KIAS ===

# 입자 우주론 기초

신창섭 (충남대학교)

@ KIAS Particle Physics Summer Camp 2022 (Aug. 22-25)

#### 표준 우주론

현재 정립된 표준 우주론은 초기 인플레이션에 의해서 현재 구조를 형성하는 씨앗이 마련되어 거 의 균일하고 등방적인 뜨거운 우주에서 출발한 것으로 시작한다. 우주가 팽창하고 식어가면서 각 시기마다 팽창율이 달라지고, 구조가 형성되는데 관측 결과는 현재 우주가 표준모형의 입자들, 암 흑물질, 그리고 암흑에너지가 각각 5%, 27% 68% 정도를 차지한다고 하면 잘 설명될 수 있다.

**Cosmic Microwave Background** 





#### Large Scale Structure of the Universe



#### **Expansion of the present Universe**



#### 표준 우주론

현재 정립된 표준 우주론은 초기 인플레이션에 의해서 현재 구조를 형성하는 씨앗이 마련되어 거 의 균일하고 등방적인 뜨거운 우주에서 출발한 것으로 시작한다. 우주가 팽창하고 식어가면서 각 시기마다 팽창율이 달라지고, 구조가 형성되는데 관측 결과는 현재 우주가 표준모형의 입자들, 암 흑물질, 그리고 암흑에너지가 각각 5%, 27% 68% 정도를 차지한다고 하면 잘 설명될 수 있다.

이러한 우주적 스케일에서 균일하고 등방적이며 팽창하는 우주는 시공간이 텅 비어 있는 아무것도 아닌 것이 아닌 동적이면서 진화하는 무엇이라는 것을 함축한다. 이번 강의에서는 이렇게 팽창하는 우주에 대한 기초적인 개념을 배우고 그 의미를 공부해보도록 하자.









좌표 거리  $(x_i)$  와 물리적 거리  $(\ell_i(t_1))$ 









좌표 거리  $(x_i)$  와 물리적 거리  $(\ell_i(t_4))$ 

ℓ<sub>i</sub>(t) = a(t) x<sub>i</sub> : 국소적인 힘에 의해서 좌표書 벗어나는 운동과 구분하여, 우주의 팽창에 의해서 증가하는 물리적 거리를 표현하기 위해 계량(metric)으로써 스케일 펙터 a(t) 을 도입할 수 있다. (모든 공간이 동등한 팽창율로 팽창하는 경우, 계량은 시간의 함수로만 나타낼 수 있다.)  $\ell_{1}(t_{4})$ 

좌표 거리  $(x_i)$  와 물리적 거리  $(\ell_i(t_4))$ 

 $\ell_i(t) = a(t) x_i$  : 국소적인 힘에 의해서 좌표를 벗어나는 운동과 구분하여, 우주의 팽창에 의해서 증가하는 물리적 거리를 표현하기 위해 계량(metric)으로써 스케일 펙터 a(t) 을 도입할 수 있다.

(모든 공간이 동등한 팽창율로 팽창하는 경우, 계량은 시간의 함수로만 나타낼 수 있다.)

이 점은 내가 위치한 위치일 뿐, 우주적으로 전혀 특별한 점이 아니다. (즉 별까지 거리의 변화는 별의 직접적인 운동이 아니라 중간에 놓여 있는 공간의 팽창의 결과로 멀어지는 것)

 $\ell_{1}(t_{4})$ 

좌표 거리  $(x_i)$  와 물리적 거리  $(\ell_i(t_4))$ 

ℓ<sub>i</sub>(t) = a(t) x<sub>i</sub> : 국소적인 힘에 의해서 좌표를 벗어나는 운동과 구분하여, 우주의 팽창에 의해서
증가하는 물리적 거리를 표현하기 위해 계량(metric)으로써 스케일 펙터 a(t) 을 도입할 수 있다.
(모든 공간이 동등한 팽창율로 팽창하는 경우, 계량은 시간의 함수로만 나타낼 수 있다.)
물리적 거리의 속도

$$v_i(t) = \dot{\ell}_i(t) = \dot{a}(t) x_i = \left(\frac{\dot{a}(t)}{a(t)}\right) a(t) x_i \equiv H(t)\ell_i(t) \Rightarrow v_i(t) \propto \ell_i(t)$$

멀어지는 속도는 거리에 비례하고, 비례상수 H(t) = a'(t)/a(t) 를 <mark>허블</mark> 파라미터라 부른다.

 $H_0 = H(t_{\text{now}}) = 100h \text{ km/s/Mpc} = (68 \sim 73) \text{ km/s/Mpc}$ 

거리가  $\ell_i(t) > H(t)^{-1}$  인 곳에서는  $v_i(t) > 1 = c$  이고 멀어지는 속도는 빛보다 빠르게 되어 구분 되어지고, 그러 의미에서 1/H(t) 를 허블 반경 (혹은 Hubble Horizon)이라고 한다.

Q. 허블 반경 밖에서 출발한 빛은 우리에게 도달 할 수 있을까?



거리가  $\ell_i(t) > H(t)^{-1}$  인 곳에서는  $v_i(t) > 1 = c$  이고 멀어지는 속도는 빛보다 빠르게 되어 구분 되어지고, 그러 의미에서 1/H(t) 를 허블 반경 (혹은 Hubble Horizon)이라고 한다.

Q. 허블 반경 밖에서 출발한 빛은 우리에게 도달 할 수 있을까? A. 경우에 따라 다르다... 허블 반경 이 시간에 대해 증가하는 경우, 현재 허블 volume 밖에 있던 별(빛)이 허블 volume 안으로 들어올 수 있고, 따라서 그 별에서 온 빛 또한 우리가 받을 수 있다.



거리가  $\ell_i(t) > H(t)^{-1}$  인 곳에서는  $v_i(t) > 1 = c$  이고 멀어지는 속도는 빛보다 빠르게 되어 구분 되어지고, 그러 의미에서 1/H(t) 를 허블 반경 (혹은 Hubble Horizon)이라고 한다.

Q. 허블 반경 밖에서 출발한 빛은 우리에게 도달 할 수 있을까? A. 경우에 따라 다르다... 허블 반경 이 시간에 대해 증가하는 경우, 현재 허블 volume 밖에 있던 별(빛)이 허블 volume 안으로 들어올 수 있고, 따라서 그 별에서 온 빛 또한 우리가 받을 수 있다.



거리가  $\ell_i(t) > H(t)^{-1}$  인 곳에서는  $v_i(t) > 1 = c$  이고 멀어지는 속도는 빛보다 빠르게 되어 구분 되어지고, 그러 의미에서 1/H(t) 를 허블 반경 (혹은 Hubble Horizon)이라고 한다.

Q. 허블 반경 밖에서 출발한 빛은 우리에게 도달 할 수 있을까? A. 경우에 따라 다르다... 허블 반경 이 시간에 대해 증가하는 경우, 현재 허블 volume 밖에 있던 별(빛)이 허블 volume 안으로 들어올 수 있고, 따라서 그 별에서 온 빛 또한 우리가 받을 수 있다.

따라서 실제로 빛이 **주어진 시간 동안 얼마나 이동할 수 있는지**를 확인해야 과거와 현재, 그리고 미래에서 인과적으로 연결될 수 있는 최대 영역에 대한 정보를 얻을 수 있다.

태초부터 주어진 우주의 나이까지 빛이 이동한 거리는 그 시간까지 인과적으로 연결될 수 있는 거 리를 의미하며 이를 Particle Horizon 혹은 Cosmological Horizon이라 한다.

한편, 현재 출발한 빛이 먼 미래를 고려해도 이동할 수 있는 최대거리가 유한하다면 이는 아무리 시간이 흐르더라도 우리가 인과적으로 연결될 수 있는 영역이 제한적이라는 것이므로 (즉 그 너머 는 우리가 영영 관측할 수 없다는 의미) 이를 Event Horizon 이라 한다.

### 호라이즌 계산해보기

현재의 시간을  $t_0$ , 이 때의  $a(t_0) = 1$  이라 할 때 빛의 경로는  $ds^2 = dt^2 - a(t)^2 dx^2 = 0$  따라서  $\Rightarrow dx = dt/a(t) \equiv d\eta$ , Particle Horizon :  $d_p = \int dx = \int_{t_0}^{t_0} \frac{dt}{a(t)}$ , Event Horizon :  $d_e = \int_{t_0}^{t_0} \frac{dt}{a(t)}$  $\eta = \text{Conformal time}$ 

여기서 뒤에서 다룰 2가지 경우에 대해 그 값을 구해보자.

예1) 
$$a(t) = \sqrt{t/t_0}$$
,  $H(t) = 1/2t$ , 예2)  $a(t) = e^{H_0(t-t_0)}$ ,  $H(t) = H_0$ 

#### 호라이즌 계산해보기

현재의 시간을  $t_0$ , 이 때의  $a(t_0) = 1$  이라 할 때 빛의 경로는  $ds^2 = dt^2 - a(t)^2 dx^2 = 0$  따라서  $\Rightarrow dx = dt/a(t) \equiv d\eta$ , Particle Horizon :  $d_p = \int dx = \int_{t_0}^{t_0} \frac{dt}{a(t)}$ , Event Horizon :  $d_e = \int_{t_0}^{t_0} \frac{dt}{a(t)}$  $\eta = \text{Conformal time}$ 

여기서 뒤에서 다룰 2가지 경우에 대해 그 값을 구해보자.

예1)  $a(t) = \sqrt{t/t_0}$ , H(t) = 1/2t, 예2)  $a(t) = e^{H_0(t-t_0)}$ ,  $H(t) = H_0$ 

예1)  $d_p = H_0^{-1}$ ,  $d_e = \infty$ ,

$$(42) \ d_p = H_0^{-1} e^{H_0(t_0 - t_{\text{ini}})} \to \infty \ \text{ for } t_{\text{ini}} \to -\infty, \quad d_e = H_0^{-1}$$

즉 예1) 은 현재 허블 반경 밖의 사건들은 과거에 서로 인과적으로 연결되어 있지 않지만, 미래에 는 모든 영역이 인과적으로 연결될 수 있다.

반면에 예2) 는 시작하는 시점에 따라 현재의 허블 반경보다 훨씬 더 큰 영역의 사건들이 과거에 서로 인과적으로 연결될 수 있다. 하지만 미래에는 오직 허블 반경 안의 사건들만 인과적으로 연결 된다.

예1은 감속 팽창으로 radiation 이 우주를 지배하는 경우, 예2는 가속 팽창의 전형적인 예이다.

### 거리와 척도

물리적 거리(physical distance)와 우주의 팽창에 영향을 받지 않는 좌표 거리(comoving distance) 사이의 관계  $\Delta \ell_i(t) = a(t) \Delta x_i$  를 시간을 포함한 임의의 좌표 변환에 대해서도 일반적으로 적용하 기 위해 metric tensor 를 도입하여 physical 한 metric을 정의할 수 있다.

$$ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} \quad (x^{\mu} = t, x, y, z)$$

앞에서 살펴본 경우는 다음과 같이 metric이 주어진 경우에 해당한다.

$$ds^2 = dt^2 - a(t)^2 d\vec{x}^2 = dt^2 - d\vec{\ell}^2$$

$$g_{MV} = \begin{pmatrix} 1 & & \\ -\alpha(4)^2 & & \\ & -\alpha(4)^2 & \\ & & -\alpha(4)^2 \end{pmatrix}$$

#### 거리와 척도

물리적 거리(physical distance)와 우주의 팽창에 영향을 받지 않는 좌표 거리(comoving distance) 사이의 관계  $\Delta \ell_i(t) = a(t) \Delta x_i$  를 시간을 포함한 임의의 좌표 변환에 대해서도 일반적으로 적용하 기 위해 metric tensor 를 도입하여 physical 한 metric을 정의할 수 있다.

 $ds^2 = g_{\mu\nu}(x)dx^{\mu}dx^{\nu} \ (x^{\mu} = t, x, y, z)$ 

앞에서 살펴본 경우는 다음과 같이 metric이 주어진 경우에 해당한다.

$$ds^{2} = dt^{2} - a(t)^{2} d\vec{x}^{2} = dt^{2} - d\vec{\ell}^{2}$$

우주의 metric tensor  $g_{\mu\nu}(t, x, y, z)$ 가 상수가 아니라 시간에 대해 변화된다는 것은 그에 대한 동역 학 즉, "metric tensor field"의 time evolution을 결정하는 방정식이 존재해야 함을 의미한다.

아인슈타인 방정식은 물질에 의해 metric tensor가 energy momentum tensor에 의해 어떻게 시간 에 대해 진화하는지, 공간적인 분포가 어떻게 되는지에 대한 정보를 제공한다.

에너지 모멘텀 텐서는 에너지와 운동량, 그리고 이들의 방향에 따른 흐름에 대한 정보를 제공한다.

$$T^{\mu\nu} = \begin{pmatrix} \mathsf{M} \mathsf{id} \mathsf{N} \ \exists \mathsf{L} \ (T^{00}) & \mathcal{E}\mathsf{S} \vec{\mathsf{e}} \ \exists \mathsf{L} \ (T^{0i}) \\ \mathsf{M} \mathsf{id} \mathsf{N} \ \vec{\mathsf{o}} \vec{\mathsf{e}} \ (T^{i0}) & \mathcal{E}\mathsf{S} \vec{\mathsf{e}} \ \vec{\mathsf{o}} \vec{\mathsf{e}} \ (T^{ij}) \end{pmatrix}$$

Single particle 의 모임인 경우,

$$T^{\mu\nu}(t,\vec{x}) = \sum_{i} \gamma_{i} m_{i} v_{i}^{\mu} v_{i}^{\nu} \delta^{3} \left( \vec{x} - \vec{x}_{p_{i}}(t) \right) \qquad \left( v_{i}^{\mu} = (1, d\vec{x}_{p_{i}}/dt) \right)$$

Field 의 경우, 일반적인 장  $\Phi_A$ 에 대하여

$$T^{\mu\nu}(x) = \sum_{A} \frac{\partial L(x)}{\partial (\partial_{\mu} \Phi_{A}(x))} \partial^{\nu} \Phi_{A}(x) - g^{\mu\nu} L(x)$$

에너지 모멘텀 텐서는 에너지와 운동량, 그리고 이들의 방향에 따른 흐름에 대한 정보를 제공한다.

$$T^{\mu\nu} = \begin{pmatrix} \mathsf{M} \mathsf{id} \mathsf{N} \ \exists \mathsf{L} \ (T^{00}) & \mathcal{C} \mathsf{S} \mathfrak{E} \ \exists \mathsf{L} \ (T^{0i}) \\ \mathsf{M} \mathsf{id} \mathsf{N} \ \check{\mathsf{o}} \mathrel{\mathsf{e}} \mathsf{f} \ (T^{i0}) & \mathcal{C} \mathsf{S} \mathfrak{E} \mathfrak{E} \ \check{\mathsf{o}} \mathrel{\mathsf{e}} \mathsf{f} \ (T^{ij}) \end{pmatrix}$$

Single particle 의 모임인 경우,

$$T^{\mu\nu}(t,\vec{x}) = \sum_{i} \gamma_{i} m_{i} v_{i}^{\mu} v_{i}^{\nu} \delta^{3} \left( \vec{x} - \vec{x}_{p_{i}}(t) \right) \qquad \left( v_{i}^{\mu} = (1, d\vec{x}_{p_{i}}/dt) \right)$$

Field 의 경우, 일반적인 장  $\Phi_A$ 에 대하여

$$T^{\mu\nu}(x) = \sum_{A} \frac{\partial L(x)}{\partial (\partial_{\mu} \Phi_{A}(x))} \partial^{\nu} \Phi_{A}(x) - g^{\mu\nu} L(x)$$

Perfect Fluid 로 근사할 수 있는 밀도가 큰 유체의 경우, Fluid rest frame 에서의 밀도  $\rho$ , 압력 P, 그리고 Fluid 의 bulk four-velocity  $u^{\mu}$  에 대하여

$$T^{\mu\nu}(x) = (\rho + P)u^{\mu}u^{\nu} + Pg^{\mu\nu} \Rightarrow \text{ Fluid rest frame}: T^{\mu}_{\ \nu} = \begin{pmatrix} \rho & 0 & 0 & 0\\ 0 & -P & 0 & 0\\ 0 & 0 & -P & 0\\ 0 & 0 & 0 & -P \end{pmatrix}$$

**우주에 고르게 퍼져 있는** 물질의 밀도와 압력의 관계를 통해 물질의 종류를 radiation, matter, etc. 로 구 분한다. 주어진 질량 m을 가지고 서로 상호작용 하는 입자들의 주어진 시간에서의 분포 f(p,t)를 생 각해보자. 개수밀도, 에너지밀도, 압력은 각각 아래와 같다. ( $E = \sqrt{m^2 + p^2}$ )

$$n = \int \frac{d^3p}{(2\pi)^3} f(p,t), \qquad \rho = \int \frac{d^3p}{(2\pi)^3} E f(p,t), \qquad P = \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} f(p,t)$$

**우주에 고르게 퍼져 있는** 물질의 밀도와 압력의 관계를 통해 물질의 종류를 radiation, matter, etc. 로 구 분한다. 주어진 질량 m 을 가지고 서로 상호작용 하는 입자들의 주어진 시간에서의 분포 f(p,t)를 생 각해보자. 개수밀도, 에너지밀도, 압력은 각각 아래와 같다. ( $E = \sqrt{m^2 + p^2}$ )

$$n = \int \frac{d^3p}{(2\pi)^3} f(p,t), \qquad \rho = \int \frac{d^3p}{(2\pi)^3} E f(p,t), \qquad P = \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} f(p,t)$$

1) 운동량 p 가 m 보다 훨씬 큰 영역이 주로 기여하는 경우,  $p \simeq E$ ,

$$P = \int \frac{d^3p}{(2\pi)^3} \frac{p^2}{3E} f(p,t) \simeq \int \frac{d^3p}{(2\pi)^3} \frac{E^2}{3E} f(p,t) = \frac{1}{3}\rho, \qquad \rho \simeq \langle p \rangle n \qquad \qquad P \approx \frac{1}{3}\rho$$

2) 운동량 p 가 m 보다 훨씬 작은 영역이 주로 기여하는 경우,  $p \simeq mv \ll E \simeq m$ ,

$$P = \int \frac{d^3 p}{(2\pi)^3} \frac{p^2}{3E} f(p,t) \simeq \int \frac{d^3 p}{(2\pi)^3} \frac{(mv)^2}{3m} f(p,t) = \frac{1}{3} \langle v^2 \rangle \rho \ll \rho, \qquad \rho \simeq mn \qquad P \approx 0$$

우주론적 관점에서 1)  $P = \rho/3$  을 따르면 radiation, 2) P = 0 를 따르면 matter 로 통칭한다.

3) 시간에만 의존하는 스칼라 장의 경우  $\phi(t)$ ,  $L \simeq \frac{1}{2}\dot{\phi}(t)^2 - V(\phi)$ 

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi), \qquad P = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

3.1)  $\dot{\phi}^2 \gg V \quad \rho \simeq \frac{1}{2} \dot{\phi}^2 \simeq p \quad P \approx \rho$ 3.2)  $\dot{\phi}^2 \ll V \quad \rho \simeq V \simeq -p \quad P \approx -\rho$ 4) "우주" 상수가 라그랑지안에 있는 경우,  $L = -\Lambda \Rightarrow T^{\mu}_{\ \nu} = -\delta^{\mu}_{\nu}\Lambda \Rightarrow \rho = \Lambda = -P \qquad P = -\rho$ 

3) 시간에만 의존하는 스칼라 장의 경우  $\phi(t)$ ,  $L \simeq \frac{1}{2}\dot{\phi}(t)^2 - V(\phi)$ 

$$\rho = \frac{1}{2}\dot{\phi}^2 + V(\phi), \qquad P = \frac{1}{2}\dot{\phi}^2 - V(\phi)$$

3.1)  $\dot{\phi}^2 \gg V \quad \rho \simeq \frac{1}{2} \dot{\phi}^2 \simeq p \quad P \approx \rho$  3.2)  $\dot{\phi}^2 \ll V \quad \rho \simeq V \simeq -p \quad P \approx -\rho$ 

4) "우주" 상수가 라그랑지안에 있는 경우,  $L = -\Lambda \Rightarrow T^{\mu}_{\nu} = -\delta^{\mu}_{\nu}\Lambda \Rightarrow \rho = \Lambda = -P$   $P = -\rho$ 

3.2) 와 4) 의 경우, 에너지 밀도가 양수라면 압력은 음수가 되고 이는 유체의 부피가 단열적으로 커 지는 경우 "음의 일을 하면서 부피 안의 전체 에너지는 증가"함을 의미한다.



에너지 모멘텀 텐서가 우주 시공간의 진화에 어떻게 영향을 끼치는지 살펴보자. 가장 단순한 경우 로 우주에 밀도가 고르게 분포하여 균일성과 등방성을 유지한다고 할 때, 즉 ρ(t,x) ≈ ρ(t), P(t,x) ≈ P(t). 이것이 소스가 되어 줄 수 있는 메트릭은 다음의 세가지로 항상 표현할 수 있고 이 를 프리드만-르메트르-로버트슨-워커 계량 (FLRW metric)이라 한다. K=1

Closed

K = -1Open

K = 0

Flat MAP990006

$$ds^{2} = dt^{2} - a(t)^{2} \left( \frac{dr^{2}}{1 - Kr} + r^{2} d\Omega^{2} \right) \qquad (K = 1, 0, -1)$$

아인슈타인 방정식은 다음의 프리드만 방정식으로 이어진다.

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{K}{a^2} = \frac{8\pi G\rho}{3}, \qquad \left(\frac{\ddot{a}}{a}\right) = -\frac{4\pi G}{3}(\rho + 3P)$$

또한 두 방정식의 조합으로 에너지 모멘텀 보존관계  $D_{\mu}T^{\mu\nu} = 0$ 가 다음과 같이 주어진다.

$$\dot{\rho} + 3H(\rho + P) = 0 \Rightarrow \frac{d(\rho V)}{dt} = -P\frac{dV}{dt} \quad \left(H = \frac{\dot{a}}{a}, V = a^3\right)$$

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{K}{a^2} = \frac{8\pi G\rho}{3}, \qquad \left(\frac{\ddot{a}}{a}\right) = -\frac{4\pi G}{3}(\rho + 3P)$$

Temporal curvatureSpatial curvature1. Ricci scalar curvature $R = 6\left(\left(\frac{\dot{a}}{a}\right)^2 + \frac{\ddot{a}}{a} + \frac{K}{a^2}\right)$ 즉 우주의 팽창은 시간방향의 곡률로 해석된다.우주 관측을 통해 우주의 공간 곡률은 시간 곡률에 비해 매우 작음이 알려졌다. 즉 우주의 토폴로지는 아직 모르지만 미분 기하학적으로는 거의 평평하다 (Flat Universe)

$$\left|\frac{K}{a_0^2}\right| < 0.01 \, H_0^2 \implies \rho_0 \approx \frac{3H_0^2}{8\pi G} \qquad (H_0, a_0, \rho_0 = H(t_0), a(t_0), \rho_0(t_0), \qquad t_0 = t_{\text{now}})$$

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{K}{a^2} = \frac{8\pi G\rho}{3}, \qquad \left(\frac{\ddot{a}}{a}\right) = -\frac{4\pi G}{3}(\rho + 3P)$$

Temporal curvatureSpatial curvature1. Ricci scalar curvature $R = 6\left(\left(\frac{\dot{a}}{a}\right)^2 + \frac{\ddot{a}}{a} + \frac{K}{a^2}\right)$ 즉 우주의 팽창은 시간방향의 곡률로 해석된다.우주 관측을 통해 우주의 공간 곡률은 시간 곡률에 비해 매우 작음이 알려졌다. 즉 우주의 토폴로지는 아직 모르지만 미분 기하학적으로는 거의 평평하다 (Flat Universe)

$$\left|\frac{K}{a_0^2}\right| < 0.01 \, H_0^2 \quad \Rightarrow \rho_0 \approx \frac{3H_0^2}{8\pi G} \qquad (H_0, a_0, \rho_0 = H(t_0), a(t_0), \rho_0(t_0), \qquad t_0 = t_{\text{now}})$$

2. Time reversal symmetry:  $t \rightarrow -t$  변환에 대해 방정식이 대칭적이다. 이는 주어진 에너지 모멘 텀 텐서의 초기 조건 ( $\rho$ , P) 에 대해서 팽창하는 해 ( $\dot{a} > 0$ ) 가 있다면 수축하는 해 ( $\dot{a} < 0$ ) 도 존재함 을 의미한다. 하지만 팽창하는 해가 실현됨으로써 시간 대칭성은 자발적으로 깨지게 된다.

$$\left(\frac{\dot{a}}{a}\right)^2 + \frac{K}{a^2} = \frac{8\pi G\rho}{3}, \qquad \left(\frac{\ddot{a}}{a}\right) = -\frac{4\pi G}{3}(\rho + 3P)$$

Temporal curvatureSpatial curvature1. Ricci scalar curvature $R = 6\left(\left(\frac{\dot{a}}{a}\right)^2 + \frac{\ddot{a}}{a} + \frac{K}{a^2}\right)$ 즉 우주의 팽창은 시간방향의 곡률로 해석된다.우주 관측을 통해 우주의 공간 곡률은 시간 곡률에 비해 매우 작음이 알려졌다. 즉 우주의 토폴로지는 아직 모르지만 미분 기하학적으로는 거의 평평하다 (Flat Universe)

$$\left|\frac{K}{a_0^2}\right| < 0.01 \, H_0^2 \quad \Rightarrow \rho_0 \approx \frac{3H_0^2}{8\pi G} \qquad (H_0, a_0, \rho_0 = H(t_0), a(t_0), \rho_0(t_0), \qquad t_0 = t_{\text{now}})$$

2. Time reversal symmetry:  $t \rightarrow -t$  변환에 대해 방정식이 대칭적이다. 이는 주어진 에너지 모멘 텀 텐서의 초기 조건 ( $\rho$ , P) 에 대해서 팽창하는 해 ( $\dot{a} > 0$ ) 가 있다면 수축하는 해 ( $\dot{a} < 0$ ) 도 존재함 을 의미한다. 하지만 팽창하는 해가 실현됨으로써 시간 대칭성은 자발적으로 깨지게 된다.

3.  $\rho + 3P > 0$  : 감속 팽창 ( $\ddot{a} < 0$  radiation, matter 등이 에너지를 지배하는 경우  $\rho, P > 0$ ),

 $\rho + 3P < 0$ : 가속 팽창 ( $\ddot{a} > 0$  우주 상수, 스칼라 퍼텐셜이 에너지를 지배하는 경우  $P < -\rho/3$ )

$$\dot{\rho} + 3H(\rho + P) = 0 \implies \frac{d(\rho V)}{dt} = -P\frac{dV}{dt} \quad \left(H = \frac{\dot{a}}{a}, V = a^3\right)$$

1.  $V = a^3$ 은 단위 comoving volume 당 physical volume 이고 현재 우주에서  $a_0 = 1$  로 둠으로써 comoving volume (distance) 의 값은 현 시점에서의 physical volume (distance) 에 대응한다. e.g.) 과거 시간  $t_*$ 일 때  $a(t_*) = 0.01$  라고 하자. 이 시간까지 빛이 1pc의 comoving distance 를 이동했다면, 그 당시의 척도로 측정한 물리적 이동 거리는  $\ell(t_*) = a(t_*)$ 1pc = 0.01pc 이고, 해당 변위를 현재의 척도로 측정한 거리는  $\ell(t_0) = a_0$ 1pc = 1pc 이다.

$$\dot{\rho} + 3H(\rho + P) = 0 \Rightarrow \frac{d(\rho V)}{dt} = -P\frac{dV}{dt} \quad \left(H = \frac{\dot{a}}{a}, V = a^3\right)$$

1.  $V = a^3$ 은 단위 comoving volume 당 physical volume 이고 현재 우주에서  $a_0 = 1$  로 둠으로써 comoving volume (distance) 의 값은 현 시점에서의 physical volume (distance) 에 대응한다. e.g.) 과거 시간  $t_*$  일 때  $a(t_*) = 0.01$  라고 하자. 이 시간까지 빛이 1pc의 comoving distance 를 이동했 다면, 그 당시의 척도로 측정한 물리적 이동 거리는  $\ell(t_*) = a(t_*)$ 1pc = 0.01pc 이고, 해당 변위를 현 재의 척도로 측정한 거리는  $\ell(t_0) = a_0$ 1pc = 1pc 이다. 2. 팽창하는 물리적 부피 안의 에너지  $U = \rho V$ 는 보존되지 않고 공간의 팽창 동안 일을 함으로써 공간으로 에너지를 잃거나 (P > 0), 얻게 된다. (P < 0). 만약에 물질이 열적 평형상태에 있어서 온 도 T가 균일하게 잘 정의된다면 열역학적 관계  $dU = -PdV + TdS \Rightarrow dS = 0$  즉 엔트로피 S = sV가

보존되고 엔트로피 밀도  $s = s ∝ 1/a^3$ 으로 우주가 팽창하면서 줄어든다.

$$\dot{\rho} + 3H(\rho + P) = 0 \implies \frac{d(\rho V)}{dt} = -P\frac{dV}{dt} \quad \left(H = \frac{\dot{a}}{a}, V = a^3\right)$$

3. 팽창하는 우주에서의 입자의 운동 방정식(geodesic equation)과 함께 물질에 종류에 따른 밀도 의 진화과정을 이해할 수 있다. 좀 더 단순하게는 four-모멘텀  $p_{\mu} = mg_{\mu\nu}dx^{\nu}/ds$  에 대해  $\vec{p}_i$  는 comoving momentum으로 주어진다. i.e.  $d\vec{p}_i/dt = 0$  (e.g.  $e^{-ip_{\mu}x^{\mu}}$  등을 생각해보면)

$$m^2 = g^{\mu\nu}p_{\mu}p_{\nu} \Rightarrow p_0^2 - \left(\frac{\vec{p}_i}{a}\right)^2 = m^2 \Rightarrow E = p_0, p = \frac{|\vec{p}_i|}{a} \propto \frac{1}{a}$$
 (Redshift)

즉 입자의 물리적 운동량은 우주가 팽창함에 따라 1/a 로 줄어든다. 또한 입자의 전체 수가 보존된 다면  $N = na^3 =$ 일정  $\Rightarrow n \propto 1/a^3$ 으로 줄어들게 됨을 의미한다. 따라서

$$\dot{\rho} + 3H(\rho + P) = 0 \implies \frac{d(\rho V)}{dt} = -P\frac{dV}{dt} \quad \left(H = \frac{\dot{a}}{a}, V = a^3\right)$$

3. 팽창하는 우주에서의 입자의 운동 방정식(geodesic equation)과 함께 물질에 종류에 따른 밀도 의 진화과정을 이해할 수 있다. 좀 더 단순하게는 four-모멘텀  $p_{\mu} = mg_{\mu\nu}dx^{\nu}/ds$  에 대해  $\vec{p}_i$  는 comoving momentum으로 주어진다. i.e.  $d\vec{p}_i/dt = 0$  (e.g.  $e^{-ip_{\mu}x^{\mu}}$  등을 생각해보면)

$$m^2 = g^{\mu\nu}p_{\mu}p_{\nu} \Rightarrow p_0^2 - \left(\frac{\vec{p}_i}{a}\right)^2 = m^2 \Rightarrow E = p_0, p = \frac{|\vec{p}_i|}{a} \propto \frac{1}{a}$$
 (Redshift)

즉 입자의 물리적 운동량은 우주가 팽창함에 따라 1/a 로 줄어든다. 또한 입자의 전체 수가 보존된 다면  $N = na^3 =$ 일정  $\Rightarrow n \propto 1/a^3$ 으로 줄어들게 됨을 의미한다. 따라서

 $\text{Radiation}: P = \frac{1}{3}\rho, \ \rho = \langle p \rangle n \propto \frac{1}{a} \frac{1}{a^3} \propto \frac{1}{a^{4'}} \quad \dot{\rho} + 3H(\rho + P) = \dot{\rho} + 4H\rho = 0 \Rightarrow \frac{d}{dt}(\rho a^4) = 0 \Rightarrow \rho \propto \frac{1}{a^4}$ 

Matter :  $P = 0, \rho = mn \propto \frac{1}{a^{3'}}$   $\dot{\rho} + 3H(\rho + P) = \dot{\rho} + 3H\rho = 0 \Rightarrow \frac{d}{dt}(\rho a^3) = 0 \Rightarrow \rho \propto \frac{1}{a^3}$ 

$$\dot{\rho} + 3H(\rho + P) = 0 \implies \frac{d(\rho V)}{dt} = -P\frac{dV}{dt} \quad \left(H = \frac{\dot{a}}{a}, V = a^3\right)$$

4. 입자로 기술하기 어려운, 공간적으로 균일하게 값이 주어진 스칼라 장  $\phi(t)$ 의 운동의 경우 운동 방정식은 다음과 같다  $\ddot{\phi}(t) + 3H\dot{\phi}(t) + \partial_{\phi}V(\phi) = 0$ 

즉 우주의 팽창은 스칼라장에게 유효한 마찰력을 제공하여 움직임을 더디게 해준다. 양변에  $\dot{\phi}$ 를 곱하면

$$\frac{d}{dt}\left(\frac{1}{2}\dot{\phi}^2 + V(\phi)\right) + 3H\left(\frac{1}{2}\dot{\phi}^2 + V(\phi) + \frac{1}{2}\dot{\phi}^2 - V(\phi)\right) = 0 \Rightarrow \frac{d}{dt}\rho + 3H(\rho + P) = 0$$

 $\dot{\phi}^2 \ll V(\phi)$  인 경우에는  $(P = -\rho)$ ,  $\dot{\rho} + 3H(\rho + P) = \dot{\rho} = 0$ ,  $\rho = 팽창과 무관하게 일정, 우주 상수$ 와 유사한 결과를 준다.

#### 균일하고 등방적인 우주의 팽창

우주의 밀도가 특정 물질에 의해 지배되는 경우 *P* = *wρ* (*w* = 일정), 그리고 평평한 우주를 가정할 때 프리드만 방정식은

$$H^2 = \frac{8\pi G\rho}{3}, \qquad \left(\frac{\ddot{a}}{a}\right) = -(1+3w)\frac{4\pi G\rho}{3}$$

다음과 같은 해를 가진다.  $a(t) = (t/t_0)^{\frac{2}{3(w+1)}}$   $(w \neq -1)$ ,  $= e^{H_0(t-t_0)}$  (w = -1)

Radiation domination: 
$$a(t) = \sqrt{t/t_0}$$
,  $H(t) = \frac{1}{2t} = \frac{H_0}{a^{2'}}$ ,  $\rho(t) = \frac{\rho_0}{a^4}$   
Matter domination:  $a(t) = (t/t_0)^{2/3}$ ,  $H(t) = \frac{2}{3t} = \frac{H_0}{a^{3/2'}}$ ,  $\rho(t) = \frac{\rho_0}{a^3}$   $t = 0 \Rightarrow \text{ 특이점 } \rho = \infty$ 

Cosmological Constant (de Sitter, Positive vacuum energy):  $H(t) = H_0$ ,  $\rho(t) = \rho_0$ 



#### 여러 성분을 가진 균일하고 등방적인 우주의 팽창

우주를 이루는 성분은 한가지 종류만 있지 않다. 앞에서 언급한 모든 종류가 존재한다면

$$\rho(t) = \rho_{rad}(t) + \rho_{mat}(t) + \rho_{vac}(t) = \frac{\rho_{rad}(t_0)}{a^4} + \frac{\rho_{mat}(t_0)}{a^3} + \rho_{vac}(t_0) = \rho_0 \left(\frac{\Omega_{rad}}{a^4} + \frac{\Omega_{mat}}{a^3} + \Omega_{vac}\right)$$

where  $\Omega_i = \rho_i(t_0)/\rho(t_0)$  이고 우주가 팽창함에 따라 시기적으로 우주를 지배하는 물질의 종류가 달라지고 우주의 팽창 정도에 아래와 같이 영향을 끼친다.



#### 우주 팽창의 역사



### 우주의 성분의 진화



Q. 초기 우주에서는 물질은 지속적으로 생성과 소멸을 반복하면서 열적 평형 상태에 있을 수 있다. 열적 평형상태에 있을 조건은 무엇인가?

Q. 초기 우주에서는 물질은 지속적으로 생성과 소멸을 반복하면서 열적 평형 상태에 있을 수 있다. 열적 평형상태에 있을 조건은 무엇인가?



A1. 당시의 우주 나이 t 동안 평형상태로 이끄는 상호작용이 충분히 많이 일어나야 한다. 즉 단위 시간당 해당 산란이 일어날 확률  $\Gamma(t) = \langle \sigma v \rangle n_A$  대해

 $\Gamma(t) t \gg 1 \Rightarrow \Gamma(t) \gg H(t) \text{ for } t \sim H(t)^{-1}$ 

A2. 우주의 팽창 속도 H(t) 가 산란이 일어나는 속도  $\Gamma(t)$  보다 빠르면 입자는 상호작용할 입자를 찾지 못해 열평형에 이르지 못할 것이다. 따라서  $\Gamma(t) \gg H(t)$  가 되어야 한다.

일반적으로 과거로 갈수록 산란을 하는 입자의 밀도  $n_A$ 가 매우 커지므로  $\Gamma(t) \gg H(t)$ 의 조건이 만 족되기 쉽다.

Q. 초기 우주에서는 물질은 지속적으로 생성과 소멸을 반복하면서 열적 평형 상태에 있을 수 있다. 열적 평형상태에 있을 조건은 무엇인가?



A1. 당시의 우주 나이 t 동안 평형상태로 이끄는 상호작용이 충분히 많이 일어나야 한다. 즉 단위 시간당 해당 산란이 일어날 확률  $\Gamma(t) = \langle \sigma v \rangle n_A$  대해

 $\Gamma(t) t \gg 1 \Rightarrow \Gamma(t) \gg H(t) \text{ for } t \sim H(t)^{-1}$ 

A2. 우주의 팽창 속도 H(t) 가 산란이 일어나는 속도  $\Gamma(t)$  보다 빠르면 입자는 상호작용할 입자를 찾지 못해 열평형에 이르지 못할 것이다. 따라서  $\Gamma(t) \gg H(t)$  가 되어야 한다.

일반적으로 과거로 갈수록 산란을 하는 입자의 밀도  $n_A$ 가 매우 커지므로  $\Gamma(t) \gg H(t)$ 의 조건이 만 족되기 쉽다. 반대로 우주가 팽창하면서  $\Gamma(t) < H(t)$ 가 되기 시작하면 해당 입자는 우주적 thermal bath 에서 빠져 나오게 된다.

열적 평형상태에서 벗어난 입자 χ 는 그 수가 보존되면서 현재 우주의 relic 으로 남아서 에너지에 기여하게 된다.



#### **Big Bang Nucleosynthesis (BBN)**

우주의 온도가 100MeV 이하로 떨어지면서 쿼크와 글루온은 핵자에 갇히고 양성자와 중성자 (바리 온 Baryon 으로 통칭)가 된다. 또한 그 과정에서 반양성자와 반중성자도 생성이 되는데, 대부분의 바리온과 그 반입자는 쌍소멸을 통해 사라지고 더 이상 쌍소멸을 할 수 없는 바리온들은 그 수를 보존한다. 즉  $n_B \propto 1/a^3$ 

주어진 바리온의 양에 대해 우주가 식어가면서 자유 양성자와 자유 중성자는 좀 더 안정적인 가벼 운 핵자들로 속박되는 과정을 겪게 되고 이 과정을 빅뱅 핵합성이라 하며 정확하게 계산 가능하다.





#### **Big Bang Nucleosynthesis (BBN)**



Atomic Mass (amu)

#### **Big Bang Nucleosynthesis (BBN)**

바리온의 포톤에 대한 상대적인 양 (*n<sub>B</sub>/n<sub>γ</sub>*)을 바꿔가면서 계산할 수 있다. 특히 중수소(Deuterium) 의 양이 이에 민감하게 반응하는데, 실제 관측값과 이론값을 비교함으로써 input 값으로의 우주의 바리온의 양을 결정할 수 있다. 우리가 아는 모든 별, 은하, 행성 등은 바리온으로 이뤄져 있으므로 우주에서의 그 전체 양 또한 예측할 수 있다.

The larger the nucleon density, the higher the temperature at which nucleosynthesis began, and so the less time there was for neutron decay before nucleosynthesis, leading to a higher final <sup>4</sup>He abundance.

The higher the baryon density, the more complete will be the incorporation of neutrons into <sup>4</sup>He, and hence the smaller the resulting abundance of deuterium.

[Weinberg, Cosmology]



#### **Cosmic Microwave Background (CMB)**

온도가 0.1 eV 정도로 내려가기 전에는 이온 상태의 바리온은 포톤과 강하게 상호작용을 하다가 온 도가 떨어지면서 전자와 결합을 해 원자가 되고 decouple 된 photon 은 자유롭게 진행하여 우리에 게 도달한다.



#### **Cosmic Microwave Background (CMB)**

온도가 0.1 eV 정도로 내려가기 전에는 이온 상태의 바리온은 포톤과 강하게 상호작용을 하다가 온 도가 떨어지면서 전자와 결합을 해 원자가 되고 decouple 된 photon 은 자유롭게 진행하여 우리에 게 도달한다.  $\ddot{\delta_k} + c_s^2 k^2 \delta_k + k^2 \phi_k \simeq 0$ 

gravitational potential from Dark Matter





#### **Cosmic Microwave Background (CMB)**

바리온과 함께 암흑물질의 양은 CMB 의 Angular Power spectrum 을 fitting 하는데 필수적이다. BBN의 결과와 함께 가장 잘 fitting을 하는 값은 암흑물질의 양이 바리온의 양보다 많아야 함을 의 미한다.



Hu, Dodelson, Ann.Rev.Astron.Astrophys.40:171-216,2002

#### **Big Questions**

우주론에 대한 연구는 입자물리학자들에게 매우 중요한 질문들을 던진다.

1) 입자와 반입자의 비대칭성은 우주 구조 형성에 필수적이다. 하지만 표준모형 만으로는 관측값을
 도저히 설명할 수 없다. 과연 이 비대칭성은 어디서 오는 것일까?

2) 암흑물질의 정체는 무엇인가?

3) 암흑에너지(진공에너지)의 값은 이론적으로 예측 가능한 값인가? 그리고 그 값은 자연스러운가?
4) 등방적이고 균일한 CMB 와 Large Scale Structure 의 관측 결과는 우주의 density fluctuation
이 Inflation(원시 급 가속팽창)의 결과라는 강력한 증거를 제공한다. 이는 앞에서 살펴본 Particle
Horizon이 급가속팽창에 의해 매우 커져서 아주 넓은 영역이 인과적으로 연결될 수 있음을 의미하
기 때문이다. 그럼 Inflation을 일으키는 입자 모형은 무엇인가?

5) 그 외 위의 질문들로 부터 더 깊게 연결될 수 있는 다양한 질문들.

이러한 질문들을 탐구하면서 새로운 관측 결과를 예측함으로써 아주 작은 세계의 상호작용을 결정 하는 기본법칙이 어떻게 아주 거대한 크기의 물리에 영향을 줄 수 있는지를 이해할 수 있다.