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Review: Trotter-Suzuki

Trotter-Suzuki decomposition:

e Pro: Very simple and intuitive. Works well in practice, too.

e Con: Scaling in inverse error is polynomial. This is not optimal.



In the early 2010s, an entirely new way of implementing Hamiltonian simulation
was introduced. These approaches are not intuitive at all, and seem very unnat-
ural from the physics perspective. However, they are often the best approaches

when it comes down to the complexity.

Reviewing all of these things are beyond the scope of this lecture. What | will
try to do is to explain the key ideas behind quantum signal processing [Low and
Chuang (2016)], which is the state-of-the-art approach.



Guiding example

Let |+)) be a single-qubit state. Let O be an arbitrary 2 x 2 matrix. How can we
apply
) = Ol¥)/ |0

Is this possible at all?



Step 1: Linear Combination of Unitary

It turns out that O be can be decomposed into a linear combination of
unitaries:
O=q/l +axX+ayY + OzzZ,

where oy, ax,ay,az € C.
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Step 2: Controlled Unitaries

Let

ja) = (aull) + ax|X) + av|Y) + az|Z))/ [> |l

Now we can apply a controlled unitary to create something that looks similar to

what we want.

cy 100 = 1o HP

v [P®18 = IN® XI¥7
U ) ® ¥ = l‘r)®‘(l"¥'7
cvV (z7®w7:' 12) ®=¥)

cV (1&7@1197) = MBI+ A X7® XI9) £ 3 Y9 ® 19 £ Aaf20® =/1)



Step 3: Postselection

Now suppose we measure the ancillary register in a basis that includes
(I +1X) +1Y) +1Z)). What happens?
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Lessons

e |t is possible with to apply a non-unitary transformation to an unknown
quantum state, as long as you are willing to accept a nonzero failure
probability.

e However, when we succeed, we will know that we succeeded.

e Similarly, when we fail, we will know that we failed.



One approach

_iHT
e " = g anH'T"
n

&I ¥ Sal TN
1. Truncate the sum.
2. Find ways to implement |¢) — H|y).
3. Conditionally apply 1 many times.
4

. Postselect.

e Not clear how to implement |i)) — H|).

e This operation is not deterministic. The success probability will
decay exponentially in n.




Part 1. |¢) — H|y)
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H= ZO&,’P,‘,

where {P;} is a set of Paulis.

This is a reasonable choice for locally interacting many-body quantum spin
systems or fermions.
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Basic Framework

where {P;} is a set of Paulis.

Select+Prepare

o Select: |i) @ [¢) — |i) @ @) Bil€)
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* For convenience, let's suppose that |o) = ). «i|i) is normalized.
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Basic idea: For any Pauli P, P = CXC' for some Clifford C.
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H= = & Fa

0..0) — |a). wy= 2 (& (57

The gate complexity of this operation is O(N log(N/€)), where N is the
number of nonzero «; and € is the error.
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Select+ Prepare

Using O(1) number of Select and Prepare, we can realize

[¥) — H[y)

with a nonzero probability.
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Block encoding

= Sdab
i oCn) |
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We say that a unitary U is a block-encoding of H if
A
((0...0,,® L)U(]0...0), ® Is) = H.

The Select+Prepare provides a natural framework to implement a
O@aoh\ block-encoding of H.

U U
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Part 2. Quantum Signal Processing (=Qubitization)
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One approach

_iHT
e " = g anH'T"
n

1. Truncate the sum.

2. Find ways to implement |¢) — H|y).
3. Conditionally apply 1 many times.
4

. Postselect.

e Not clear how to implement |¢)) — H|v). Now we know how.




One approach

_iHT
e " = g anH'T"
n

1. Truncate the sum.

2. Find ways to implement |¢) — H|y).
3. Conditionally apply 1 many times.
4

. Postselect.

e Not clear how to implement |¢)) — H|v). Now we know how.

e This operation is not deterministic. The success probability will

decay exponentially in n.
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Simplification

We will make a simplification that will make our analysis easier. Suppose we
have a block encoding of H: U41

((0...0],® L)U(|0...0Y, ® L) = H.

Moreover, suppose we can somehow guarantee that U? = /. This may seem like
a very strong assumption but it is not. [Low and Chuang (2016)] discusses a
method to convert a general block encoding into a block encoding that squares
to identity. Let me emphasize that the extra cost is acceptable; one only needs
O(1) factor blowup in the cost (plus negligible amount of additional gates).
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Another simplification

We will make a yet another(!) simplification that will make our analysis easier.
We will assume that
((0]a ® L) U([0)a @ ks) = H.

" (l
Unlike the previous simplification, it is generally not possible to reduce the num-

ber of ancilla qubits to 1. However, what we are about to show can be generalized
easily to the case in which we have more than one ancilla qubits. (You can ask
me later if you are curious.)
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Acting on an eigenstate

Let U be the aforementioned block encoding of H. Let |n) be an eigenstate of
H (with an eigenvalue of E,).

U(l0) ®|m) = Eal0)|n) + V1 — EZ[1)[thn)s
where [1,) is some unknown normalized state.

Question: "
U(ll) @ |e)) =7

Qol@i) 1y @i)= Hiny=E.Ih7 U 189®y = B8 Iny+ \I-E* INALAY,
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Two-dimensional subspace

From our assumptions, we showed that U preserves a two-dimensional subspace

spanned by
{10) @ [m), |1) ® |¢n)}.

Moreover, on this subspace U acts in the following form:

E, V1-— E?
V1 -— E? —E, ’

a 2 X 2 unitary that squares to 1.
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Two-dimensional subspace

From our assumptions, we showed that U preserves a two-dimensional subspace

spanned by
{10) @ [m), |1) ® |¢n)}.

There is another unitary that we can easily apply in this subspace: e™**? acting
on the ancilla qubit. On our subspace, this is again a 2 x 2 unitary:

. Rloce Q«"C«ﬂry of H
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Qubitization (=Quantum Signal Processing)

By interleaving the two unitaries d times, we can obtain a 2 X 2 unitary of

. [}
some particular form. 2 poHeon'eAS

Pén) iQ/(7E,,)\/1 — E?
iQ*(En)V1— E? P*(E,),

where P and @ are polynomial of degrees of at most d and d — 1 respectively.
(Moreover, they have different parities.)

Question. Given this fact, suppose we apply the same sequence of unitaries to
|0)[2)), where [1)) is an arbitrary state, and then measure the ancilla qubit. If
we measure |0), what is the post-measurement state?

P(E) AQUE)FE-
&
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Qubitization (=Quantum Signal Processing)

By interleaving the two unitaries d times, we can obtain a 2 X 2 unitary of

some particular form.

P(E,) iQ(E)I— E2
iQ*(E)VI—EZ P*(E,),

where P and @ are polynomial of degrees of at most d and d — 1 respectively.
(Moreover, they have different parities.)

We found that we can implement

) = P(H)[¥)

for some polynomial P(x). The success probability is exactly ||P(H)[y)]|.
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Qubitization (=Qiuantum Signal Processing)

We now have a very general framework to apply a polynomial transformation to
the Hamiltonian H and apply it to an arbitrary state.

Important facts

1. For any real polynomial P(x), as long as |P(x)| < 1, by choosing
a different measurement basis we can apply P(H).

e No need to worry about the pesky Q(x).

2. Given a real polynomial P(x), there is an efficient classical
algorithm that computes the set of angles (used in single-qubit
rotations).

— If you have a good polynomial approximation of any function f(x),

you can apply f(H) to an arbitrary quantum state using qubitization.
The complexity scales linearly with the degree of the polynomial.
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Example. e %

~Akt

To apply e ™ we need to use a function f(x) =e . fm= e

N—ANAN

Jacobi-Anger expansion

ot co§ ¥t —astadt
cos(xt) = Jo(t) + 2 Z(—l)szk(t) Tok(x)

k=1

sin(xt) =2 (—1)“Jakra(t) Tanra(x)

Ji(t): Bessel function of the first kind of order i

T«(x): Chebyshev polynomial

This expansion leads to complexity of P prectstn (enw)
7
log1/e
O\t
(+ eregtira)

which is optimal in all the parameters. [Low and Chuang (2016)] .,



e The state-of-the-art method for Hamiltonian simulation uses highly
non-intuitive facts.

e Application of non-unitary transformation.
e Polynomial approximation of a transcendental function.
e Quantum computers seem to be very good at applying low-order
polynomial of the Hamiltonian to an arbitrary quantum state.

At this point, the standard approach to Hamiltonian simulation is the
qubitization. And the main innovation lies in optimizing the block encoding of
a Hamiltonian into a unitary.
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