Gate/Circuit Identities
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Motivation

When we convert an algorithm into one- and two-qubit gates, there are many
well-known identities that people use.

The gate identities involving a single qubit is often straightforward and easy to
work out via brute-force calculation. However, multi-qubit identities tend to be
trickier. We will discuss several tricks.
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Controlled-Unitary

Suppose we are given a unitary U described in terms of a sequence of gates.
How can we implement the following?

(↵|0i ⌦+�|1i)| i ! ↵|0i ⌦ | i+ �|1i ⌦ U| i
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Multiplying controlled unitaries

We know that
ZX | i = iY | i ⌘ Y | i,

because the global state does not matter in quantum mechanics.

What about CZ · CX?
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e iP✓

It will become pretty evident in the next lecture that the gates of the form of e iP✓,
where P is a multi-qubit Pauli, appears very frequently in quantum algorithms.
How can we decompose this into one-and two-qubit gates?
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Decomposing Toffoli

How do you decompose a Toffoli into one- and two-qubit gates?
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Recap

1. Universal Gate Set: It makes a lot of sense to use Clifford + T

2. Algorithm ! one-and two-qubit gates ! Clifford + T

3. Various circuit identities: These will prove to be useful for tomorrow’s
lecture.
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