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Motivation

Interacting quantum many-body systems are difficult to solve unless there is a
special structure underlying the problem, e.g., large symmetry group, commuta-

tion of the local terms in the Hamiltonian formulation, etc.

1. Algorithm for preparing the ground state
2. Algorithm for preparing a thermal state

3. Dynamics




Ground State
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There is a good reason to believe that no efficient method for preparing ground

state of an arbitrary Hamiltonian (even if the Hamiltonian is local) exists.

Basic Argument

1. One can reduce any problem in NP to the problem of checking
whether the ground state energy of a spin glass with coupling +1
is 0 or not.

2. If there is an efficient quantum algorithm for preparing the ground
state, one can compute the energy efficiently by measuring
individual terms in the Hamiltonian.

3. In particular, we can check if the ground state energy is 0 or not
efficiently.

4. Despite many attempts, there does not seem to be an efficient
quantum (and of course, classical) algorithm that can solve
problems in NP.

e Only this argument is not rigorous.

5. Therefore, probably no quantum algorithm can find the ground
state 3




Thermal state

For classical systems, the Metropolis algorithm is the standard algorithm ap-
proach. While there is no general rigorous guarantee on the efficiency, this works
quite well in many situations. However, for quantum systems the sane approach
fails to work because of the sign problem (except for special cases).

It turns out that there is a quantum version of Metropolois algorithm [Temme et
al. (2009)]. Again, there is no guarantee on the efficiency, but under plausible
assumptions on the density of states and eigenstate thermalization hypothesis,
one can expect this to work efficiently [Chen, Brandao (2021)].



Part 1. Quantum Phase Estimation



Key subroutine: Quantum Phase Estimation

In both ground state and thermal state preparation, a technique known as the
Quantum Phase Estimation (QPE) is extensively used. This is the standard
technique in quantum computing, which we will discuss now.
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where E is an approximation of E, up to some fixed precision.



QPE can be implemented using two subroutines.

e Time evolution: e for a set of values for t € R.

e Quantum Fourier Transform: Discrete version of the Fourier Transform.
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QPE as an eigenstate filter

Now suppose we begin with a superposition of the energy eigenstate. After
applying QPE and measuring the energy, what do we get?
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QPE: Summary

e QPE is the key subroutine in many quantum algorithms (ground state
preparation, thermal state preparation, ...).

e QPE can be decomposed into controlled-time evolution and quantum
Fourier transform.

e Almost always the complexity of the time evolution dominates that of
quantum Fourier transform.

Many algorithms — QPE — Time evolution
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Part 2. Time evolution: Basics
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Time evolution

1. Trotter-Suzuki decomposition
2(08 <2. Linear Combination of Unitaries

3. Quantum Signal Processing/Qubitization/Quantum Singular Value
Transformation
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The goal

It is hopeless to implement e~ with zero error. What one should aim for is to

implement U such that
Ulp) = e[

for any state |¢)). More precisely, we will often have an error € in mind that we

are wishing to tolerate, in which case we want
1Ul) — e ™) < e
for any state |), where [||¢)|| = /{¢|®).
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Operator norm

Clearly, this means that we want

max (U e )| < e

. For a general operator O, we can define a norm

Ol = max||O )
|0l = max O[]

This is known as the operator norm.

Grotract U et || U= e"‘"‘”_ét

~—

14



Operator norm: Properties

1. Triangle inequality lo+o'll £ lloii + 1Ol
2. o0 < [lofl[o7]]

3. ||U|| = 1 for any unitary U.
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Some exercises

Suppose ||U — e—"HfH <e.

||Un_e—iHnt|| §7

” U _ —-'l/\lf't [ _ ” U (U~ ukt) + Ue,ﬂ{- —D.AHf, U
= |y w-e*) t (-2 ety

’\) Thorste

= Jutv-e"l = | l-e*)e™| wlmai€ip oty
= Ul |)0- o*| + J-€") Ne “|

1 Q loll=|

2 |ly-e il
2.C

——

LAY

U €™ £t

16



Some exercises

Suppose ||[U — e "|| < e.
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Part 3. Trotter-Suzuki decomposition
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Trotter-Suzuki decomposition

Let H= A+ B.
—iHT
e = lim (e~
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e ).
N— oo

We will take N to be finite and estimate the error.
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Taylor Expansion

Let H= A+ B.

e = lim (e~

IAT/N _—iBT /NN
e ).
N— oo

Taking t = T /N to be infinitesimally small, we can compare

oMt o oAt g—iBE
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Differential equation

The issue with the previous approach is that the bound is very lousy when A
and B commute. One approach to avoid this problem is to inspect the
equation.
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Trotter-Suzuki decomposition

Thus, we have concluded that the Trotter-Suzuki decomposition yields an error
of O(||[A, B]||t?). For approximating e """, the error then becomes:

O(ll[A. BIIT®/N),

which we can systematically reduce by choosing large N.
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Case study: Transverse field Ising model
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Higher order Trotter-Suzuki

We can consider decompositions that cancel higher order terms of the Taylor

. NS
expansion, e.g., e e

—iHt My i My
e "vs. e 2te PreT 2",

These higher order decompositions yield higher order suppression in terms of .

* Useful reference: arXiv:1912.08854

24



Trotter-Suzuki decomposition:

e Pro: Very simple and intuitive. Works well in practice, too.

e Con: Scaling in inverse error is polynomial. This is not optimal.

Next lecture: Post-Trotter methods
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