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Motivation

Interacting quantum many-body systems are difficult to solve unless there is a
special structure underlying the problem, e.g., large symmetry group, commuta-
tion of the local terms in the Hamiltonian formulation, etc.

Wish list

1. Algorithm for preparing the ground state

2. Algorithm for preparing a thermal state

3. Dynamics
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Ground State

There is a good reason to believe that no efficient method for preparing ground
state of an arbitrary Hamiltonian (even if the Hamiltonian is local) exists.

Basic Argument

1. One can reduce any problem in NP to the problem of checking
whether the ground state energy of a spin glass with coupling ±1
is 0 or not.

2. If there is an efficient quantum algorithm for preparing the ground
state, one can compute the energy efficiently by measuring
individual terms in the Hamiltonian.

3. In particular, we can check if the ground state energy is 0 or not
efficiently.

4. Despite many attempts, there does not seem to be an efficient
quantum (and of course, classical) algorithm that can solve
problems in NP.

• Only this argument is not rigorous.

5. Therefore, probably no quantum algorithm can find the ground
state 3
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Thermal state

For classical systems, the Metropolis algorithm is the standard algorithm ap-
proach. While there is no general rigorous guarantee on the efficiency, this works
quite well in many situations. However, for quantum systems the sane approach
fails to work because of the sign problem (except for special cases).

It turns out that there is a quantum version of Metropolois algorithm [Temme et
al. (2009)]. Again, there is no guarantee on the efficiency, but under plausible
assumptions on the density of states and eigenstate thermalization hypothesis,
one can expect this to work efficiently [Chen, Brandao (2021)].
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Part 1. Quantum Phase Estimation
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Key subroutine: Quantum Phase Estimation

In both ground state and thermal state preparation, a technique known as the
Quantum Phase Estimation (QPE) is extensively used. This is the standard
technique in quantum computing, which we will discuss now.

QPE (Ideal)

Let H =
P

n
En|nihn| be the eigendecomposition of a Hamiltonian H.

What QPE achieves is this:

|ni ⌦ |0i ! |ni ⌦ |Eni.

Issue: En cannot be specified with infinite precision in general. So in reality,
what we are really doing is

|ni ⌦ |0i ! |ni ⌦ |E 0
ni,

where E 0
n is an approximation of En up to some fixed precision.
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QPE

QPE can be implemented using two subroutines.

• Time evolution: e�iHt for a set of values for t 2 R.

• Quantum Fourier Transform: Discrete version of the Fourier Transform.

Circuit:
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QPE

Quantum Fourier Transform:

Circuit:

Analysis:
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QPE as an eigenstate filter

Now suppose we begin with a superposition of the energy eigenstate. After
applying QPE and measuring the energy, what do we get?
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QPE: Summary

• QPE is the key subroutine in many quantum algorithms (ground state
preparation, thermal state preparation, ...).

• QPE can be decomposed into controlled-time evolution and quantum
Fourier transform.

• Almost always the complexity of the time evolution dominates that of
quantum Fourier transform.

Many algorithms ! QPE ! Time evolution
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Part 2. Time evolution: Basics
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Time evolution

1. Trotter-Suzuki decomposition

2. Linear Combination of Unitaries

3. Quantum Signal Processing/Qubitization/Quantum Singular Value
Transformation
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The goal

It is hopeless to implement e�iHt with zero error. What one should aim for is to
implement U such that

U| i ⇡ e�iHt | i

for any state | i. More precisely, we will often have an error ✏ in mind that we
are wishing to tolerate, in which case we want

kU| i � e�iHt | ik  ✏

for any state | i, where k|�ik =
p

h�|�i.

13



Operator norm

Clearly, this means that we want

max
| i

k(U � e�iHt)| ik  ✏

. For a general operator O, we can define a norm

kOk = max
| i

kO| ik.

This is known as the operator norm.
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Operator norm: Properties

1. Triangle inequality

2. kOO 0k  kOkkO 0k

3. kUk = 1 for any unitary U.
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Some exercises

Suppose kU � e�iHtk  ✏.

kUn � e�iHntk ?
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Some exercises

Suppose kU � e�iHtk  ✏.

|h U†OU| i � h |e iHtOe�iHt | i| ?
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Part 3. Trotter-Suzuki decomposition
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Trotter-Suzuki decomposition

Let H = A+ B.
e�iHT = lim

N!1
(e�iAT/Ne�iBT/N)N .

We will take N to be finite and estimate the error.
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Taylor Expansion

Let H = A+ B.
e�iHT = lim

N!1
(e�iAT/Ne�iBT/N)N .

Taking t = T/N to be infinitesimally small, we can compare

e�iHt vs. e�iAte�iBt

order by order.
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Differential equation

The issue with the previous approach is that the bound is very lousy when A

and B commute. One approach to avoid this problem is to inspect the
equation.

d
dt

⇣
e iAte iBte�iHt

⌘
=?
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Trotter-Suzuki decomposition

Thus, we have concluded that the Trotter-Suzuki decomposition yields an error
of O(k[A,B]kt2). For approximating e�iHT , the error then becomes:

O(k[A,B]kT 2/N),

which we can systematically reduce by choosing large N.
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Case study: Transverse field Ising model

H =
X

i

�ZiZi+1 + Xi

23

1 52.2 X l

124,211 2

A INZazie D Ex

e o HEIDI IN é't center s
Imap titty

Jr 014 sayÉ

we compare OCM

Ocn
Ocn

let.MIL HAB

BAILEY
thrall N 0ft

121 AllllBY



Higher order Trotter-Suzuki

We can consider decompositions that cancel higher order terms of the Taylor
expansion, e.g.,

e�iHt vs. e�
A

2 te�iBte�
A

2 t .

These higher order decompositions yield higher order suppression in terms of N.

* Useful reference: arXiv:1912.08854
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Summary

Trotter-Suzuki decomposition:

• Pro: Very simple and intuitive. Works well in practice, too.

• Con: Scaling in inverse error is polynomial. This is not optimal.

Next lecture: Post-Trotter methods
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